organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Benzyl-3-[3-(naphthalen-2-yl­­oxy)prop­yl]imidazolium hexa­fluoro­phosphate

aDepartment of Chemistry and Chemical Engineering, Sichuan University of Arts and Science, Dazhou 635000, People's Republic of China, and bSichuan University of Arts and Science, Dazhou 635000, People's Republic of China
*Correspondence e-mail: greatwall520@163.com

(Received 14 June 2011; accepted 4 July 2011; online 16 July 2011)

In the title salt, C23H23N2O+·PF6, the PF6 anion is highly disordered (occupancy ratios of 0.35:0.35:0.3, 0.7:0.15:0.15, 0.7:0.3 and 0.35:0.35:0.15:0.15) with the four F atoms in the equatorial plane rotating about the axial F—P—F bond. The mean plane of the imidazole ring makes dihedral angles of 82.44 (17) and 14.39 (16)°, respectively, with the mean planes of the benzene ring and the naphthalene ring system. The crystal structure is stabilized by C—H⋯F hydrogen bonds. In addition, ππ [centroid–centroid distances = 3.7271 (19)–3.8895 (17) Å] and C—H⋯π inter­actions are observed.

Related literature

For the first free carbenes isolated, see: Arduengo et al. (1991[Arduengo, A. J., Harlow, R. L. & Kline, M. (1991). J. Am. Chem. Soc. 113, 361-363.]). For applications of N-heterocyclic carbene ligands in transmetalation, see: Lin et al. (2009[Lin, J. C. Y., Huang, R. T. W., Lee, C. S., Bhattacharyya, A., Hwang, W. S. & Lin, I. J. B. (2009). Chem. Rev. 109, 3561-3598.]); Wang, Song et al. (2005[Wang, J. W., Song, H. B., Li, Q. S., Xu, F. B. & Zhang, Z. Z. (2005). Inorg. Chim. Acta, 358, 3653-3658.]); Wang, Xu et al. (2005[Wang, J. W., Xu, F. B., Li, Q. S., Song, H. B. & Zhang, Z. Z. (2005). Inorg. Chem. Commun. 8, 1053-1055.]). For the synthesis of the title compound, see: Corma et al. (2004[Corma, A., García, H. & Leyva, A. (2004). Tetrahedron, 60, 8553-8560.]). For related structures, see: Wang, Song et al. (2005[Wang, J. W., Song, H. B., Li, Q. S., Xu, F. B. & Zhang, Z. Z. (2005). Inorg. Chim. Acta, 358, 3653-3658.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C23H23N2O+·PF6

  • Mr = 488.40

  • Monoclinic, C 2/c

  • a = 28.3309 (5) Å

  • b = 10.2447 (2) Å

  • c = 20.0969 (4) Å

  • β = 130.296 (1)°

  • V = 4448.87 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 296 K

  • 0.20 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.963, Tmax = 0.972

  • 19608 measured reflections

  • 5095 independent reflections

  • 3915 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.145

  • S = 1.04

  • 5095 reflections

  • 371 parameters

  • 210 restraints

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C4/C9/C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯F2i 0.93 2.41 3.304 (3) 160
C19—H19⋯F2ii 0.93 2.49 3.393 (3) 162
C14—H14⋯F4A 0.93 2.48 3.406 (6) 171
C4—H4⋯F5Aiii 0.93 2.55 3.315 (11) 140
C13—H13BCg2iv 0.97 2.65 3.560 (3) 157
Symmetry codes: (i) x, y+1, z; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x, -y+1, -z; (iv) -x, -y+2, -z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The discovery of the first free N-heterocyclic carbene (NHC) was disclosed by Arduengo and coworks (Arduengo et al., 1991). 1,3-disubstituted imidazolium salts are widely used as precursors for the synthesize of transition metal NHC's (Lin et al., 2009; Wang, Song et al., 2005; Wang, Xu et al., 2005). Herein we report on the crystal structure of the title compound, a new NHC precursor.

The molecular structure of the title compound is shown in Fig. 1. Bond lengths (Allen et al., 1987) and angles in the cation are normal. The mean plane of the imidazole ring makes dihedral angles with the mean planes of the benzene and naphthalene rings of 82.44 (17)° and 14.39 (16)°, respectively. The PF6- is disordered with as many as three sites found for some of the four F atoms (F3—F6) in the equatorial plane.

In the crystal there are weak ππ interactions involving the imidazole and naphthalene rings with centroid-centroid distances, Cg1···Cg3i, Cg2···Cg3ii and Cg2···Cg2ii of 3.731 (2), 3.7271 (19) and 3.8895 (17) Å, respectively [symmetry codes: (i) -x, 2 - y, -z; (ii) -x, y, -1/2 -z. Cg1 centroid of the imidazole ring (N1,N2,C14—C16); Cg2 centroid of ring (C1—C4,C9,C10); Cg3 centroid of ring (C5—C10)]. In addition, C—H···F hydrogen bonds and C—H···π interactions are observed (Table 1 and Fig. 2).

Related literature top

For the first free carbenes isolated, see: Arduengo et al. (1991). For applications of N-heterocyclic carbene ligands in transmetalation, see: Lin et al. (2009); Wang, Song et al. (2005); Wang, Xu et al. (2005). For the synthesis of the title compound, see: Corma et al. (2004). For related structures, see: Wang, Song et al. (2005). For standard bond lengths, see: Allen et al. (1987).

Experimental top

The title compound was prepared according to the reported procedures (Corma et al., 2004). Colourless single crystals suitable for X-ray diffraction were obtained by recrystallization from acetonitrile and ethyl ether (v:v = 1:1).

Refinement top

H atoms were placed in calculated orientations and treated as riding atoms: C—H =0.93 and 0.97 Å, for CH and CH2 H-atoms, respectively, with Uiso(H) =1.2Ueq(C). The PF6 anion is highly disordered and atoms F3—F6 were split(occupancies: 0.7 for F4A,F5A; 0.35 for F3A1,F3A2, F6A1,F6A2,F3B,F5B; 0.15 for F4B1,F4B2,F6B1,F6B2) and refined with distance restraints of P—F = 1.55 (2) Å. Attempts to further split theses atoms were unsuccessful.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound with atom numbering. The displacement ellipsoids are drawn at the 30% probability level. Only part of the disordered PF6- atoms are shown.
[Figure 2] Fig. 2. Part of crystal packing of the title compound, showing the cations and anions linked via C—H···F interactions (dashed lines). H atoms not involved in these interactions have been omitted for clarity.
1-Benzyl-3-[3-(naphthalen-2-yloxy)propyl]imidazolium hexafluorophosphate top
Crystal data top
C23H23N2O+·PF6F(000) = 2016
Mr = 488.40Dx = 1.458 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5985 reflections
a = 28.3309 (5) Åθ = 2.7–27.2°
b = 10.2447 (2) ŵ = 0.19 mm1
c = 20.0969 (4) ÅT = 296 K
β = 130.296 (1)°Block, colourless
V = 4448.87 (15) Å30.20 × 0.20 × 0.15 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
5095 independent reflections
Radiation source: fine-focus sealed tube3915 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 3636
Tmin = 0.963, Tmax = 0.972k = 1313
19608 measured reflectionsl = 2626
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.145 w = 1/[σ2(Fo2) + (0.0515P)2 + 4.9635P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.003
5095 reflectionsΔρmax = 0.35 e Å3
371 parametersΔρmin = 0.39 e Å3
210 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00093 (14)
Crystal data top
C23H23N2O+·PF6V = 4448.87 (15) Å3
Mr = 488.40Z = 8
Monoclinic, C2/cMo Kα radiation
a = 28.3309 (5) ŵ = 0.19 mm1
b = 10.2447 (2) ÅT = 296 K
c = 20.0969 (4) Å0.20 × 0.20 × 0.15 mm
β = 130.296 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5095 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3915 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.972Rint = 0.031
19608 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.057210 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.04Δρmax = 0.35 e Å3
5095 reflectionsΔρmin = 0.39 e Å3
371 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.06916 (7)0.87976 (16)0.00405 (10)0.0616 (5)
N10.20226 (8)1.10961 (17)0.27117 (11)0.0448 (5)
N20.27187 (8)1.03723 (18)0.40219 (11)0.0488 (6)
C10.00745 (9)0.9740 (2)0.14818 (13)0.0479 (6)
C20.02224 (10)0.8706 (2)0.09241 (13)0.0475 (6)
C30.00510 (10)0.7413 (2)0.12412 (15)0.0521 (7)
C40.04215 (10)0.7189 (2)0.21032 (15)0.0535 (7)
C50.12511 (11)0.8038 (3)0.35933 (15)0.0605 (8)
C60.15535 (11)0.9062 (3)0.41528 (15)0.0659 (9)
C70.13672 (11)1.0334 (3)0.38480 (15)0.0611 (8)
C80.08860 (10)1.0564 (2)0.29828 (15)0.0547 (7)
C90.05671 (9)0.9525 (2)0.23861 (13)0.0447 (6)
C100.07497 (9)0.8233 (2)0.27019 (13)0.0473 (7)
C110.08538 (10)1.0064 (2)0.03396 (14)0.0536 (7)
C120.13234 (10)0.9878 (2)0.13195 (14)0.0539 (7)
C130.14909 (9)1.1174 (2)0.17730 (13)0.0490 (7)
C140.22160 (9)1.0060 (2)0.32192 (13)0.0459 (6)
C150.28478 (12)1.1662 (2)0.40219 (16)0.0619 (8)
C160.24136 (11)1.2109 (2)0.32116 (16)0.0600 (8)
C170.30690 (10)0.9486 (3)0.47728 (14)0.0582 (8)
C180.37109 (10)0.9213 (2)0.50999 (14)0.0505 (7)
C190.38433 (11)0.9188 (3)0.45503 (16)0.0627 (9)
C200.44286 (13)0.8888 (3)0.4866 (2)0.0774 (11)
C210.48900 (14)0.8610 (3)0.5734 (2)0.0828 (10)
C220.47645 (13)0.8651 (3)0.6284 (2)0.0845 (10)
C230.41781 (12)0.8944 (3)0.59729 (16)0.0688 (9)
H10.004601.058700.126900.0580*
H30.026200.671400.086000.0620*
H40.053200.633400.230400.0640*
H50.137900.719100.380500.0730*
H60.188500.891100.474000.0790*
H70.157001.103100.423400.0730*
H80.076801.141900.278500.0660*
H11A0.049101.051400.017600.0640*
H11B0.103101.057700.014200.0640*
H12A0.115200.931200.150400.0650*
H12B0.169200.946500.147800.0650*
H13A0.158601.178500.150500.0590*
H13B0.113701.151100.169200.0590*
H140.203000.924100.304200.0550*
H150.317601.213700.449700.0740*
H160.238201.295700.302100.0720*
H17A0.284600.866800.460900.0700*
H17B0.309900.986600.524100.0700*
H190.353400.937700.396100.0750*
H200.451300.887200.448900.0930*
H210.528500.839500.594500.1000*
H220.507800.848000.687500.1010*
H230.409700.896100.635300.0830*
P10.19683 (3)0.60238 (6)0.31472 (4)0.0536 (2)
F10.19758 (14)0.6908 (2)0.37951 (18)0.1311 (13)
F20.20206 (13)0.5170 (2)0.25553 (14)0.1257 (12)
F3A10.2634 (5)0.6501 (17)0.3723 (11)0.131 (5)0.350
F3A20.2482 (4)0.6998 (10)0.3320 (8)0.071 (3)0.350
F3B0.2173 (9)0.7164 (9)0.2875 (11)0.102 (5)0.300
F4A0.1558 (4)0.7068 (5)0.2407 (3)0.148 (2)0.700
F4B10.1325 (7)0.617 (2)0.2333 (15)0.138 (6)0.150
F4B20.1395 (9)0.665 (3)0.2819 (19)0.137 (9)0.150
F5A0.1349 (3)0.5355 (9)0.2739 (7)0.221 (4)0.700
F5B0.1705 (8)0.4928 (12)0.3317 (10)0.100 (5)0.300
F6A10.2462 (7)0.5115 (12)0.3909 (7)0.097 (4)0.350
F6A20.2118 (8)0.4825 (11)0.3762 (7)0.094 (4)0.350
F6B10.2609 (7)0.540 (3)0.3665 (14)0.104 (7)0.150
F6B20.2639 (11)0.566 (4)0.3971 (15)0.115 (8)0.150
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0601 (9)0.0549 (10)0.0432 (8)0.0002 (8)0.0215 (7)0.0003 (7)
N10.0444 (9)0.0445 (9)0.0433 (9)0.0008 (7)0.0274 (8)0.0019 (7)
N20.0472 (9)0.0547 (11)0.0414 (9)0.0020 (8)0.0272 (8)0.0037 (8)
C10.0472 (11)0.0462 (11)0.0476 (11)0.0061 (9)0.0294 (10)0.0051 (9)
C20.0438 (10)0.0530 (12)0.0417 (10)0.0021 (9)0.0258 (9)0.0000 (9)
C30.0559 (12)0.0466 (12)0.0528 (12)0.0024 (10)0.0347 (11)0.0040 (10)
C40.0610 (13)0.0441 (12)0.0572 (13)0.0051 (10)0.0390 (12)0.0068 (10)
C50.0597 (14)0.0635 (15)0.0489 (13)0.0043 (11)0.0309 (11)0.0132 (11)
C60.0550 (13)0.0847 (19)0.0429 (12)0.0063 (13)0.0249 (11)0.0081 (12)
C70.0583 (14)0.0700 (16)0.0488 (13)0.0154 (12)0.0319 (11)0.0087 (11)
C80.0554 (13)0.0520 (13)0.0528 (12)0.0031 (10)0.0333 (11)0.0019 (10)
C90.0415 (10)0.0514 (12)0.0439 (10)0.0017 (9)0.0288 (9)0.0017 (9)
C100.0460 (11)0.0530 (12)0.0453 (11)0.0017 (9)0.0306 (10)0.0055 (9)
C110.0480 (11)0.0564 (13)0.0439 (11)0.0020 (10)0.0241 (10)0.0017 (10)
C120.0473 (11)0.0575 (13)0.0450 (11)0.0009 (10)0.0245 (10)0.0001 (10)
C130.0439 (11)0.0556 (13)0.0419 (11)0.0048 (9)0.0252 (9)0.0032 (9)
C140.0445 (10)0.0468 (11)0.0431 (10)0.0056 (9)0.0268 (9)0.0046 (9)
C150.0651 (15)0.0518 (13)0.0556 (14)0.0115 (11)0.0331 (12)0.0165 (11)
C160.0647 (14)0.0434 (12)0.0578 (14)0.0062 (11)0.0333 (12)0.0090 (10)
C170.0536 (13)0.0743 (16)0.0404 (11)0.0015 (11)0.0276 (10)0.0047 (11)
C180.0511 (12)0.0472 (12)0.0426 (11)0.0058 (9)0.0255 (10)0.0031 (9)
C190.0578 (14)0.0751 (17)0.0500 (13)0.0036 (12)0.0325 (11)0.0086 (12)
C200.0726 (17)0.081 (2)0.089 (2)0.0050 (15)0.0570 (17)0.0115 (16)
C210.0587 (16)0.0665 (18)0.105 (2)0.0072 (13)0.0448 (18)0.0044 (17)
C220.0608 (16)0.083 (2)0.0673 (18)0.0112 (15)0.0223 (14)0.0197 (16)
C230.0647 (15)0.0763 (17)0.0480 (13)0.0036 (13)0.0286 (12)0.0109 (12)
P10.0594 (4)0.0487 (3)0.0567 (4)0.0039 (3)0.0394 (3)0.0031 (3)
F10.214 (3)0.0915 (15)0.175 (2)0.0149 (16)0.165 (2)0.0274 (15)
F20.220 (3)0.0890 (14)0.1101 (16)0.0037 (15)0.1257 (18)0.0170 (12)
F4A0.173 (5)0.086 (3)0.107 (3)0.039 (3)0.055 (3)0.045 (2)
F5A0.114 (4)0.182 (7)0.290 (9)0.075 (4)0.096 (5)0.006 (7)
F3A10.084 (5)0.156 (12)0.125 (10)0.036 (7)0.055 (6)0.045 (8)
F3A20.066 (5)0.075 (6)0.092 (7)0.014 (4)0.060 (5)0.005 (5)
F4B10.035 (6)0.090 (12)0.118 (14)0.010 (8)0.027 (7)0.013 (11)
F3B0.184 (13)0.053 (4)0.127 (9)0.022 (8)0.127 (9)0.030 (6)
F4B20.069 (10)0.108 (15)0.183 (19)0.034 (10)0.059 (12)0.026 (16)
F6A10.113 (9)0.075 (7)0.062 (4)0.030 (7)0.038 (6)0.024 (4)
F5B0.144 (10)0.087 (7)0.128 (9)0.066 (7)0.115 (8)0.047 (7)
F6A20.140 (10)0.074 (6)0.075 (6)0.034 (8)0.073 (7)0.030 (5)
F6B10.062 (7)0.120 (14)0.160 (14)0.027 (8)0.085 (9)0.016 (12)
F6B20.106 (13)0.114 (17)0.046 (8)0.003 (12)0.014 (7)0.042 (11)
Geometric parameters (Å, º) top
P1—F6A21.593 (12)C7—C81.368 (3)
P1—F6B11.53 (3)C8—C91.409 (3)
P1—F6B21.56 (3)C9—C101.413 (3)
P1—F3A11.521 (19)C11—C121.515 (3)
P1—F3A21.607 (14)C12—C131.503 (3)
P1—F4B11.47 (2)C15—C161.336 (3)
P1—F11.575 (3)C17—C181.507 (5)
P1—F21.559 (3)C18—C231.379 (3)
P1—F4A1.572 (5)C18—C191.377 (4)
P1—F5A1.536 (12)C19—C201.373 (6)
P1—F3B1.55 (2)C20—C211.372 (4)
P1—F4B21.45 (3)C21—C221.363 (6)
P1—F6A11.548 (12)C22—C231.378 (6)
P1—F5B1.504 (19)C1—H10.9300
F1—F4B21.57 (3)C3—H30.9300
F3A1—F3A20.81 (2)C4—H40.9300
F3A1—F6A11.62 (2)C5—H50.9300
F4B1—F4B20.99 (4)C6—H60.9300
F6A1—F6A20.87 (3)C7—H70.9300
F6B1—F6B20.62 (4)C8—H80.9300
O1—C21.370 (3)C11—H11A0.9700
O1—C111.423 (3)C11—H11B0.9700
N1—C131.469 (3)C12—H12B0.9700
N1—C141.321 (3)C12—H12A0.9700
N1—C161.369 (3)C13—H13A0.9700
N2—C171.466 (3)C13—H13B0.9700
N2—C151.371 (3)C14—H140.9300
N2—C141.327 (3)C15—H150.9300
C1—C21.366 (3)C16—H160.9300
C1—C91.421 (3)C17—H17B0.9700
C2—C31.413 (3)C17—H17A0.9700
C3—C41.359 (3)C19—H190.9300
C4—C101.417 (3)C20—H200.9300
C5—C61.361 (4)C21—H210.9300
C5—C101.406 (3)C22—H220.9300
C6—C71.391 (4)C23—H230.9300
F6B1—P1—F6B223.3 (15)C1—C9—C10119.41 (18)
F1—P1—F4B262.2 (12)C8—C9—C10118.57 (19)
F1—P1—F6A190.5 (6)C1—C9—C8122.02 (19)
F1—P1—F5B89.2 (7)C4—C10—C5122.8 (2)
F1—P1—F6A287.0 (6)C4—C10—C9118.48 (19)
F1—P1—F6B1107.6 (9)C5—C10—C9118.7 (2)
F1—P1—F6B284.5 (13)O1—C11—C12106.88 (16)
F2—P1—F4A92.1 (3)C11—C12—C13110.15 (17)
F2—P1—F5A89.0 (4)N1—C13—C12112.96 (17)
F3A1—P1—F294.5 (7)N1—C14—N2109.15 (19)
F2—P1—F3A289.6 (5)N2—C15—C16107.2 (2)
F2—P1—F4B182.5 (10)N1—C16—C15107.76 (19)
F2—P1—F3B84.9 (7)N2—C17—C18112.7 (2)
F2—P1—F4B2122.2 (12)C19—C18—C23118.8 (3)
F2—P1—F6A186.9 (6)C17—C18—C23119.1 (3)
F2—P1—F5B93.5 (7)C17—C18—C19122.1 (2)
F2—P1—F6A292.9 (6)C18—C19—C20120.5 (3)
F2—P1—F6B168.2 (9)C19—C20—C21120.4 (4)
F2—P1—F6B291.4 (13)C20—C21—C22119.4 (4)
F4A—P1—F5A84.7 (5)C21—C22—C23120.6 (3)
F3A1—P1—F3A229.7 (8)C18—C23—C22120.3 (3)
F3A1—P1—F6A163.8 (9)C9—C1—H1120.00
F3A1—P1—F6A294.6 (10)C2—C1—H1120.00
F3A2—P1—F6A192.7 (8)C4—C3—H3120.00
F3A2—P1—F6A2124.2 (8)C2—C3—H3120.00
F1—P1—F2175.2 (2)C3—C4—H4119.00
F1—P1—F4A89.9 (3)C10—C4—H4119.00
F1—P1—F5A95.6 (4)C10—C5—H5119.00
F1—P1—F3A180.7 (7)C6—C5—H5119.00
F1—P1—F3A286.5 (5)C5—C6—H6120.00
F1—P1—F4B1101.9 (10)C7—C6—H6120.00
F1—P1—F3B92.9 (7)C6—C7—H7120.00
F6A1—P1—F6A232.0 (11)C8—C7—H7120.00
F4B1—P1—F6B2171.8 (17)C7—C8—H8120.00
F4B1—P1—F4B239.7 (15)C9—C8—H8119.00
F4B1—P1—F6B1150.5 (13)O1—C11—H11A110.00
F4B2—P1—F6B2145.9 (17)O1—C11—H11B110.00
F3B—P1—F5B174.0 (9)C12—C11—H11A110.00
F4B2—P1—F6B1169.0 (15)C12—C11—H11B110.00
P1—F1—F4B255.0 (12)H11A—C11—H11B109.00
P1—F3A1—F6A158.9 (9)H12A—C12—H12B108.00
F3A2—F3A1—F6A1138 (2)C11—C12—H12B110.00
P1—F3A1—F3A281.1 (17)C11—C12—H12A110.00
P1—F3A2—F3A169.2 (16)C13—C12—H12A110.00
P1—F4B1—F4B269 (2)C13—C12—H12B110.00
P1—F4B2—F162.9 (13)N1—C13—H13B109.00
F1—F4B2—F4B1134 (3)N1—C13—H13A109.00
P1—F4B2—F4B171 (2)H13A—C13—H13B108.00
P1—F6A1—F3A157.3 (8)C12—C13—H13A109.00
P1—F6A1—F6A276.8 (12)C12—C13—H13B109.00
F3A1—F6A1—F6A2131.3 (17)N1—C14—H14125.00
P1—F6A2—F6A171.2 (12)N2—C14—H14125.00
P1—F6B1—F6B281 (4)C16—C15—H15126.00
P1—F6B2—F6B176 (3)N2—C15—H15126.00
C2—O1—C11117.66 (17)C15—C16—H16126.00
C13—N1—C14127.16 (18)N1—C16—H16126.00
C13—N1—C16124.91 (18)N2—C17—H17A109.00
C14—N1—C16107.93 (18)H17A—C17—H17B108.00
C14—N2—C17125.6 (2)C18—C17—H17B109.00
C15—N2—C17126.4 (2)N2—C17—H17B109.00
C14—N2—C15107.99 (18)C18—C17—H17A109.00
C2—C1—C9120.23 (19)C18—C19—H19120.00
O1—C2—C1125.23 (19)C20—C19—H19120.00
O1—C2—C3114.29 (18)C21—C20—H20120.00
C1—C2—C3120.48 (19)C19—C20—H20120.00
C2—C3—C4120.1 (2)C22—C21—H21120.00
C3—C4—C10121.29 (19)C20—C21—H21120.00
C6—C5—C10121.4 (3)C21—C22—H22120.00
C5—C6—C7120.1 (2)C23—C22—H22120.00
C6—C7—C8120.2 (2)C18—C23—H23120.00
C7—C8—C9121.0 (2)C22—C23—H23120.00
C11—O1—C2—C15.0 (5)C10—C5—C6—C70.3 (6)
C11—O1—C2—C3174.6 (3)C6—C5—C10—C4179.5 (3)
C2—O1—C11—C12173.4 (3)C6—C5—C10—C91.1 (5)
C14—N1—C13—C1224.7 (4)C5—C6—C7—C81.1 (6)
C16—N1—C13—C12154.2 (3)C6—C7—C8—C90.5 (5)
C13—N1—C14—N2178.5 (3)C7—C8—C9—C1178.7 (3)
C16—N1—C14—N20.5 (4)C7—C8—C9—C100.8 (5)
C13—N1—C16—C15178.3 (3)C1—C9—C10—C41.6 (4)
C14—N1—C16—C150.8 (4)C1—C9—C10—C5177.9 (3)
C15—N2—C14—N10.1 (4)C8—C9—C10—C4178.9 (3)
C17—N2—C14—N1179.9 (3)C8—C9—C10—C51.5 (5)
C14—N2—C15—C160.4 (4)O1—C11—C12—C13176.6 (3)
C17—N2—C15—C16179.4 (3)C11—C12—C13—N1169.8 (3)
C14—N2—C17—C18113.9 (3)N2—C15—C16—N10.7 (4)
C15—N2—C17—C1866.4 (4)N2—C17—C18—C1931.7 (3)
C9—C1—C2—O1178.4 (3)N2—C17—C18—C23150.2 (2)
C9—C1—C2—C31.1 (5)C17—C18—C19—C20177.6 (3)
C2—C1—C9—C8179.9 (3)C23—C18—C19—C200.6 (4)
C2—C1—C9—C100.4 (5)C17—C18—C23—C22178.0 (3)
O1—C2—C3—C4178.0 (3)C19—C18—C23—C220.3 (4)
C1—C2—C3—C41.5 (5)C18—C19—C20—C210.1 (5)
C2—C3—C4—C100.3 (5)C19—C20—C21—C220.9 (5)
C3—C4—C10—C5178.3 (3)C20—C21—C22—C231.2 (5)
C3—C4—C10—C91.2 (5)C21—C22—C23—C180.7 (5)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C4/C9/C10 ring.
D—H···AD—HH···AD···AD—H···A
C16—H16···F2i0.932.413.304 (3)160
C19—H19···F2ii0.932.493.393 (3)162
C14—H14···F4A0.932.483.406 (6)171
C4—H4···F5Aiii0.932.553.315 (11)140
C13—H13B···Cg2iv0.972.653.560 (3)157
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x, y+2, z.

Experimental details

Crystal data
Chemical formulaC23H23N2O+·PF6
Mr488.40
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)28.3309 (5), 10.2447 (2), 20.0969 (4)
β (°) 130.296 (1)
V3)4448.87 (15)
Z8
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.20 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.963, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
19608, 5095, 3915
Rint0.031
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.145, 1.04
No. of reflections5095
No. of parameters371
No. of restraints210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.39

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C4/C9/C10 ring.
D—H···AD—HH···AD···AD—H···A
C16—H16···F2i0.932.413.304 (3)160
C19—H19···F2ii0.932.493.393 (3)162
C14—H14···F4A0.932.483.406 (6)171
C4—H4···F5Aiii0.932.553.315 (11)140
C13—H13B···Cg2iv0.972.653.560 (3)157
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x, y+2, z.
 

Acknowledgements

The authors thank Professor Helen Stoeckli-Evans (Neuchâtel) for valuable discussions.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationArduengo, A. J., Harlow, R. L. & Kline, M. (1991). J. Am. Chem. Soc. 113, 361–363.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCorma, A., García, H. & Leyva, A. (2004). Tetrahedron, 60, 8553–8560.  Web of Science CrossRef CAS Google Scholar
First citationLin, J. C. Y., Huang, R. T. W., Lee, C. S., Bhattacharyya, A., Hwang, W. S. & Lin, I. J. B. (2009). Chem. Rev. 109, 3561–3598.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J. W., Song, H. B., Li, Q. S., Xu, F. B. & Zhang, Z. Z. (2005). Inorg. Chim. Acta, 358, 3653–3658.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, J. W., Xu, F. B., Li, Q. S., Song, H. B. & Zhang, Z. Z. (2005). Inorg. Chem. Commun. 8, 1053–1055.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds