organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Chloro­phen­yl)-2-({5-[4-(methyl­sulfan­yl)benz­yl]-4-phenyl-4H-1,2,4-triazol-3-yl}sulfan­yl)acetamide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, Mangalore University, Karnataka, India
*Correspondence e-mail: hkfun@usm.my

(Received 4 July 2011; accepted 9 July 2011; online 16 July 2011)

In the title mol­ecule, C24H21ClN4OS2, the central 1,2,4-triazole ring forms dihedral angles of 89.05 (9), 86.66 (9) and 82.70 (10)° with the chloro-substituted benzene ring, the methyl­sulfanyl-substituted benzene ring and the phenyl ring, respectively. In the crystal, mol­ecules are linked into sheets parallel to (100) by inter­molecular N—H⋯N and weak C—H⋯O hydrogen bonds.

Related literature

For general background to and applications of 1,2,4-triazole derivatives, see: Holla et al. (2002[Holla, B. S., Poojary, K. N., Rao, B. S. & Shivananda, M. K. (2002). Eur. J. Med. Chem. 37, 511-517.], 2003[Holla, B. S., Veerendra, B., Shivananda, M. K. & Poojary, B. (2003). Eur. J. Med. Chem. 38, 759-767.]); Rudnicka et al. (1986[Rudnicka, W., Foks, H., Janowiec, M. & Zwolska-Kwiek, Z. (1986). Acta Pol. Pharm. 43, 523-528.]); Burch & Smith (1966[Burch, H. A. & Smith, W. O. (1966). J. Med. Chem. 9, 405-408.]); Kalyoncuoglu et al. (1992[Kalyoncuoglu, N., Rollas, S., Sür-Altiner, D., Yegenoglu, Y. & Ang, Ö. (1992). Pharmazie, 47, 796-797.]); Mhasalkar et al. (1970[Mhasalkar, M. Y., Shah, M. H., Nikam, S. T., Anantanarayanan, K. G. & Deliwala, C. V. (1970). J. Med. Chem. 13, 672-674.]); Mir et al. (1970[Mir, I., Siddiqui, M. T. & Comrie, A. (1970). Tetrahedron, 26, 5235-5238.]).

[Scheme 1]

Experimental

Crystal data
  • C24H21ClN4OS2

  • Mr = 481.02

  • Monoclinic, P 21 /c

  • a = 14.2542 (7) Å

  • b = 16.3273 (9) Å

  • c = 10.1584 (6) Å

  • β = 96.372 (1)°

  • V = 2349.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 297 K

  • 0.52 × 0.27 × 0.22 mm

Data collection
  • Bruker APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.832, Tmax = 0.924

  • 29877 measured reflections

  • 7900 independent reflections

  • 5235 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.159

  • S = 1.05

  • 7900 reflections

  • 290 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯N3i 0.94 2.04 2.9787 (19) 174
C8—H8A⋯O1ii 0.97 2.52 3.147 (2) 123
C11—H11B⋯O1iii 0.97 2.47 3.416 (2) 165
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+2; (iii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

1,2,4-Triazole compounds show a broad spectrum of biological activities, possibly due to the presence of the N–C–S group (Holla et al., 2002). Among the 1,2,4-triazoles, the mercapto-thione-substituted 1,2,4-triazole ring systems have been well studied and so far, a variety of biological activities have been reported for a large number of their derivatives, such as antibacterial (Burch & Smith, 1966), antifungal (Kalyoncuoglu et al., 1992), antitubercular (Mir et al., 1970), antimycobacterial (Rudnicka et al., 1986), anticancer (Holla et al., 2003) and hypoglycemic properties (Mhasalkar et al., 1970). In view of the above findings, and in continuation of our earlier work on the synthesis and biological activity of triazoles and their derivatives, we have synthesized a series of 1,2,4-triazole derivatives via joining a 1,2,4-triazole and acylamide group together in the same molecule and have studied their biological activities. As part of this research we have determined the crystal structure of th title compound.

The molecular structure of the title compound (I) is shown in Fig. 1. The central 1,2,4-triazole ring forms dihedral angles of 89.05 (9), 86.66 (9) and 82.70 (10)° with the three benzene rings (C1–C6, C18–C23 and C12–C17). In the crystal, molecules are linked into double sheets parallel to (1 0 0) by intermolecular N1—H1N1···N3i, C8—H8A···O1ii and C11—H11B···O1iii hydrogen bonds (Table 1, Fig. 2).

Related literature top

For general background to and applications of 1,2,4-triazole derivatives, see: Holla et al. (2002, 2003); Rudnicka et al. (1986); Burch & Smith (1966); Kalyoncuoglu et al. (1992); Mhasalkar et al. (1970); Mir et al. (1970).

Experimental top

A equimolar mixture of 5-[4-(methylthiobenzyl]-4-phenyl-4H-[1,2,4]-triazole-3-thione (0.01 mol), 2-Chloro-N-(2-chlorophenyl)acetamide (0.01 mol) and dry potassium carbonate (0.01 mol) were refluxed for 6 h in 20 ml of absolute alcohol and excess of solvent was removed by distillation under reduced pressure. After cooling to room temperature, the reaction mixture was poured into 50 ml of water. The product which precipitated was filtered off, washed with methanol and dried. The crude product was re-crystallized from ethanol.

Refinement top

The N-bound hydrogen atom was located from difference Fourier map and included in a riding-model approximation with N-H = 0.94Å and Uiso(H) = 1.2Ueq(N). All C-bound hydrogen atoms were positioned geomatrically [C–H = 0.93–0.97 Å] and refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model were applied for methyl groups. Two reflections, (-1 1 1), and (6 6 4), were omitted.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal packing of (I), showing the molecules linked into a double sheets parallel to (1 0 0). Hydrogen bonds are shown as dashed lines.
N-(2-Chlorophenyl)-2-({5-[4-(methylsulfanyl)benzyl]-4-phenyl-4H- 1,2,4-triazol-3-yl}sulfanyl)acetamide top
Crystal data top
C24H21ClN4OS2F(000) = 1000
Mr = 481.02Dx = 1.360 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7952 reflections
a = 14.2542 (7) Åθ = 2.5–30.4°
b = 16.3273 (9) ŵ = 0.37 mm1
c = 10.1584 (6) ÅT = 297 K
β = 96.372 (1)°Block, brown
V = 2349.6 (2) Å30.52 × 0.27 × 0.22 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD
diffractometer
7900 independent reflections
Radiation source: fine-focus sealed tube5235 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 31.7°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2121
Tmin = 0.832, Tmax = 0.924k = 2423
29877 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.075P)2 + 0.4271P]
where P = (Fo2 + 2Fc2)/3
7900 reflections(Δ/σ)max < 0.001
290 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
C24H21ClN4OS2V = 2349.6 (2) Å3
Mr = 481.02Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.2542 (7) ŵ = 0.37 mm1
b = 16.3273 (9) ÅT = 297 K
c = 10.1584 (6) Å0.52 × 0.27 × 0.22 mm
β = 96.372 (1)°
Data collection top
Bruker APEXII DUO CCD
diffractometer
7900 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5235 reflections with I > 2σ(I)
Tmin = 0.832, Tmax = 0.924Rint = 0.028
29877 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 1.05Δρmax = 0.53 e Å3
7900 reflectionsΔρmin = 0.45 e Å3
290 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.90496 (5)0.48639 (5)1.17911 (9)0.1088 (3)
S10.39474 (3)0.45413 (3)0.74551 (4)0.05346 (13)
S20.00345 (5)0.24018 (6)0.06766 (9)0.1109 (3)
O10.58819 (9)0.47636 (7)0.90982 (12)0.0551 (3)
N10.59354 (9)0.34760 (8)0.99633 (14)0.0483 (3)
H1N10.55890.29880.99970.058*
N20.48488 (9)0.33585 (8)0.61649 (13)0.0469 (3)
N30.48455 (9)0.30835 (8)0.48666 (14)0.0467 (3)
N40.38196 (8)0.40807 (7)0.48700 (12)0.0393 (3)
C10.74454 (12)0.40977 (11)1.08375 (18)0.0534 (4)
H1A0.74640.44161.00810.064*
C20.81439 (13)0.41592 (12)1.1889 (2)0.0623 (5)
C30.81517 (16)0.36979 (15)1.3012 (2)0.0758 (6)
H3A0.86320.37541.37040.091*
C40.74302 (16)0.31485 (16)1.3089 (2)0.0766 (6)
H4A0.74210.28281.38440.092*
C50.67174 (13)0.30652 (12)1.20593 (19)0.0598 (4)
H5A0.62390.26841.21190.072*
C60.67148 (11)0.35481 (10)1.09415 (16)0.0449 (3)
C70.55154 (11)0.41050 (10)0.92502 (14)0.0420 (3)
C80.44971 (11)0.39121 (11)0.87723 (15)0.0469 (3)
H8A0.41320.39570.95200.056*
H8B0.44620.33460.84790.056*
C90.42302 (10)0.39516 (9)0.61317 (15)0.0410 (3)
C100.42372 (10)0.35210 (9)0.41135 (15)0.0411 (3)
C110.40297 (11)0.34559 (11)0.26504 (15)0.0457 (3)
H11A0.44540.30560.23320.055*
H11B0.41610.39800.22600.055*
C120.30248 (11)0.32128 (10)0.21711 (15)0.0429 (3)
C130.26102 (13)0.25277 (12)0.2653 (2)0.0605 (5)
H13A0.29490.22150.33080.073*
C140.17027 (15)0.22984 (13)0.2183 (2)0.0679 (5)
H14A0.14390.18340.25250.081*
C150.11798 (13)0.27517 (13)0.1210 (2)0.0615 (5)
C160.15828 (14)0.34441 (14)0.0742 (2)0.0656 (5)
H16A0.12390.37650.01040.079*
C170.24971 (13)0.36663 (12)0.12152 (17)0.0549 (4)
H17A0.27600.41320.08790.066*
C180.30298 (10)0.46012 (9)0.44437 (14)0.0411 (3)
C190.21336 (12)0.43210 (13)0.4587 (2)0.0587 (4)
H19A0.20490.38210.49960.070*
C200.13671 (15)0.47902 (18)0.4118 (3)0.0819 (7)
H20A0.07600.46050.42070.098*
C210.14890 (19)0.55153 (18)0.3532 (3)0.0894 (8)
H21A0.09650.58270.32190.107*
C220.2370 (2)0.57963 (15)0.3394 (3)0.0892 (8)
H22A0.24440.63000.29910.107*
C230.31656 (15)0.53345 (12)0.3851 (2)0.0634 (5)
H23A0.37700.55220.37530.076*
C240.04042 (19)0.3111 (2)0.0555 (3)0.1131 (11)
H24A0.10550.29920.08370.170*
H24B0.00450.30700.12980.170*
H24C0.03510.36550.01990.170*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0754 (4)0.0927 (5)0.1462 (7)0.0411 (3)0.0421 (4)0.0276 (4)
S10.0579 (2)0.0499 (2)0.0494 (2)0.01375 (18)0.00817 (17)0.00946 (17)
S20.0727 (4)0.1321 (7)0.1206 (6)0.0488 (4)0.0226 (4)0.0262 (5)
O10.0541 (7)0.0477 (6)0.0610 (7)0.0125 (5)0.0046 (5)0.0102 (5)
N10.0456 (7)0.0414 (7)0.0549 (8)0.0092 (5)0.0071 (6)0.0032 (6)
N20.0430 (6)0.0449 (7)0.0501 (7)0.0090 (5)0.0070 (5)0.0012 (5)
N30.0435 (6)0.0438 (7)0.0514 (7)0.0092 (5)0.0011 (5)0.0027 (5)
N40.0355 (5)0.0386 (6)0.0422 (6)0.0057 (5)0.0031 (4)0.0006 (5)
C10.0454 (8)0.0511 (10)0.0610 (10)0.0068 (7)0.0060 (7)0.0050 (8)
C20.0498 (9)0.0520 (10)0.0803 (13)0.0091 (8)0.0139 (8)0.0001 (9)
C30.0683 (12)0.0763 (14)0.0750 (14)0.0042 (11)0.0275 (10)0.0053 (11)
C40.0702 (13)0.0887 (16)0.0660 (12)0.0067 (12)0.0148 (10)0.0232 (11)
C50.0512 (9)0.0600 (11)0.0660 (11)0.0051 (8)0.0036 (8)0.0141 (9)
C60.0418 (7)0.0409 (8)0.0506 (8)0.0007 (6)0.0018 (6)0.0011 (6)
C70.0441 (7)0.0438 (8)0.0374 (7)0.0051 (6)0.0011 (5)0.0029 (6)
C80.0456 (8)0.0518 (9)0.0417 (7)0.0062 (7)0.0027 (6)0.0006 (6)
C90.0374 (6)0.0390 (7)0.0444 (7)0.0031 (5)0.0055 (5)0.0004 (6)
C100.0369 (6)0.0397 (7)0.0460 (7)0.0030 (5)0.0018 (5)0.0000 (6)
C110.0423 (7)0.0505 (9)0.0445 (8)0.0019 (6)0.0053 (6)0.0005 (6)
C120.0438 (7)0.0431 (8)0.0416 (7)0.0019 (6)0.0048 (6)0.0021 (6)
C130.0519 (9)0.0537 (10)0.0751 (12)0.0041 (8)0.0031 (8)0.0194 (9)
C140.0589 (10)0.0519 (11)0.0925 (15)0.0084 (9)0.0071 (10)0.0148 (10)
C150.0524 (9)0.0702 (12)0.0605 (10)0.0134 (9)0.0004 (8)0.0018 (9)
C160.0596 (10)0.0783 (13)0.0546 (10)0.0111 (9)0.0126 (8)0.0179 (9)
C170.0555 (9)0.0586 (10)0.0485 (9)0.0116 (8)0.0032 (7)0.0109 (7)
C180.0399 (7)0.0406 (7)0.0410 (7)0.0090 (6)0.0034 (5)0.0006 (6)
C190.0411 (8)0.0640 (11)0.0698 (11)0.0058 (8)0.0014 (7)0.0052 (9)
C200.0452 (10)0.1068 (19)0.0905 (16)0.0244 (11)0.0069 (10)0.0045 (14)
C210.0787 (16)0.0984 (19)0.0846 (16)0.0471 (14)0.0195 (12)0.0029 (14)
C220.120 (2)0.0542 (12)0.0880 (16)0.0259 (13)0.0135 (15)0.0193 (11)
C230.0667 (11)0.0490 (10)0.0731 (12)0.0034 (8)0.0010 (9)0.0127 (8)
C240.0639 (14)0.157 (3)0.111 (2)0.0165 (17)0.0253 (14)0.011 (2)
Geometric parameters (Å, º) top
Cl1—C21.740 (2)C10—C111.487 (2)
S1—C91.7371 (16)C11—C121.514 (2)
S1—C81.7964 (16)C11—H11A0.9700
S2—C151.7574 (19)C11—H11B0.9700
S2—C241.767 (3)C12—C171.377 (2)
O1—C71.2128 (19)C12—C131.380 (2)
N1—C71.357 (2)C13—C141.380 (3)
N1—C61.411 (2)C13—H13A0.9300
N1—H1N10.9408C14—C151.385 (3)
N2—C91.3075 (19)C14—H14A0.9300
N2—N31.3927 (19)C15—C161.376 (3)
N3—C101.3038 (19)C16—C171.386 (3)
N4—C91.3650 (18)C16—H16A0.9300
N4—C101.3717 (19)C17—H17A0.9300
N4—C181.4383 (17)C18—C231.364 (2)
C1—C21.380 (2)C18—C191.380 (2)
C1—C61.388 (2)C19—C201.375 (3)
C1—H1A0.9300C19—H19A0.9300
C2—C31.366 (3)C20—C211.345 (4)
C3—C41.374 (3)C20—H20A0.9300
C3—H3A0.9300C21—C221.358 (4)
C4—C51.381 (3)C21—H21A0.9300
C4—H4A0.9300C22—C231.398 (3)
C5—C61.382 (2)C22—H22A0.9300
C5—H5A0.9300C23—H23A0.9300
C7—C81.512 (2)C24—H24A0.9600
C8—H8A0.9700C24—H24B0.9600
C8—H8B0.9700C24—H24C0.9600
C9—S1—C898.04 (7)C10—C11—H11B108.6
C15—S2—C24104.42 (12)C12—C11—H11B108.6
C7—N1—C6125.38 (13)H11A—C11—H11B107.6
C7—N1—H1N1117.3C17—C12—C13117.67 (15)
C6—N1—H1N1114.9C17—C12—C11120.62 (15)
C9—N2—N3106.43 (12)C13—C12—C11121.71 (15)
C10—N3—N2108.13 (12)C14—C13—C12121.26 (17)
C9—N4—C10104.81 (11)C14—C13—H13A119.4
C9—N4—C18127.86 (12)C12—C13—H13A119.4
C10—N4—C18126.78 (12)C13—C14—C15120.78 (18)
C2—C1—C6118.11 (17)C13—C14—H14A119.6
C2—C1—H1A120.9C15—C14—H14A119.6
C6—C1—H1A120.9C16—C15—C14118.25 (17)
C3—C2—C1122.97 (18)C16—C15—S2124.72 (16)
C3—C2—Cl1118.34 (15)C14—C15—S2117.02 (15)
C1—C2—Cl1118.68 (16)C15—C16—C17120.50 (18)
C2—C3—C4118.09 (18)C15—C16—H16A119.8
C2—C3—H3A121.0C17—C16—H16A119.8
C4—C3—H3A121.0C12—C17—C16121.53 (17)
C3—C4—C5120.9 (2)C12—C17—H17A119.2
C3—C4—H4A119.5C16—C17—H17A119.2
C5—C4—H4A119.5C23—C18—C19121.08 (16)
C4—C5—C6120.03 (18)C23—C18—N4120.47 (15)
C4—C5—H5A120.0C19—C18—N4118.37 (14)
C6—C5—H5A120.0C20—C19—C18119.2 (2)
C5—C6—C1119.86 (15)C20—C19—H19A120.4
C5—C6—N1117.46 (15)C18—C19—H19A120.4
C1—C6—N1122.64 (15)C21—C20—C19120.4 (2)
O1—C7—N1124.62 (14)C21—C20—H20A119.8
O1—C7—C8123.76 (15)C19—C20—H20A119.8
N1—C7—C8111.39 (13)C20—C21—C22120.6 (2)
C7—C8—S1116.35 (12)C20—C21—H21A119.7
C7—C8—H8A108.2C22—C21—H21A119.7
S1—C8—H8A108.2C21—C22—C23120.6 (2)
C7—C8—H8B108.2C21—C22—H22A119.7
S1—C8—H8B108.2C23—C22—H22A119.7
H8A—C8—H8B107.4C18—C23—C22118.1 (2)
N2—C9—N4110.87 (13)C18—C23—H23A121.0
N2—C9—S1127.18 (11)C22—C23—H23A121.0
N4—C9—S1121.93 (11)S2—C24—H24A109.5
N3—C10—N4109.75 (13)S2—C24—H24B109.5
N3—C10—C11126.37 (14)H24A—C24—H24B109.5
N4—C10—C11123.86 (13)S2—C24—H24C109.5
C10—C11—C12114.61 (13)H24A—C24—H24C109.5
C10—C11—H11A108.6H24B—C24—H24C109.5
C12—C11—H11A108.6
C9—N2—N3—C100.44 (17)C9—N4—C10—C11177.83 (14)
C6—C1—C2—C30.8 (3)C18—N4—C10—C1110.2 (2)
C6—C1—C2—Cl1178.42 (14)N3—C10—C11—C12117.85 (17)
C1—C2—C3—C40.1 (4)N4—C10—C11—C1264.0 (2)
Cl1—C2—C3—C4179.4 (2)C10—C11—C12—C17128.51 (17)
C2—C3—C4—C50.0 (4)C10—C11—C12—C1352.5 (2)
C3—C4—C5—C61.1 (4)C17—C12—C13—C140.8 (3)
C4—C5—C6—C12.1 (3)C11—C12—C13—C14178.17 (18)
C4—C5—C6—N1175.7 (2)C12—C13—C14—C150.0 (3)
C2—C1—C6—C51.9 (3)C13—C14—C15—C161.2 (3)
C2—C1—C6—N1175.77 (17)C13—C14—C15—S2179.65 (18)
C7—N1—C6—C5141.23 (18)C24—S2—C15—C161.5 (3)
C7—N1—C6—C136.5 (3)C24—S2—C15—C14179.4 (2)
C6—N1—C7—O120.1 (3)C14—C15—C16—C171.6 (3)
C6—N1—C7—C8154.53 (15)S2—C15—C16—C17179.32 (17)
O1—C7—C8—S122.1 (2)C13—C12—C17—C160.4 (3)
N1—C7—C8—S1163.17 (12)C11—C12—C17—C16178.58 (18)
C9—S1—C8—C790.32 (13)C15—C16—C17—C120.8 (3)
N3—N2—C9—N40.06 (17)C9—N4—C18—C23104.7 (2)
N3—N2—C9—S1178.58 (12)C10—N4—C18—C2385.2 (2)
C10—N4—C9—N20.32 (17)C9—N4—C18—C1978.7 (2)
C18—N4—C9—N2171.54 (14)C10—N4—C18—C1991.5 (2)
C10—N4—C9—S1178.29 (11)C23—C18—C19—C200.3 (3)
C18—N4—C9—S19.9 (2)N4—C18—C19—C20176.41 (18)
C8—S1—C9—N214.31 (16)C18—C19—C20—C210.3 (4)
C8—S1—C9—N4167.32 (13)C19—C20—C21—C220.0 (4)
N2—N3—C10—N40.65 (17)C20—C21—C22—C230.4 (4)
N2—N3—C10—C11177.73 (14)C19—C18—C23—C220.1 (3)
C9—N4—C10—N30.60 (17)N4—C18—C23—C22176.72 (19)
C18—N4—C10—N3171.37 (14)C21—C22—C23—C180.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···N3i0.942.042.9787 (19)174
C8—H8A···O1ii0.972.523.147 (2)123
C11—H11B···O1iii0.972.473.416 (2)165
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1, z+2; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC24H21ClN4OS2
Mr481.02
Crystal system, space groupMonoclinic, P21/c
Temperature (K)297
a, b, c (Å)14.2542 (7), 16.3273 (9), 10.1584 (6)
β (°) 96.372 (1)
V3)2349.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.52 × 0.27 × 0.22
Data collection
DiffractometerBruker APEXII DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.832, 0.924
No. of measured, independent and
observed [I > 2σ(I)] reflections
29877, 7900, 5235
Rint0.028
(sin θ/λ)max1)0.739
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.159, 1.05
No. of reflections7900
No. of parameters290
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.45

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···N3i0.942.042.9787 (19)174
C8—H8A···O1ii0.972.523.147 (2)123
C11—H11B···O1iii0.972.473.416 (2)165
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1, z+2; (iii) x+1, y+1, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5523-2009.

Acknowledgements

HKF and CSY thank Universiti Sains Malaysia for the Research University Grant 1001/PFIZIK/811160.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurch, H. A. & Smith, W. O. (1966). J. Med. Chem. 9, 405–408.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHolla, B. S., Poojary, K. N., Rao, B. S. & Shivananda, M. K. (2002). Eur. J. Med. Chem. 37, 511–517.  CrossRef PubMed Google Scholar
First citationHolla, B. S., Veerendra, B., Shivananda, M. K. & Poojary, B. (2003). Eur. J. Med. Chem. 38, 759–767.  Web of Science CrossRef PubMed Google Scholar
First citationKalyoncuoglu, N., Rollas, S., Sür-Altiner, D., Yegenoglu, Y. & Ang, Ö. (1992). Pharmazie, 47, 796–797.  PubMed CAS Web of Science Google Scholar
First citationMhasalkar, M. Y., Shah, M. H., Nikam, S. T., Anantanarayanan, K. G. & Deliwala, C. V. (1970). J. Med. Chem. 13, 672–674.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMir, I., Siddiqui, M. T. & Comrie, A. (1970). Tetrahedron, 26, 5235–5238.  CrossRef CAS PubMed Web of Science Google Scholar
First citationRudnicka, W., Foks, H., Janowiec, M. & Zwolska-Kwiek, Z. (1986). Acta Pol. Pharm. 43, 523–528.  CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds