organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2-Hy­dr­oxy-4-meth­­oxy­phen­yl)(2-hy­dr­oxy­phen­yl)methanone

aNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 22 July 2011; accepted 25 July 2011; online 30 July 2011)

The title compound, C14H12O4, is an asymmetric substitution product of benzophenone. Both hy­droxy groups are orientated towards the O atom of the keto group. Intra­molecular as well as inter­molecular O—H⋯O hydrogen bonds can be observed in the crystal structure, with the latter connecting the mol­ecules into chains along the crystallographic b axis. C—H⋯O contacts [C⋯O = 3.3297 (18) Å] are also apparent. The closest centroid–centroid distance between two aromatic systems is 4.9186 (9) Å.

Related literature

For the crystal structure of benzophenone, see: Lobanova (1968[Lobanova, G. M. (1968). Kristallografiya, 13, 984-986.]); Kutzke et al. (2000[Kutzke, H., Klapper, H., Hammond, R. B. & Roberts, K. J. (2000). Acta Cryst. B56, 486-496.]); Fleischer et al. (1968[Fleischer, E. B., Sung, N. & Hawkinson, S. (1968). J. Phys. Chem. 72, 4311-4312.]); Bernstein et al. (2002[Bernstein, J., Ellern, A. & Henck, J.-O. (2002). Private communication (CCDC 118986, refcode BPHNO11). CCDC, Union Road, Cambridge, England.]); Moncol & Coppens (2004[Moncol, J. & Coppens, P. (2004). Private communication (CCDC 245188, refcode BPHNO12). CCDC, Union Road, Cambridge, England.]). For the crystal structure of bis­(2-hy­droxy­phen­yl)methanone, see: Betz et al. (2011[Betz, R., Gerber, T. & Schalekamp, H. (2011). Acta Cryst. E67, o1897.]). For details on graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For a comparison of the thermodynamic stability of coordination compounds containing chelate ligands as opposed to monodentate ligands, see: Gade (1998[Gade, L. H. (1998). Koordinationschemie, 1st ed. Weinheim: Wiley-VCH.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12O4

  • Mr = 244.24

  • Orthorhombic, P 21 21 21

  • a = 4.8582 (2) Å

  • b = 14.0236 (5) Å

  • c = 16.8636 (5) Å

  • V = 1148.91 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 200 K

  • 0.48 × 0.14 × 0.05 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 6314 measured reflections

  • 1683 independent reflections

  • 1484 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.083

  • S = 1.07

  • 1683 reflections

  • 166 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1 0.84 1.88 2.6058 (17) 144
O3—H3⋯O1 0.84 1.91 2.6267 (17) 142
O3—H3⋯O4i 0.84 2.50 2.9306 (15) 113
C15—H15⋯O1ii 0.95 2.57 3.3297 (18) 137
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chelate ligands have found widespread use in coordination chemistry due to the enhanced thermodynamic stability of resultant coordination compounds in relation to coordination compounds exclusively applying comparable monodentate ligands (Gade, 1998). Combining two identical donor atoms in different states of hybridization seemed to be useful to us to accomodate a large variety of metal centers of variable Lewis acidity. To enable comparative studies in terms of bond lengths and angles in envisioned coordination compounds, we determined the molecular and crystal structure of the title compound. The crystal structure of benzophenone is apparent in the literature (Lobanova, 1968; Kutzke et al., 2000; Fleischer et al., 1968; Bernstein et al., 2002; Moncol & Coppens, 2004) as is the crystal structure of bis(2-hydroxyphenyl)methanone (Betz et al., 2011).

The title compound is an asymmetric substitution product of benzophenone. Both aromatic moieties adopt a conformation in which its hydroxyl group is orientated towards the central oxygen atom. The least-squares planes defined by the respective carbon atoms of both aromatic rings intersect at an angle of 42.11 (6) °. Intracyclic C–C–C angles hardly deviate from the ideal value of 120 °. The methoxy group is nearly in plane with its resident aromatic system, the respective C–O–C–C torsional angle is found at 4.9 (2) ° (Fig. 1).

In the crystal structure, intra- as well as intermolecular hydrogen bonds are observed. While the intramolecular hydrogen bonds are apparent between the hydroxyl groups as donors and the double-bonded oxygen atom as acceptor, the intermolecular hydrogen bond stems from the hydroxyl group on the otherwise unsubstituted phenyl ring and has the etheric oxygen atom as acceptor (Fig. 2). The latter hydrogen bond thus shows bifurcation. In addition, a C–H···O contact whose range falls by more than 0.1 Å below the sum of van-der-Waals radii is present in the crystal structure. The latter one is supported by one of the CH groups in ortho-position to the methoxy substituent and has the keto group's oxygen atom as acceptor. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for the hydrogen bonding system based on the hydroxyl groups on the unitary level is S(6)S(6)C(10) while the C–H···O contacts necessitate a C(6) descriptor on the same level. In total, the molecules are connected to undulated chains along the crystallographic b axis. The shortest intercentroid distance between two aromatic systems was measured to be at 4.9186 (9) Å and is apparent between the two different aromatic moieties.

The molecular packing of the title compound in the crystal structure is shown in Figure 3.

Related literature top

For the crystal structure of benzophenone, see: Lobanova (1968); Kutzke et al. (2000); Fleischer et al. (1968); Bernstein et al. (2002); Moncol & Coppens (2004). For the crystal structure of bis(2-hydroxyphenyl)methanone, see: Betz et al. (2011). For details on graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995). For a comparison of thermodynamic stability of coordination compounds containing chelate ligands as opposed to monodentate ligands, see: Gade (1998).

Experimental top

The compound was obtained commercially (Aldrich). Crystals suitable for the X-ray diffraction study were taken directly from the provided product.

Refinement top

Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å for aromatic carbon atoms) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The H atoms of the methyl group were allowed to rotate with a fixed angle around their respective C—O bond to best fit the experimental electron density (HFIX 137 in the SHELX program suite (Sheldrick, 2008)), with U(H) set to 1.5Ueq(C) and C—H set to 0.98 Å. The H atoms of the hydroxyl groups were allowed to rotate with a fixed angle around their respective C—O bond to best fit the experimental electron density (HFIX 147 in the SHELX program suite (Sheldrick, 2008)), with U(H) set to 1.5Ueq(O) and O—H set to 0.84 Å.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).
[Figure 2] Fig. 2. Intermolecular contacts, viewed along [0 0 - 1]. Blue dashed lines indicate intramolecular hydrogen bonds, green dashed lines intermolecular hydrogen bonds and yellow dashed lines C–H···O contacts. Symmetry operators: i -x + 2, y + 1/2, -z + 1/2; ii -x + 2, y - 1/2, -z + 1/2.
[Figure 3] Fig. 3. Molecular packing of the title compound, viewed along [-1 0 0] (anisotropic displacement ellipsoids drawn at 50% probability level).
(2-Hydroxy-4-methoxyphenyl)(2-hydroxyphenyl)methanone top
Crystal data top
C14H12O4F(000) = 512
Mr = 244.24Dx = 1.412 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4306 reflections
a = 4.8582 (2) Åθ = 2.8–28.2°
b = 14.0236 (5) ŵ = 0.10 mm1
c = 16.8636 (5) ÅT = 200 K
V = 1148.91 (7) Å3Platelet, yellow
Z = 40.48 × 0.14 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
1484 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
Graphite monochromatorθmax = 28.3°, θmin = 1.9°
ϕ and ω scansh = 46
6314 measured reflectionsk = 1817
1683 independent reflectionsl = 2122
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0509P)2 + 0.0857P]
where P = (Fo2 + 2Fc2)/3
1683 reflections(Δ/σ)max < 0.001
166 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C14H12O4V = 1148.91 (7) Å3
Mr = 244.24Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.8582 (2) ŵ = 0.10 mm1
b = 14.0236 (5) ÅT = 200 K
c = 16.8636 (5) Å0.48 × 0.14 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
1484 reflections with I > 2σ(I)
6314 measured reflectionsRint = 0.021
1683 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.07Δρmax = 0.18 e Å3
1683 reflectionsΔρmin = 0.17 e Å3
166 parameters
Special details top

Refinement. Due to the absence of a strong anomalous scatterer, the Flack parameter is meaningless. Thus, Friedel opposites (1966 pairs) have been merged and the item was removed from the CIF.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.0688 (3)0.07918 (7)0.34393 (6)0.0382 (3)
O20.6572 (3)0.06852 (7)0.24525 (6)0.0374 (3)
H20.77190.09680.27410.056*
O31.4961 (3)0.08333 (8)0.43931 (7)0.0390 (3)
H31.40610.10130.39950.058*
O40.4289 (3)0.24323 (8)0.15520 (6)0.0405 (3)
C11.0352 (3)0.00668 (10)0.36067 (8)0.0288 (3)
C20.2546 (5)0.20454 (13)0.09489 (11)0.0447 (5)
H2A0.36490.16600.05830.067*
H2B0.16640.25670.06570.067*
H2C0.11300.16440.11940.067*
C110.8770 (3)0.06797 (10)0.30686 (8)0.0273 (3)
C120.6941 (3)0.02686 (10)0.25159 (8)0.0279 (3)
C130.5372 (4)0.08324 (11)0.20056 (8)0.0296 (3)
H130.41080.05460.16480.036*
C140.5676 (4)0.18145 (10)0.20262 (8)0.0309 (3)
C150.7562 (4)0.22409 (10)0.25446 (8)0.0335 (4)
H150.77970.29130.25450.040*
C160.9063 (4)0.16846 (10)0.30496 (8)0.0309 (3)
H161.03410.19800.33980.037*
C211.1541 (4)0.04328 (10)0.43571 (8)0.0275 (3)
C221.3752 (4)0.00534 (10)0.47108 (9)0.0297 (3)
C231.4840 (4)0.02689 (11)0.54312 (9)0.0344 (4)
H231.63800.00460.56590.041*
C241.3687 (4)0.10414 (12)0.58103 (9)0.0373 (4)
H241.44410.12560.62980.045*
C251.1439 (4)0.15086 (11)0.54881 (9)0.0355 (4)
H251.06210.20300.57600.043*
C261.0397 (4)0.12097 (10)0.47670 (8)0.0310 (3)
H260.88720.15370.45430.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0427 (7)0.0264 (5)0.0456 (6)0.0066 (6)0.0057 (6)0.0090 (4)
O20.0490 (7)0.0230 (5)0.0403 (5)0.0041 (5)0.0070 (6)0.0036 (4)
O30.0417 (7)0.0346 (6)0.0406 (6)0.0111 (6)0.0018 (6)0.0034 (5)
O40.0549 (8)0.0284 (5)0.0380 (5)0.0066 (6)0.0164 (7)0.0015 (4)
C10.0276 (8)0.0267 (6)0.0322 (6)0.0003 (6)0.0032 (7)0.0035 (5)
C20.0554 (12)0.0360 (8)0.0428 (8)0.0058 (9)0.0199 (10)0.0001 (7)
C110.0292 (8)0.0252 (7)0.0275 (6)0.0020 (7)0.0037 (7)0.0036 (5)
C120.0318 (8)0.0246 (7)0.0272 (6)0.0045 (6)0.0057 (7)0.0044 (5)
C130.0323 (8)0.0286 (7)0.0279 (6)0.0055 (7)0.0010 (7)0.0035 (5)
C140.0367 (9)0.0300 (7)0.0260 (6)0.0027 (7)0.0003 (8)0.0006 (5)
C150.0449 (9)0.0231 (6)0.0324 (7)0.0090 (7)0.0045 (9)0.0002 (5)
C160.0370 (9)0.0260 (7)0.0298 (6)0.0080 (7)0.0016 (8)0.0024 (5)
C210.0302 (8)0.0234 (6)0.0289 (6)0.0021 (6)0.0037 (7)0.0008 (5)
C220.0324 (8)0.0254 (7)0.0313 (6)0.0024 (7)0.0057 (7)0.0026 (5)
C230.0356 (9)0.0337 (8)0.0338 (7)0.0041 (7)0.0028 (8)0.0057 (6)
C240.0470 (10)0.0348 (8)0.0300 (7)0.0118 (8)0.0009 (8)0.0011 (6)
C250.0436 (10)0.0285 (7)0.0343 (7)0.0038 (7)0.0063 (8)0.0059 (6)
C260.0343 (9)0.0258 (7)0.0329 (7)0.0011 (7)0.0022 (7)0.0007 (5)
Geometric parameters (Å, º) top
O1—C11.2475 (18)C13—H130.9500
O2—C121.3537 (16)C14—C151.401 (2)
O2—H20.8400C15—C161.366 (2)
O3—C221.3522 (19)C15—H150.9500
O3—H30.8400C16—H160.9500
O4—C141.3578 (19)C21—C261.405 (2)
O4—C21.430 (2)C21—C221.405 (2)
C1—C111.467 (2)C22—C231.400 (2)
C1—C211.483 (2)C23—C241.377 (2)
C2—H2A0.9800C23—H230.9500
C2—H2B0.9800C24—C251.384 (3)
C2—H2C0.9800C24—H240.9500
C11—C121.411 (2)C25—C261.382 (2)
C11—C161.417 (2)C25—H250.9500
C12—C131.395 (2)C26—H260.9500
C13—C141.386 (2)
C12—O2—H2109.5C16—C15—C14119.64 (13)
C22—O3—H3109.5C16—C15—H15120.2
C14—O4—C2118.06 (12)C14—C15—H15120.2
O1—C1—C11119.60 (13)C15—C16—C11121.91 (15)
O1—C1—C21118.44 (14)C15—C16—H16119.0
C11—C1—C21121.95 (12)C11—C16—H16119.0
O4—C2—H2A109.5C26—C21—C22118.02 (13)
O4—C2—H2B109.5C26—C21—C1122.29 (15)
H2A—C2—H2B109.5C22—C21—C1119.48 (13)
O4—C2—H2C109.5O3—C22—C23116.15 (15)
H2A—C2—H2C109.5O3—C22—C21123.81 (13)
H2B—C2—H2C109.5C23—C22—C21120.04 (14)
C12—C11—C16117.06 (14)C24—C23—C22120.20 (17)
C12—C11—C1119.94 (12)C24—C23—H23119.9
C16—C11—C1122.95 (14)C22—C23—H23119.9
O2—C12—C13116.03 (13)C23—C24—C25120.74 (15)
O2—C12—C11122.64 (13)C23—C24—H24119.6
C13—C12—C11121.33 (13)C25—C24—H24119.6
C14—C13—C12119.32 (14)C26—C25—C24119.38 (15)
C14—C13—H13120.3C26—C25—H25120.3
C12—C13—H13120.3C24—C25—H25120.3
O4—C14—C13124.52 (14)C25—C26—C21121.54 (16)
O4—C14—C15114.82 (13)C25—C26—H26119.2
C13—C14—C15120.64 (15)C21—C26—H26119.2
O1—C1—C11—C1220.0 (2)C12—C11—C16—C152.8 (2)
C21—C1—C11—C12159.02 (14)C1—C11—C16—C15179.82 (15)
O1—C1—C11—C16157.31 (16)O1—C1—C21—C26152.15 (16)
C21—C1—C11—C1623.7 (2)C11—C1—C21—C2626.9 (2)
C16—C11—C12—O2177.13 (15)O1—C1—C21—C2222.6 (2)
C1—C11—C12—O20.3 (2)C11—C1—C21—C22158.41 (14)
C16—C11—C12—C133.7 (2)C26—C21—C22—O3177.31 (15)
C1—C11—C12—C13178.86 (14)C1—C21—C22—O32.4 (2)
O2—C12—C13—C14178.84 (15)C26—C21—C22—C233.2 (2)
C11—C12—C13—C141.9 (2)C1—C21—C22—C23178.13 (14)
C2—O4—C14—C134.9 (2)O3—C22—C23—C24178.06 (15)
C2—O4—C14—C15173.44 (16)C21—C22—C23—C242.4 (2)
C12—C13—C14—O4179.11 (14)C22—C23—C24—C250.1 (3)
C12—C13—C14—C150.9 (2)C23—C24—C25—C261.8 (3)
O4—C14—C15—C16179.84 (15)C24—C25—C26—C210.9 (2)
C13—C14—C15—C161.8 (3)C22—C21—C26—C251.6 (2)
C14—C15—C16—C110.1 (3)C1—C21—C26—C25176.35 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.841.882.6058 (17)144
O3—H3···O10.841.912.6267 (17)142
O3—H3···O4i0.842.502.9306 (15)113
C15—H15···O1ii0.952.573.3297 (18)137
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H12O4
Mr244.24
Crystal system, space groupOrthorhombic, P212121
Temperature (K)200
a, b, c (Å)4.8582 (2), 14.0236 (5), 16.8636 (5)
V3)1148.91 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.48 × 0.14 × 0.05
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6314, 1683, 1484
Rint0.021
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.083, 1.07
No. of reflections1683
No. of parameters166
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.17

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.841.882.6058 (17)144
O3—H3···O10.841.912.6267 (17)142
O3—H3···O4i0.842.502.9306 (15)113
C15—H15···O1ii0.952.573.3297 (18)137
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank Mrs Angelika Obermeyer for helpful discussions.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBernstein, J., Ellern, A. & Henck, J.-O. (2002). Private communication (CCDC 118986, refcode BPHNO11). CCDC, Union Road, Cambridge, England.  Google Scholar
First citationBetz, R., Gerber, T. & Schalekamp, H. (2011). Acta Cryst. E67, o1897.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFleischer, E. B., Sung, N. & Hawkinson, S. (1968). J. Phys. Chem. 72, 4311–4312.  CSD CrossRef CAS Web of Science Google Scholar
First citationGade, L. H. (1998). Koordinationschemie, 1st ed. Weinheim: Wiley–VCH.  Google Scholar
First citationKutzke, H., Klapper, H., Hammond, R. B. & Roberts, K. J. (2000). Acta Cryst. B56, 486–496.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLobanova, G. M. (1968). Kristallografiya, 13, 984–986.  CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMoncol, J. & Coppens, P. (2004). Private communication (CCDC 245188, refcode BPHNO12). CCDC, Union Road, Cambridge, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds