organic compounds
2-(2-Chloro-6,7-dimethylquinolin-3-yl)-2,3-dihydroquinolin-4(1H)-one
aLaboratoire des Produits Naturels d'Origine Végétale et de Synthèse Organique, PHYSYNOR, Université Mentouri-Constantine, 25000 Constantine, Algeria, bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Mentouri-Constantine, 25000 Algeria, and cCentre de difractométrie X, UMR 6226 CNRS Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du Général Leclerc, 35042 Rennes, France
*Correspondence e-mail: bouacida_sofiane@yahoo.fr
In the title molecule, C20H17ClN2O, the dihedral angle between the mean plane of the quinoline ring system and the benzene ring of the dihydroquinolinone moiety is 57.84 (8)°. In the crystal, molecules are linked into centrosymmetric dimers via pairs of intermolecular N—H⋯N hydrogen bonds. These dimers are further stabilized by weak π–π stacking interactions between pyridine rings with a centroid–centroid distance of 3.9414 (12) Å.
Related literature
For quinoline compounds and their applications, see: Prakash et al. (1994); Singh & Kapil (1993); Kalinin et al. (1992); Xia et al. (1992); Donnelly & Farrell (1990a,b); Kumar et al. (2004); Varma & Saini (1997); Tokes & Litkei (1993); Tokes & Szilagyi (1987); Tokes et al. (1992). For our previous work on quinoline derivatives, see: Belfaitah et al. (2006); Bouraiou et al. (2008, 2010, 2011); Benzerka et al. (2010); Ladraa et al. (2010).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: COLLECT (Nonius, 1998); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536811028170/lh5284sup1.cif
contains datablock global. DOI:Supporting information file. DOI: 10.1107/S1600536811028170/lh5284globalsup2.cml
A mixture of (E)-1-(2-aminophenyl)-3-(2-chloro-6,7-dimethylquinolin-3-yl)prop-2-en-1-one and silica gel (1 g) impregnated with indium (III) chloride (20 mol%) was irradiated in domestic microwave oven at 360 W for 5 minutes (Bouraiou et al., 2011). Under these conditions, compound (I) was successfully synthesized in good yield (63%). A suitable crystal of title compound were obtained by crystallization from a CH2Cl2/di-isopropylether solution.
All H atoms bonded to C atoms were located in difference Fourier maps but were introduced in calculated positions and treated as riding with C—H = 0.93-0.97Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl groups. The H atom boned to N2 was refined independently with Uiso(H) = 1.2Ueq(N).
Data collection: COLLECT (Nonius, 1998); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).C20H17ClN2O | Z = 2 |
Mr = 336.81 | F(000) = 352 |
Triclinic, P1 | Dx = 1.316 Mg m−3 |
a = 7.7345 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.6196 (6) Å | Cell parameters from 3734 reflections |
c = 11.3463 (4) Å | θ = 2.9–27.5° |
α = 96.425 (2)° | µ = 0.23 mm−1 |
β = 100.068 (3)° | T = 295 K |
γ = 109.576 (1)° | Needle, white |
V = 849.84 (7) Å3 | 0.15 × 0.06 × 0.05 mm |
Nonius KappaCCD diffractometer | 2507 reflections with I > 2σ(I) |
Radiation source: Enraf–Nonius FR590 | Rint = 0.029 |
Graphite monochromator | θmax = 27.5°, θmin = 3.0° |
Detector resolution: 9 pixels mm-1 | h = −10→10 |
CCD rotation images, thick slices scans | k = −13→13 |
7058 measured reflections | l = −14→14 |
3863 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.133 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0621P)2 + 0.0886P] where P = (Fo2 + 2Fc2)/3 |
3863 reflections | (Δ/σ)max < 0.001 |
222 parameters | Δρmax = 0.17 e Å−3 |
0 restraints | Δρmin = −0.20 e Å−3 |
C20H17ClN2O | γ = 109.576 (1)° |
Mr = 336.81 | V = 849.84 (7) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.7345 (4) Å | Mo Kα radiation |
b = 10.6196 (6) Å | µ = 0.23 mm−1 |
c = 11.3463 (4) Å | T = 295 K |
α = 96.425 (2)° | 0.15 × 0.06 × 0.05 mm |
β = 100.068 (3)° |
Nonius KappaCCD diffractometer | 2507 reflections with I > 2σ(I) |
7058 measured reflections | Rint = 0.029 |
3863 independent reflections |
R[F2 > 2σ(F2)] = 0.048 | 0 restraints |
wR(F2) = 0.133 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.00 | Δρmax = 0.17 e Å−3 |
3863 reflections | Δρmin = −0.20 e Å−3 |
222 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.2476 (3) | −0.00341 (19) | 0.99805 (16) | 0.0463 (4) | |
C2 | 0.2561 (2) | 0.13287 (18) | 1.01932 (15) | 0.0442 (4) | |
C3 | 0.2601 (3) | 0.18540 (19) | 1.13579 (16) | 0.0474 (4) | |
H3 | 0.2659 | 0.2744 | 1.1546 | 0.057* | |
C4 | 0.2556 (3) | 0.10607 (19) | 1.22794 (16) | 0.0475 (4) | |
C5 | 0.2595 (3) | 0.1535 (2) | 1.35012 (17) | 0.0549 (5) | |
H5 | 0.2666 | 0.2423 | 1.3728 | 0.066* | |
C6 | 0.2531 (3) | 0.0720 (2) | 1.43636 (17) | 0.0578 (5) | |
C7 | 0.2407 (3) | −0.0639 (2) | 1.40197 (18) | 0.0579 (5) | |
C8 | 0.2379 (3) | −0.1118 (2) | 1.28402 (18) | 0.0558 (5) | |
H8 | 0.2314 | −0.2007 | 1.2624 | 0.067* | |
C9 | 0.2446 (2) | −0.02881 (19) | 1.19481 (16) | 0.0476 (4) | |
C10 | 0.2307 (4) | −0.1569 (3) | 1.4943 (2) | 0.0806 (7) | |
H10A | 0.2206 | −0.2449 | 1.4553 | 0.121* | |
H10B | 0.1225 | −0.1653 | 1.5278 | 0.121* | |
H10C | 0.3427 | −0.1194 | 1.5584 | 0.121* | |
C11 | 0.2620 (4) | 0.1278 (3) | 1.56687 (18) | 0.0767 (7) | |
H11A | 0.3749 | 0.1284 | 1.6184 | 0.115* | |
H11B | 0.1542 | 0.0716 | 1.5921 | 0.115* | |
H11C | 0.2625 | 0.2188 | 1.5729 | 0.115* | |
C12 | 0.2648 (2) | 0.21733 (18) | 0.91943 (16) | 0.0448 (4) | |
H12 | 0.1964 | 0.1569 | 0.8412 | 0.054* | |
C13 | 0.4673 (3) | 0.2922 (2) | 0.91241 (18) | 0.0535 (5) | |
H13A | 0.5382 | 0.3471 | 0.9914 | 0.064* | |
H13B | 0.5245 | 0.2265 | 0.8924 | 0.064* | |
C14 | 0.4785 (3) | 0.3822 (2) | 0.81848 (18) | 0.0566 (5) | |
C15 | 0.3261 (3) | 0.43479 (19) | 0.79376 (17) | 0.0524 (5) | |
C16 | 0.3250 (4) | 0.5217 (2) | 0.7094 (2) | 0.0738 (7) | |
H16 | 0.4184 | 0.5419 | 0.6653 | 0.089* | |
C17 | 0.1893 (4) | 0.5769 (3) | 0.6911 (3) | 0.0911 (9) | |
H17 | 0.1905 | 0.6342 | 0.6348 | 0.109* | |
C18 | 0.0495 (4) | 0.5478 (3) | 0.7563 (3) | 0.0833 (8) | |
H18 | −0.0425 | 0.5862 | 0.7438 | 0.1* | |
C19 | 0.0459 (3) | 0.4632 (2) | 0.8389 (2) | 0.0609 (5) | |
H19 | −0.0483 | 0.4446 | 0.8824 | 0.073* | |
C20 | 0.1829 (3) | 0.40416 (18) | 0.85847 (16) | 0.0480 (4) | |
N1 | 0.2392 (2) | −0.08277 (15) | 1.07803 (14) | 0.0498 (4) | |
N2 | 0.1772 (2) | 0.31720 (17) | 0.94168 (14) | 0.0488 (4) | |
H2N | 0.066 (3) | 0.284 (2) | 0.9549 (18) | 0.059* | |
O1 | 0.6107 (2) | 0.4116 (2) | 0.76829 (17) | 0.0858 (5) | |
Cl1 | 0.24838 (8) | −0.07686 (5) | 0.85241 (5) | 0.06466 (19) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0434 (10) | 0.0469 (10) | 0.0467 (9) | 0.0148 (8) | 0.0099 (7) | 0.0071 (7) |
C2 | 0.0408 (9) | 0.0471 (10) | 0.0440 (9) | 0.0149 (8) | 0.0086 (7) | 0.0108 (7) |
C3 | 0.0513 (11) | 0.0436 (10) | 0.0484 (9) | 0.0177 (8) | 0.0121 (8) | 0.0101 (8) |
C4 | 0.0465 (10) | 0.0507 (11) | 0.0448 (9) | 0.0160 (8) | 0.0106 (8) | 0.0115 (8) |
C5 | 0.0545 (12) | 0.0603 (12) | 0.0492 (10) | 0.0194 (10) | 0.0121 (9) | 0.0114 (9) |
C6 | 0.0499 (11) | 0.0743 (14) | 0.0460 (10) | 0.0165 (10) | 0.0108 (8) | 0.0172 (9) |
C7 | 0.0469 (11) | 0.0706 (14) | 0.0560 (11) | 0.0163 (10) | 0.0106 (9) | 0.0281 (10) |
C8 | 0.0523 (11) | 0.0522 (12) | 0.0602 (12) | 0.0141 (9) | 0.0088 (9) | 0.0210 (9) |
C9 | 0.0416 (10) | 0.0491 (11) | 0.0497 (10) | 0.0124 (8) | 0.0087 (8) | 0.0150 (8) |
C10 | 0.0827 (17) | 0.0918 (19) | 0.0721 (14) | 0.0277 (14) | 0.0192 (12) | 0.0446 (13) |
C11 | 0.0823 (17) | 0.0991 (19) | 0.0475 (11) | 0.0304 (15) | 0.0157 (11) | 0.0156 (12) |
C12 | 0.0453 (10) | 0.0455 (10) | 0.0436 (9) | 0.0153 (8) | 0.0107 (7) | 0.0113 (7) |
C13 | 0.0458 (10) | 0.0588 (12) | 0.0592 (11) | 0.0198 (9) | 0.0144 (9) | 0.0170 (9) |
C14 | 0.0492 (11) | 0.0569 (12) | 0.0599 (11) | 0.0110 (9) | 0.0169 (9) | 0.0144 (9) |
C15 | 0.0515 (11) | 0.0424 (10) | 0.0562 (11) | 0.0070 (9) | 0.0107 (9) | 0.0144 (8) |
C16 | 0.0760 (16) | 0.0627 (14) | 0.0876 (16) | 0.0178 (12) | 0.0308 (13) | 0.0370 (12) |
C17 | 0.102 (2) | 0.0756 (18) | 0.114 (2) | 0.0372 (16) | 0.0319 (17) | 0.0595 (16) |
C18 | 0.0805 (17) | 0.0698 (16) | 0.115 (2) | 0.0385 (14) | 0.0229 (15) | 0.0436 (15) |
C19 | 0.0586 (12) | 0.0517 (12) | 0.0761 (13) | 0.0229 (10) | 0.0156 (10) | 0.0171 (10) |
C20 | 0.0470 (10) | 0.0381 (9) | 0.0519 (10) | 0.0095 (8) | 0.0060 (8) | 0.0073 (8) |
N1 | 0.0514 (9) | 0.0441 (9) | 0.0530 (8) | 0.0159 (7) | 0.0107 (7) | 0.0121 (7) |
N2 | 0.0466 (9) | 0.0510 (9) | 0.0541 (9) | 0.0193 (7) | 0.0164 (7) | 0.0177 (7) |
O1 | 0.0641 (10) | 0.1091 (14) | 0.0992 (12) | 0.0288 (10) | 0.0431 (9) | 0.0487 (11) |
Cl1 | 0.0817 (4) | 0.0589 (3) | 0.0535 (3) | 0.0264 (3) | 0.0186 (2) | 0.0028 (2) |
C1—N1 | 1.301 (2) | C11—H11B | 0.96 |
C1—C2 | 1.418 (3) | C11—H11C | 0.96 |
C1—Cl1 | 1.7485 (19) | C12—N2 | 1.459 (2) |
C2—C3 | 1.367 (2) | C12—C13 | 1.521 (3) |
C2—C12 | 1.519 (2) | C12—H12 | 0.98 |
C3—C4 | 1.412 (2) | C13—C14 | 1.504 (3) |
C3—H3 | 0.93 | C13—H13A | 0.97 |
C4—C9 | 1.410 (3) | C13—H13B | 0.97 |
C4—C5 | 1.413 (3) | C14—O1 | 1.223 (2) |
C5—C6 | 1.373 (3) | C14—C15 | 1.463 (3) |
C5—H5 | 0.93 | C15—C20 | 1.403 (3) |
C6—C7 | 1.420 (3) | C15—C16 | 1.403 (3) |
C6—C11 | 1.513 (3) | C16—C17 | 1.360 (4) |
C7—C8 | 1.371 (3) | C16—H16 | 0.93 |
C7—C10 | 1.512 (3) | C17—C18 | 1.385 (4) |
C8—C9 | 1.411 (2) | C17—H17 | 0.93 |
C8—H8 | 0.93 | C18—C19 | 1.367 (3) |
C9—N1 | 1.371 (2) | C18—H18 | 0.93 |
C10—H10A | 0.96 | C19—C20 | 1.400 (3) |
C10—H10B | 0.96 | C19—H19 | 0.93 |
C10—H10C | 0.96 | C20—N2 | 1.389 (2) |
C11—H11A | 0.96 | N2—H2N | 0.86 (2) |
N1—C1—C2 | 126.09 (17) | H11B—C11—H11C | 109.5 |
N1—C1—Cl1 | 114.81 (14) | N2—C12—C2 | 110.34 (14) |
C2—C1—Cl1 | 119.11 (13) | N2—C12—C13 | 108.54 (15) |
C3—C2—C1 | 116.21 (16) | C2—C12—C13 | 111.35 (15) |
C3—C2—C12 | 121.63 (17) | N2—C12—H12 | 108.9 |
C1—C2—C12 | 122.15 (16) | C2—C12—H12 | 108.9 |
C2—C3—C4 | 120.78 (17) | C13—C12—H12 | 108.9 |
C2—C3—H3 | 119.6 | C14—C13—C12 | 111.87 (16) |
C4—C3—H3 | 119.6 | C14—C13—H13A | 109.2 |
C9—C4—C3 | 117.57 (16) | C12—C13—H13A | 109.2 |
C9—C4—C5 | 118.52 (16) | C14—C13—H13B | 109.2 |
C3—C4—C5 | 123.91 (18) | C12—C13—H13B | 109.2 |
C6—C5—C4 | 121.8 (2) | H13A—C13—H13B | 107.9 |
C6—C5—H5 | 119.1 | O1—C14—C15 | 122.46 (19) |
C4—C5—H5 | 119.1 | O1—C14—C13 | 121.3 (2) |
C5—C6—C7 | 119.29 (18) | C15—C14—C13 | 116.24 (17) |
C5—C6—C11 | 120.1 (2) | C20—C15—C16 | 118.8 (2) |
C7—C6—C11 | 120.59 (19) | C20—C15—C14 | 120.37 (17) |
C8—C7—C6 | 119.87 (17) | C16—C15—C14 | 120.79 (19) |
C8—C7—C10 | 119.5 (2) | C17—C16—C15 | 121.0 (2) |
C6—C7—C10 | 120.6 (2) | C17—C16—H16 | 119.5 |
C7—C8—C9 | 121.2 (2) | C15—C16—H16 | 119.5 |
C7—C8—H8 | 119.4 | C16—C17—C18 | 120.1 (2) |
C9—C8—H8 | 119.4 | C16—C17—H17 | 119.9 |
N1—C9—C4 | 122.10 (15) | C18—C17—H17 | 119.9 |
N1—C9—C8 | 118.61 (18) | C19—C18—C17 | 120.4 (2) |
C4—C9—C8 | 119.29 (17) | C19—C18—H18 | 119.8 |
C7—C10—H10A | 109.5 | C17—C18—H18 | 119.8 |
C7—C10—H10B | 109.5 | C18—C19—C20 | 120.5 (2) |
H10A—C10—H10B | 109.5 | C18—C19—H19 | 119.7 |
C7—C10—H10C | 109.5 | C20—C19—H19 | 119.7 |
H10A—C10—H10C | 109.5 | N2—C20—C19 | 120.17 (18) |
H10B—C10—H10C | 109.5 | N2—C20—C15 | 120.66 (18) |
C6—C11—H11A | 109.5 | C19—C20—C15 | 119.16 (18) |
C6—C11—H11B | 109.5 | C1—N1—C9 | 117.23 (16) |
H11A—C11—H11B | 109.5 | C20—N2—C12 | 115.66 (15) |
C6—C11—H11C | 109.5 | C20—N2—H2N | 111.0 (14) |
H11A—C11—H11C | 109.5 | C12—N2—H2N | 114.5 (15) |
N1—C1—C2—C3 | 1.6 (3) | N2—C12—C13—C14 | −55.2 (2) |
Cl1—C1—C2—C3 | −178.31 (14) | C2—C12—C13—C14 | −176.88 (16) |
N1—C1—C2—C12 | −179.75 (18) | C12—C13—C14—O1 | −153.6 (2) |
Cl1—C1—C2—C12 | 0.3 (2) | C12—C13—C14—C15 | 28.1 (2) |
C1—C2—C3—C4 | −0.1 (3) | O1—C14—C15—C20 | −176.5 (2) |
C12—C2—C3—C4 | −178.73 (16) | C13—C14—C15—C20 | 1.8 (3) |
C2—C3—C4—C9 | −0.7 (3) | O1—C14—C15—C16 | 0.5 (3) |
C2—C3—C4—C5 | 179.93 (18) | C13—C14—C15—C16 | 178.8 (2) |
C9—C4—C5—C6 | 0.1 (3) | C20—C15—C16—C17 | 0.7 (4) |
C3—C4—C5—C6 | 179.40 (19) | C14—C15—C16—C17 | −176.3 (2) |
C4—C5—C6—C7 | −0.5 (3) | C15—C16—C17—C18 | 0.1 (4) |
C4—C5—C6—C11 | 178.64 (19) | C16—C17—C18—C19 | −0.3 (5) |
C5—C6—C7—C8 | 0.9 (3) | C17—C18—C19—C20 | −0.3 (4) |
C11—C6—C7—C8 | −178.26 (19) | C18—C19—C20—N2 | −179.4 (2) |
C5—C6—C7—C10 | −179.1 (2) | C18—C19—C20—C15 | 1.1 (3) |
C11—C6—C7—C10 | 1.7 (3) | C16—C15—C20—N2 | 179.17 (19) |
C6—C7—C8—C9 | −0.8 (3) | C14—C15—C20—N2 | −3.8 (3) |
C10—C7—C8—C9 | 179.2 (2) | C16—C15—C20—C19 | −1.3 (3) |
C3—C4—C9—N1 | 0.3 (3) | C14—C15—C20—C19 | 175.74 (18) |
C5—C4—C9—N1 | 179.64 (17) | C2—C1—N1—C9 | −2.1 (3) |
C3—C4—C9—C8 | −179.37 (17) | Cl1—C1—N1—C9 | 177.84 (13) |
C5—C4—C9—C8 | 0.0 (3) | C4—C9—N1—C1 | 1.1 (3) |
C7—C8—C9—N1 | −179.27 (18) | C8—C9—N1—C1 | −179.28 (17) |
C7—C8—C9—C4 | 0.4 (3) | C19—C20—N2—C12 | 153.97 (18) |
C3—C2—C12—N2 | −30.9 (2) | C15—C20—N2—C12 | −26.5 (2) |
C1—C2—C12—N2 | 150.56 (17) | C2—C12—N2—C20 | 177.70 (15) |
C3—C2—C12—C13 | 89.7 (2) | C13—C12—N2—C20 | 55.4 (2) |
C1—C2—C12—C13 | −88.8 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2N···N1i | 0.86 (2) | 2.53 (2) | 3.297 (2) | 148.6 (18) |
Symmetry code: (i) −x, −y, −z+2. |
Experimental details
Crystal data | |
Chemical formula | C20H17ClN2O |
Mr | 336.81 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 295 |
a, b, c (Å) | 7.7345 (4), 10.6196 (6), 11.3463 (4) |
α, β, γ (°) | 96.425 (2), 100.068 (3), 109.576 (1) |
V (Å3) | 849.84 (7) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.23 |
Crystal size (mm) | 0.15 × 0.06 × 0.05 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7058, 3863, 2507 |
Rint | 0.029 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.133, 1.00 |
No. of reflections | 3863 |
No. of parameters | 222 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.17, −0.20 |
Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR2002 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2N···N1i | 0.86 (2) | 2.53 (2) | 3.297 (2) | 148.6 (18) |
Symmetry code: (i) −x, −y, −z+2. |
Acknowledgements
We are grateful to all personnel of the PHYSYNOR laboratory, Université Mentouri-Constantine, Algeria, for their assistance. Thanks are due to the MESRS (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique - Algeria) for financial support.
References
Belfaitah, A., Ladraa, S., Bouraiou, A., Benali-Cherif, N., Debache, A. & Rhouati, S. (2006). Acta Cryst. E62, 1355–1357. Web of Science CSD CrossRef IUCr Journals Google Scholar
Benzerka, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2010). Acta Cryst. E66, o1006. Web of Science CrossRef IUCr Journals Google Scholar
Bouraiou, A., Berrée, F., Bouacida, S., Carboni, C., Debache, A., Roisnel, T. & Belfaitah, A. (2011). Lett. Org. Chem. 8, 474–477. CSD CrossRef Google Scholar
Bouraiou, A., Debache, A., Rhouati, S., Belfaitah, A., Benali-Cherif, N. & Carboni, B. (2010). Open Org. Chem. J. 4, 1–7. CrossRef CAS Google Scholar
Bouraiou, A., Debache, A., Rhouati, S., Carboni, B. & Belfaitah, A. (2008). J. Heterocycl. Chem. 45, 329–333. CrossRef CAS Google Scholar
Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Donnelly, J. A. & Farrell, D. F. (1990a). J. Org. Chem. 55, 1757–1761. CrossRef CAS Web of Science Google Scholar
Donnelly, J. A. & Farrell, D. F. (1990b). Tetrahedron, 46, 885–894. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Kalinin, V. N., Shostakovsky, M. V. & Ponomaryov, A. B. (1992). Tetrahedron Lett. 33, 373–376. CrossRef CAS Web of Science Google Scholar
Kumar, K. H., Muralidharan, D. & Perumal, P. T. (2004). Synthesis, pp. 63–69. Google Scholar
Ladraa, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2010). Acta Cryst. E66, o2312–o2313. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nonius (1998). KappaCCD Reference Manual. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Prakash, O., Kumar, D., Saini, R. K. & Singh, S. P. (1994). Synth. Commun. 24, 2167–2172. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Singh, O. V. & Kapil, R. S. (1993). Synth. Commun. 23, 277–283. CrossRef CAS Web of Science Google Scholar
Tokes, A. L. & Litkei, Gy. (1993). Synth. Commun. 23, 895–902. CAS Google Scholar
Tokes, A. L., Litkei, Gy. & Szilagyi, L. (1992). Synth. Commun. 22, 2433–2445. CAS Google Scholar
Tokes, A. L. & Szilagyi, L. (1987). Synth. Commun. 17, 1235–1245. CAS Google Scholar
Varma, R. S. & Saini, R. K. (1997). Synlett, pp. 857–858. CrossRef Google Scholar
Xia, Y., Yang, Z.-Y., Xia, P., Bastow, K. F., Tachibana, Y., Kuo, S.-C., Hamel, E., Hackl, T. & Lee, K.-H. (1992). J. Med. Chem. 41, 1155–1162. Web of Science CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
2-Phenyl-2,3-dihydroquinolin-4(1H)-one compound substituted on the aromatic rings are valuable precursors (Prakash et al., 1994; Singh & Kapil, 1993) for the synthesis of medicinally important compounds, which are often not readily accessible by other means (Kalinin et al., 1992; Xia et al., 1992). The formation of 2,3-dihydroquinolin-4(1H)-ones is generally accomplished by acid- or base-catalyzed isomerization of substituted 2'-aminochalcones (Donnelly & Farrell, 1990a,b; Tokes & Litkei, 1993). Most of the procedures involve the use of corrosive reagents such as orthophosphoric acid, acetic acid or strong alkali. Many attempts have been made to explore efficient catalysts to accelerate this kind of reaction. Some of them are of limited synthetic scope due to low yields, long reaction times and the need for large amount of catalyst, specialized solvents or microwave activation (Tokes & Szilagyi, 1987; Tokes et al., 1992; Kumar et al. 2004; Varma & Saini, 1997). In continuation of our studies on quinoline derivatives and their biological activities (Bouraiou et al., 2010; Benzerka et al., 2010; Ladraa et al., 2010) we report herein the synthesis and structure determination of 2-(2-chloro-6,7-dimethylquinolin-3-yl)-2,3-dihydroquinolin-4(1H)-one I (Bouraiou et al., 2011). Characterization of the compound I was made from its spectral data (1H-NMR, 13C-NMR), and was unequivocally established from an X-ray crystallographic determination (I).
The molecular structure of (I) is shown in Fig. 1. The two rings of quinolyl moiety are fused in an axial fashion and form a dihedral angle of 0.28 (7)° and this quasi plane system forms dihedral angles of 57.84 (8)° with the benzene ring (C15-C20). The geometric parameters of (I) are in agreement with those of other structures possessing a quinolyl substituent previously reported in the literature (Belfaitah et al., 2006; Bouraiou et al., 2008; Bouraiou et al., 2011). In the crystal, molecules are linked into centrosymmetric dimers via pairs of intermolecular N–H···N hydrogen bonds (Fig. 2). These dimers are further stabilized by π–π stacking interactions between pyridine rings with a centroid to centroid distance of 3.9414 (12)Å.