organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o2084-o2085

2-(2-Chloro-6,7-di­methyl­quinolin-3-yl)-2,3-di­hydro­quinolin-4(1H)-one

aLaboratoire des Produits Naturels d'Origine Végétale et de Synthèse Organique, PHYSYNOR, Université Mentouri-Constantine, 25000 Constantine, Algeria, bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Mentouri-Constantine, 25000 Algeria, and cCentre de difractométrie X, UMR 6226 CNRS Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du Général Leclerc, 35042 Rennes, France
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

(Received 9 July 2011; accepted 13 July 2011; online 23 July 2011)

In the title mol­ecule, C20H17ClN2O, the dihedral angle between the mean plane of the quinoline ring system and the benzene ring of the dihydro­quinolinone moiety is 57.84 (8)°. In the crystal, mol­ecules are linked into centrosymmetric dimers via pairs of inter­molecular N—H⋯N hydrogen bonds. These dimers are further stabilized by weak ππ stacking inter­actions between pyridine rings with a centroid–centroid distance of 3.9414 (12) Å.

Related literature

For quinoline compounds and their applications, see: Prakash et al. (1994[Prakash, O., Kumar, D., Saini, R. K. & Singh, S. P. (1994). Synth. Commun. 24, 2167-2172.]); Singh & Kapil (1993[Singh, O. V. & Kapil, R. S. (1993). Synth. Commun. 23, 277-283.]); Kalinin et al. (1992[Kalinin, V. N., Shostakovsky, M. V. & Ponomaryov, A. B. (1992). Tetrahedron Lett. 33, 373-376.]); Xia et al. (1992[Xia, Y., Yang, Z.-Y., Xia, P., Bastow, K. F., Tachibana, Y., Kuo, S.-C., Hamel, E., Hackl, T. & Lee, K.-H. (1992). J. Med. Chem. 41, 1155-1162.]); Donnelly & Farrell (1990a[Donnelly, J. A. & Farrell, D. F. (1990a). J. Org. Chem. 55, 1757-1761.],b[Donnelly, J. A. & Farrell, D. F. (1990b). Tetrahedron, 46, 885-894.]); Kumar et al. (2004[Kumar, K. H., Muralidharan, D. & Perumal, P. T. (2004). Synthesis, pp. 63-69.]); Varma & Saini (1997[Varma, R. S. & Saini, R. K. (1997). Synlett, pp. 857-858.]); Tokes & Litkei (1993[Tokes, A. L. & Litkei, Gy. (1993). Synth. Commun. 23, 895-902.]); Tokes & Szilagyi (1987[Tokes, A. L. & Szilagyi, L. (1987). Synth. Commun. 17, 1235-1245.]); Tokes et al. (1992[Tokes, A. L., Litkei, Gy. & Szilagyi, L. (1992). Synth. Commun. 22, 2433-2445.]). For our previous work on quinoline derivatives, see: Belfaitah et al. (2006[Belfaitah, A., Ladraa, S., Bouraiou, A., Benali-Cherif, N., Debache, A. & Rhouati, S. (2006). Acta Cryst. E62, 1355-1357.]); Bouraiou et al. (2008[Bouraiou, A., Debache, A., Rhouati, S., Carboni, B. & Belfaitah, A. (2008). J. Heterocycl. Chem. 45, 329-333.], 2010[Bouraiou, A., Debache, A., Rhouati, S., Belfaitah, A., Benali-Cherif, N. & Carboni, B. (2010). Open Org. Chem. J. 4, 1-7.], 2011[Bouraiou, A., Berrée, F., Bouacida, S., Carboni, C., Debache, A., Roisnel, T. & Belfaitah, A. (2011). Lett. Org. Chem. 8, 474-477.]); Benzerka et al. (2010[Benzerka, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2010). Acta Cryst. E66, o1006.]); Ladraa et al. (2010[Ladraa, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2010). Acta Cryst. E66, o2312-o2313.]).

[Scheme 1]

Experimental

Crystal data
  • C20H17ClN2O

  • Mr = 336.81

  • Triclinic, [P \overline 1]

  • a = 7.7345 (4) Å

  • b = 10.6196 (6) Å

  • c = 11.3463 (4) Å

  • α = 96.425 (2)°

  • β = 100.068 (3)°

  • γ = 109.576 (1)°

  • V = 849.84 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 295 K

  • 0.15 × 0.06 × 0.05 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 7058 measured reflections

  • 3863 independent reflections

  • 2507 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.133

  • S = 1.00

  • 3863 reflections

  • 222 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯N1i 0.86 (2) 2.53 (2) 3.297 (2) 148.6 (18)
Symmetry code: (i) -x, -y, -z+2.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). KappaCCD Reference Manual. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR2002 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

2-Phenyl-2,3-dihydroquinolin-4(1H)-one compound substituted on the aromatic rings are valuable precursors (Prakash et al., 1994; Singh & Kapil, 1993) for the synthesis of medicinally important compounds, which are often not readily accessible by other means (Kalinin et al., 1992; Xia et al., 1992). The formation of 2,3-dihydroquinolin-4(1H)-ones is generally accomplished by acid- or base-catalyzed isomerization of substituted 2'-aminochalcones (Donnelly & Farrell, 1990a,b; Tokes & Litkei, 1993). Most of the procedures involve the use of corrosive reagents such as orthophosphoric acid, acetic acid or strong alkali. Many attempts have been made to explore efficient catalysts to accelerate this kind of reaction. Some of them are of limited synthetic scope due to low yields, long reaction times and the need for large amount of catalyst, specialized solvents or microwave activation (Tokes & Szilagyi, 1987; Tokes et al., 1992; Kumar et al. 2004; Varma & Saini, 1997). In continuation of our studies on quinoline derivatives and their biological activities (Bouraiou et al., 2010; Benzerka et al., 2010; Ladraa et al., 2010) we report herein the synthesis and structure determination of 2-(2-chloro-6,7-dimethylquinolin-3-yl)-2,3-dihydroquinolin-4(1H)-one I (Bouraiou et al., 2011). Characterization of the compound I was made from its spectral data (1H-NMR, 13C-NMR), and was unequivocally established from an X-ray crystallographic determination (I).

The molecular structure of (I) is shown in Fig. 1. The two rings of quinolyl moiety are fused in an axial fashion and form a dihedral angle of 0.28 (7)° and this quasi plane system forms dihedral angles of 57.84 (8)° with the benzene ring (C15-C20). The geometric parameters of (I) are in agreement with those of other structures possessing a quinolyl substituent previously reported in the literature (Belfaitah et al., 2006; Bouraiou et al., 2008; Bouraiou et al., 2011). In the crystal, molecules are linked into centrosymmetric dimers via pairs of intermolecular N–H···N hydrogen bonds (Fig. 2). These dimers are further stabilized by ππ stacking interactions between pyridine rings with a centroid to centroid distance of 3.9414 (12)Å.

Related literature top

For quinoline compounds and their applications, see: Prakash et al. (1994); Singh & Kapil (1993); Kalinin et al. (1992); Xia et al. (1992); Donnelly & Farrell (1990a,b); Kumar et al. (2004); Varma & Saini (1997); Tokes & Litkei (1993); Tokes & Szilagyi (1987); Tokes et al. (1992). For our previous work on quinoline derivatives, see: Belfaitah et al. (2006); Bouraiou et al. (2008, 2010, 2011); Benzerka et al. (2010); Ladraa et al. (2010).

Experimental top

A mixture of (E)-1-(2-aminophenyl)-3-(2-chloro-6,7-dimethylquinolin-3-yl)prop-2-en-1-one and silica gel (1 g) impregnated with indium (III) chloride (20 mol%) was irradiated in domestic microwave oven at 360 W for 5 minutes (Bouraiou et al., 2011). Under these conditions, compound (I) was successfully synthesized in good yield (63%). A suitable crystal of title compound were obtained by crystallization from a CH2Cl2/di-isopropylether solution.

Refinement top

All H atoms bonded to C atoms were located in difference Fourier maps but were introduced in calculated positions and treated as riding with C—H = 0.93-0.97Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl groups. The H atom boned to N2 was refined independently with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crytal structure viewed along the b axis showing hydrogen bonds as dashed lines.
2-(2-Chloro-6,7-dimethylquinolin-3-yl)-2,3-dihydroquinolin-4(1H)-one top
Crystal data top
C20H17ClN2OZ = 2
Mr = 336.81F(000) = 352
Triclinic, P1Dx = 1.316 Mg m3
a = 7.7345 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.6196 (6) ÅCell parameters from 3734 reflections
c = 11.3463 (4) Åθ = 2.9–27.5°
α = 96.425 (2)°µ = 0.23 mm1
β = 100.068 (3)°T = 295 K
γ = 109.576 (1)°Needle, white
V = 849.84 (7) Å30.15 × 0.06 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
2507 reflections with I > 2σ(I)
Radiation source: Enraf–Nonius FR590Rint = 0.029
Graphite monochromatorθmax = 27.5°, θmin = 3.0°
Detector resolution: 9 pixels mm-1h = 1010
CCD rotation images, thick slices scansk = 1313
7058 measured reflectionsl = 1414
3863 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0621P)2 + 0.0886P]
where P = (Fo2 + 2Fc2)/3
3863 reflections(Δ/σ)max < 0.001
222 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C20H17ClN2Oγ = 109.576 (1)°
Mr = 336.81V = 849.84 (7) Å3
Triclinic, P1Z = 2
a = 7.7345 (4) ÅMo Kα radiation
b = 10.6196 (6) ŵ = 0.23 mm1
c = 11.3463 (4) ÅT = 295 K
α = 96.425 (2)°0.15 × 0.06 × 0.05 mm
β = 100.068 (3)°
Data collection top
Nonius KappaCCD
diffractometer
2507 reflections with I > 2σ(I)
7058 measured reflectionsRint = 0.029
3863 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.17 e Å3
3863 reflectionsΔρmin = 0.20 e Å3
222 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2476 (3)0.00341 (19)0.99805 (16)0.0463 (4)
C20.2561 (2)0.13287 (18)1.01932 (15)0.0442 (4)
C30.2601 (3)0.18540 (19)1.13579 (16)0.0474 (4)
H30.26590.27441.15460.057*
C40.2556 (3)0.10607 (19)1.22794 (16)0.0475 (4)
C50.2595 (3)0.1535 (2)1.35012 (17)0.0549 (5)
H50.26660.24231.37280.066*
C60.2531 (3)0.0720 (2)1.43636 (17)0.0578 (5)
C70.2407 (3)0.0639 (2)1.40197 (18)0.0579 (5)
C80.2379 (3)0.1118 (2)1.28402 (18)0.0558 (5)
H80.23140.20071.26240.067*
C90.2446 (2)0.02881 (19)1.19481 (16)0.0476 (4)
C100.2307 (4)0.1569 (3)1.4943 (2)0.0806 (7)
H10A0.22060.24491.45530.121*
H10B0.12250.16531.52780.121*
H10C0.34270.11941.55840.121*
C110.2620 (4)0.1278 (3)1.56687 (18)0.0767 (7)
H11A0.37490.12841.61840.115*
H11B0.15420.07161.59210.115*
H11C0.26250.21881.57290.115*
C120.2648 (2)0.21733 (18)0.91943 (16)0.0448 (4)
H120.19640.15690.84120.054*
C130.4673 (3)0.2922 (2)0.91241 (18)0.0535 (5)
H13A0.53820.34710.99140.064*
H13B0.52450.22650.89240.064*
C140.4785 (3)0.3822 (2)0.81848 (18)0.0566 (5)
C150.3261 (3)0.43479 (19)0.79376 (17)0.0524 (5)
C160.3250 (4)0.5217 (2)0.7094 (2)0.0738 (7)
H160.41840.54190.66530.089*
C170.1893 (4)0.5769 (3)0.6911 (3)0.0911 (9)
H170.19050.63420.63480.109*
C180.0495 (4)0.5478 (3)0.7563 (3)0.0833 (8)
H180.04250.58620.74380.1*
C190.0459 (3)0.4632 (2)0.8389 (2)0.0609 (5)
H190.04830.44460.88240.073*
C200.1829 (3)0.40416 (18)0.85847 (16)0.0480 (4)
N10.2392 (2)0.08277 (15)1.07803 (14)0.0498 (4)
N20.1772 (2)0.31720 (17)0.94168 (14)0.0488 (4)
H2N0.066 (3)0.284 (2)0.9549 (18)0.059*
O10.6107 (2)0.4116 (2)0.76829 (17)0.0858 (5)
Cl10.24838 (8)0.07686 (5)0.85241 (5)0.06466 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0434 (10)0.0469 (10)0.0467 (9)0.0148 (8)0.0099 (7)0.0071 (7)
C20.0408 (9)0.0471 (10)0.0440 (9)0.0149 (8)0.0086 (7)0.0108 (7)
C30.0513 (11)0.0436 (10)0.0484 (9)0.0177 (8)0.0121 (8)0.0101 (8)
C40.0465 (10)0.0507 (11)0.0448 (9)0.0160 (8)0.0106 (8)0.0115 (8)
C50.0545 (12)0.0603 (12)0.0492 (10)0.0194 (10)0.0121 (9)0.0114 (9)
C60.0499 (11)0.0743 (14)0.0460 (10)0.0165 (10)0.0108 (8)0.0172 (9)
C70.0469 (11)0.0706 (14)0.0560 (11)0.0163 (10)0.0106 (9)0.0281 (10)
C80.0523 (11)0.0522 (12)0.0602 (12)0.0141 (9)0.0088 (9)0.0210 (9)
C90.0416 (10)0.0491 (11)0.0497 (10)0.0124 (8)0.0087 (8)0.0150 (8)
C100.0827 (17)0.0918 (19)0.0721 (14)0.0277 (14)0.0192 (12)0.0446 (13)
C110.0823 (17)0.0991 (19)0.0475 (11)0.0304 (15)0.0157 (11)0.0156 (12)
C120.0453 (10)0.0455 (10)0.0436 (9)0.0153 (8)0.0107 (7)0.0113 (7)
C130.0458 (10)0.0588 (12)0.0592 (11)0.0198 (9)0.0144 (9)0.0170 (9)
C140.0492 (11)0.0569 (12)0.0599 (11)0.0110 (9)0.0169 (9)0.0144 (9)
C150.0515 (11)0.0424 (10)0.0562 (11)0.0070 (9)0.0107 (9)0.0144 (8)
C160.0760 (16)0.0627 (14)0.0876 (16)0.0178 (12)0.0308 (13)0.0370 (12)
C170.102 (2)0.0756 (18)0.114 (2)0.0372 (16)0.0319 (17)0.0595 (16)
C180.0805 (17)0.0698 (16)0.115 (2)0.0385 (14)0.0229 (15)0.0436 (15)
C190.0586 (12)0.0517 (12)0.0761 (13)0.0229 (10)0.0156 (10)0.0171 (10)
C200.0470 (10)0.0381 (9)0.0519 (10)0.0095 (8)0.0060 (8)0.0073 (8)
N10.0514 (9)0.0441 (9)0.0530 (8)0.0159 (7)0.0107 (7)0.0121 (7)
N20.0466 (9)0.0510 (9)0.0541 (9)0.0193 (7)0.0164 (7)0.0177 (7)
O10.0641 (10)0.1091 (14)0.0992 (12)0.0288 (10)0.0431 (9)0.0487 (11)
Cl10.0817 (4)0.0589 (3)0.0535 (3)0.0264 (3)0.0186 (2)0.0028 (2)
Geometric parameters (Å, º) top
C1—N11.301 (2)C11—H11B0.96
C1—C21.418 (3)C11—H11C0.96
C1—Cl11.7485 (19)C12—N21.459 (2)
C2—C31.367 (2)C12—C131.521 (3)
C2—C121.519 (2)C12—H120.98
C3—C41.412 (2)C13—C141.504 (3)
C3—H30.93C13—H13A0.97
C4—C91.410 (3)C13—H13B0.97
C4—C51.413 (3)C14—O11.223 (2)
C5—C61.373 (3)C14—C151.463 (3)
C5—H50.93C15—C201.403 (3)
C6—C71.420 (3)C15—C161.403 (3)
C6—C111.513 (3)C16—C171.360 (4)
C7—C81.371 (3)C16—H160.93
C7—C101.512 (3)C17—C181.385 (4)
C8—C91.411 (2)C17—H170.93
C8—H80.93C18—C191.367 (3)
C9—N11.371 (2)C18—H180.93
C10—H10A0.96C19—C201.400 (3)
C10—H10B0.96C19—H190.93
C10—H10C0.96C20—N21.389 (2)
C11—H11A0.96N2—H2N0.86 (2)
N1—C1—C2126.09 (17)H11B—C11—H11C109.5
N1—C1—Cl1114.81 (14)N2—C12—C2110.34 (14)
C2—C1—Cl1119.11 (13)N2—C12—C13108.54 (15)
C3—C2—C1116.21 (16)C2—C12—C13111.35 (15)
C3—C2—C12121.63 (17)N2—C12—H12108.9
C1—C2—C12122.15 (16)C2—C12—H12108.9
C2—C3—C4120.78 (17)C13—C12—H12108.9
C2—C3—H3119.6C14—C13—C12111.87 (16)
C4—C3—H3119.6C14—C13—H13A109.2
C9—C4—C3117.57 (16)C12—C13—H13A109.2
C9—C4—C5118.52 (16)C14—C13—H13B109.2
C3—C4—C5123.91 (18)C12—C13—H13B109.2
C6—C5—C4121.8 (2)H13A—C13—H13B107.9
C6—C5—H5119.1O1—C14—C15122.46 (19)
C4—C5—H5119.1O1—C14—C13121.3 (2)
C5—C6—C7119.29 (18)C15—C14—C13116.24 (17)
C5—C6—C11120.1 (2)C20—C15—C16118.8 (2)
C7—C6—C11120.59 (19)C20—C15—C14120.37 (17)
C8—C7—C6119.87 (17)C16—C15—C14120.79 (19)
C8—C7—C10119.5 (2)C17—C16—C15121.0 (2)
C6—C7—C10120.6 (2)C17—C16—H16119.5
C7—C8—C9121.2 (2)C15—C16—H16119.5
C7—C8—H8119.4C16—C17—C18120.1 (2)
C9—C8—H8119.4C16—C17—H17119.9
N1—C9—C4122.10 (15)C18—C17—H17119.9
N1—C9—C8118.61 (18)C19—C18—C17120.4 (2)
C4—C9—C8119.29 (17)C19—C18—H18119.8
C7—C10—H10A109.5C17—C18—H18119.8
C7—C10—H10B109.5C18—C19—C20120.5 (2)
H10A—C10—H10B109.5C18—C19—H19119.7
C7—C10—H10C109.5C20—C19—H19119.7
H10A—C10—H10C109.5N2—C20—C19120.17 (18)
H10B—C10—H10C109.5N2—C20—C15120.66 (18)
C6—C11—H11A109.5C19—C20—C15119.16 (18)
C6—C11—H11B109.5C1—N1—C9117.23 (16)
H11A—C11—H11B109.5C20—N2—C12115.66 (15)
C6—C11—H11C109.5C20—N2—H2N111.0 (14)
H11A—C11—H11C109.5C12—N2—H2N114.5 (15)
N1—C1—C2—C31.6 (3)N2—C12—C13—C1455.2 (2)
Cl1—C1—C2—C3178.31 (14)C2—C12—C13—C14176.88 (16)
N1—C1—C2—C12179.75 (18)C12—C13—C14—O1153.6 (2)
Cl1—C1—C2—C120.3 (2)C12—C13—C14—C1528.1 (2)
C1—C2—C3—C40.1 (3)O1—C14—C15—C20176.5 (2)
C12—C2—C3—C4178.73 (16)C13—C14—C15—C201.8 (3)
C2—C3—C4—C90.7 (3)O1—C14—C15—C160.5 (3)
C2—C3—C4—C5179.93 (18)C13—C14—C15—C16178.8 (2)
C9—C4—C5—C60.1 (3)C20—C15—C16—C170.7 (4)
C3—C4—C5—C6179.40 (19)C14—C15—C16—C17176.3 (2)
C4—C5—C6—C70.5 (3)C15—C16—C17—C180.1 (4)
C4—C5—C6—C11178.64 (19)C16—C17—C18—C190.3 (5)
C5—C6—C7—C80.9 (3)C17—C18—C19—C200.3 (4)
C11—C6—C7—C8178.26 (19)C18—C19—C20—N2179.4 (2)
C5—C6—C7—C10179.1 (2)C18—C19—C20—C151.1 (3)
C11—C6—C7—C101.7 (3)C16—C15—C20—N2179.17 (19)
C6—C7—C8—C90.8 (3)C14—C15—C20—N23.8 (3)
C10—C7—C8—C9179.2 (2)C16—C15—C20—C191.3 (3)
C3—C4—C9—N10.3 (3)C14—C15—C20—C19175.74 (18)
C5—C4—C9—N1179.64 (17)C2—C1—N1—C92.1 (3)
C3—C4—C9—C8179.37 (17)Cl1—C1—N1—C9177.84 (13)
C5—C4—C9—C80.0 (3)C4—C9—N1—C11.1 (3)
C7—C8—C9—N1179.27 (18)C8—C9—N1—C1179.28 (17)
C7—C8—C9—C40.4 (3)C19—C20—N2—C12153.97 (18)
C3—C2—C12—N230.9 (2)C15—C20—N2—C1226.5 (2)
C1—C2—C12—N2150.56 (17)C2—C12—N2—C20177.70 (15)
C3—C2—C12—C1389.7 (2)C13—C12—N2—C2055.4 (2)
C1—C2—C12—C1388.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···N1i0.86 (2)2.53 (2)3.297 (2)148.6 (18)
Symmetry code: (i) x, y, z+2.

Experimental details

Crystal data
Chemical formulaC20H17ClN2O
Mr336.81
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)7.7345 (4), 10.6196 (6), 11.3463 (4)
α, β, γ (°)96.425 (2), 100.068 (3), 109.576 (1)
V3)849.84 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.15 × 0.06 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7058, 3863, 2507
Rint0.029
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.133, 1.00
No. of reflections3863
No. of parameters222
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.20

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR2002 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···N1i0.86 (2)2.53 (2)3.297 (2)148.6 (18)
Symmetry code: (i) x, y, z+2.
 

Acknowledgements

We are grateful to all personnel of the PHYSYNOR laboratory, Université Mentouri-Constantine, Algeria, for their assistance. Thanks are due to the MESRS (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique - Algeria) for financial support.

References

First citationBelfaitah, A., Ladraa, S., Bouraiou, A., Benali-Cherif, N., Debache, A. & Rhouati, S. (2006). Acta Cryst. E62, 1355–1357.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBenzerka, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2010). Acta Cryst. E66, o1006.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBouraiou, A., Berrée, F., Bouacida, S., Carboni, C., Debache, A., Roisnel, T. & Belfaitah, A. (2011). Lett. Org. Chem. 8, 474–477.  CSD CrossRef Google Scholar
First citationBouraiou, A., Debache, A., Rhouati, S., Belfaitah, A., Benali-Cherif, N. & Carboni, B. (2010). Open Org. Chem. J. 4, 1–7.  CrossRef CAS Google Scholar
First citationBouraiou, A., Debache, A., Rhouati, S., Carboni, B. & Belfaitah, A. (2008). J. Heterocycl. Chem. 45, 329–333.  CrossRef CAS Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDonnelly, J. A. & Farrell, D. F. (1990a). J. Org. Chem. 55, 1757–1761.  CrossRef CAS Web of Science Google Scholar
First citationDonnelly, J. A. & Farrell, D. F. (1990b). Tetrahedron, 46, 885–894.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKalinin, V. N., Shostakovsky, M. V. & Ponomaryov, A. B. (1992). Tetrahedron Lett. 33, 373–376.  CrossRef CAS Web of Science Google Scholar
First citationKumar, K. H., Muralidharan, D. & Perumal, P. T. (2004). Synthesis, pp. 63–69.  Google Scholar
First citationLadraa, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2010). Acta Cryst. E66, o2312–o2313.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNonius (1998). KappaCCD Reference Manual. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPrakash, O., Kumar, D., Saini, R. K. & Singh, S. P. (1994). Synth. Commun. 24, 2167–2172.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, O. V. & Kapil, R. S. (1993). Synth. Commun. 23, 277–283.  CrossRef CAS Web of Science Google Scholar
First citationTokes, A. L. & Litkei, Gy. (1993). Synth. Commun. 23, 895–902.  CAS Google Scholar
First citationTokes, A. L., Litkei, Gy. & Szilagyi, L. (1992). Synth. Commun. 22, 2433–2445.  CAS Google Scholar
First citationTokes, A. L. & Szilagyi, L. (1987). Synth. Commun. 17, 1235–1245.  CAS Google Scholar
First citationVarma, R. S. & Saini, R. K. (1997). Synlett, pp. 857–858.  CrossRef Google Scholar
First citationXia, Y., Yang, Z.-Y., Xia, P., Bastow, K. F., Tachibana, Y., Kuo, S.-C., Hamel, E., Hackl, T. & Lee, K.-H. (1992). J. Med. Chem. 41, 1155–1162.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o2084-o2085
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds