organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Phenyl­isatin

aEastman Kodak Company, Kodak Research Laboratories, Rochester, NY 14650-2106, USA
*Correspondence e-mail: manju.rajeswaran@kodak.com

(Received 29 April 2011; accepted 7 July 2011; online 13 July 2011)

In the title compound, C14H9NO2, the phenyl ring makes a dihedral angle of 50.59 (5)° with the mean plane of the isatin fragment. In the crystal, mol­ecules are linked through weak inter­molecular C—H⋯O hydrogen bonds. The crystal structure also exhibits two slipped ππ inter­actions between the benzene rings of neighbouring mol­ecules [centroid–centroid distance = 3.968 (3) Å, inter­planar distance = 3.484 (3) Å and slippage = 1.899 (3) Å], and between the phenyl rings of neighbouring mol­ecules [centroid–centroid distance = 3.968 (3) Å, inter­planar distance = 3.638 (3) Å and slippage = 1.584 (3) Å].

Related literature

For the pharmacological properties of isatin derivatives, see: Prakash et al. (2010[Prakash, C. R., Raja, S. & Saravanan, G. (2010). Int J. Pharm. Pharm. Sci. 2, 177-181.]). For C—C bond lengths in dikotone moieties, see: Rathna & Chandrasekhar, (1991[Rathna, A. & Chandrasekhar, J. (1991). J. Chem. Soc. Perkins Trans. 2, pp. 1661-1666.]).

[Scheme 1]

Experimental

Crystal data
  • C14H9NO2

  • Mr = 223.22

  • Orthorhombic, P 21 21 21

  • a = 3.9677 (1) Å

  • b = 13.3259 (4) Å

  • c = 20.3397 (7) Å

  • V = 1075.42 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.37 × 0.30 × 0.15 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 7556 measured reflections

  • 1462 independent reflections

  • 1085 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.081

  • S = 1.06

  • 1462 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O2i 0.93 2.58 3.297 (3) 134
C7—H7⋯O1ii 0.93 2.52 3.262 (2) 137
C11—H11⋯O2iii 0.93 2.58 3.407 (3) 149
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL, Mercury (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.])'; software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Isatin is a commercially available indole derivative. Isatin derivatives are well known for their pharmacological properties such as anticonvulsant activity (Prakash et al., 2010). We report herein the crystal structure of the title compound.

In the title compound (Fig. 1), the isatin unit is essentially planar, with a mean deviation of 0.004 (2) Å from the least–squares plane defined by the nine constituent atoms. The phenyl ring makes a dihedral angle of 50.59 (5)° with the mean plane of the isatin fragment. The observed C—C bond length of 1.547 (3) Å in diketo moiety is slightly longer than normal C—C bond length (Rathna & Chandrasekhar, 1991). The crystal packing (Fig. 2) is stabilized by three weak intermolecular C—H···O hydrogen bonds; the first one between a benzene H atom and the O atom of the carbonyl unit (Table 1; C4—H4···O2i), the second one between a benzene H atom and the O atom of the carbonyl unit (Table 1; C7—H7···O1ii), and the third one between a phenyl H atom and the O atom of the carbonyl unit (Table 1; C11—H11···O2iii).

The crystal packing (Fig. 3) is further stabilized by two weak slipped π···π interactions (Fig. 4); the first one between the benzene rings of neighbouring molecules, with a Cg1···Cg1i distance of 3.968 (3) Å and an interplanar distance of 3.484 (3) Å resulting in a slippage of 1.899 (3) Å (Cg1 is the centroid of the C3–C8 benzene ring), and the second one between the phenyl rings of neighbouring molecules, with a Cg2···Cg2idistance of 3.968 (3) Å and an interplanar distance of 3.638 (3) Å resulting in a slippage of 1.584 (3) Å (Cg2 is the centroid of the C9–C14 phenyl ring)

Related literature top

For the pharmacological properties of isatin derivatives, see: Prakash et al. (2010). For C—C bond lengths in dikotone moieties, see: Rathna & Chandrasekhar, (1991).

Experimental top

The title compound, 1–phenylisatin, was purchased from Aldrich Chemical Co.. Single crystals suitable for X—ray diffraction were obtained by sublimation under reduced pressure.

Refinement top

All the Friedel pairs were merged. All H–atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93Å, Uiso=1.2Ueq (C) for aromatic 0.97Å, Uiso = 1.2Ueq (C) for CH2 atoms.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008), Mercury (Allen et al., 2004) and DIAMOND (Brandenburg, 1998)'; software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. Packing in title compound showing C—H···O interactions. [Symmetry codes: (i) x + 1/2, - y + 1/2, - z + 2; (ii) - x + 1, y - 1/2, - z + 3/2; (iii) - x, y - 1/2, - z + 3/2; (iv) x - 1/2, - y + 1/2, - z + 2; (v) - x + 1, y + 1/2, - z + 3/2; (vi) - x, y + 1/2, - z + 3/2.]
[Figure 3] Fig. 3. A perspective view of the stacking of title compound in the unit cell viewed down the approximate a axial direction.
[Figure 4] Fig. 4. A view of the π···π interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) x + 1, y, z; (ii) x - 1, y z.]
1-phenylindole-2,3-dione top
Crystal data top
C14H9NO2F(000) = 464
Mr = 223.22Dx = 1.379 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4093 reflections
a = 3.9677 (1) Åθ = 1.0–27.5°
b = 13.3259 (4) ŵ = 0.09 mm1
c = 20.3397 (7) ÅT = 293 K
V = 1075.42 (6) Å3Rods, orange
Z = 40.37 × 0.30 × 0.15 mm
Data collection top
Nonius KappaCCD
diffractometer
1085 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.051
Graphite monochromatorθmax = 27.4°, θmin = 4.3°
Detector resolution: 9 pixels mm-1h = 54
ϕ and ω scansk = 1517
7556 measured reflectionsl = 2625
1462 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0318P)2 + 0.1048P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1462 reflectionsΔρmax = 0.16 e Å3
155 parametersΔρmin = 0.12 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.017 (5)
Crystal data top
C14H9NO2V = 1075.42 (6) Å3
Mr = 223.22Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 3.9677 (1) ŵ = 0.09 mm1
b = 13.3259 (4) ÅT = 293 K
c = 20.3397 (7) Å0.37 × 0.30 × 0.15 mm
Data collection top
Nonius KappaCCD
diffractometer
1085 reflections with I > 2σ(I)
7556 measured reflectionsRint = 0.051
1462 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 1.06Δρmax = 0.16 e Å3
1462 reflectionsΔρmin = 0.12 e Å3
155 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3503 (5)0.20706 (10)0.76634 (7)0.0522 (4)
O10.0729 (4)0.36020 (10)0.75768 (7)0.0685 (4)
O20.0940 (5)0.34979 (11)0.90098 (7)0.0861 (6)
C10.1973 (6)0.29305 (13)0.78955 (9)0.0544 (5)
C20.2117 (6)0.28662 (15)0.86534 (9)0.0589 (6)
C30.3830 (6)0.19284 (13)0.87981 (9)0.0550 (5)
C40.4654 (6)0.14811 (16)0.93889 (10)0.0670 (6)
H40.40990.17860.97860.080*
C50.6316 (7)0.05730 (16)0.93787 (11)0.0714 (7)
H50.68910.02580.97710.086*
C60.7124 (7)0.01328 (16)0.87866 (11)0.0672 (6)
H60.82640.04770.87890.081*
C70.6296 (6)0.05666 (13)0.81841 (10)0.0572 (5)
H70.68490.02580.77880.069*
C80.4628 (5)0.14699 (13)0.82012 (8)0.0497 (5)
C90.3944 (5)0.18304 (13)0.69803 (8)0.0502 (5)
C100.2965 (6)0.09053 (14)0.67389 (10)0.0591 (6)
H100.20210.04280.70170.071*
C110.3406 (7)0.06987 (17)0.60815 (10)0.0697 (6)
H110.27960.00740.59160.084*
C120.4738 (7)0.14081 (19)0.56704 (11)0.0746 (7)
H120.50120.12640.52260.090*
C130.5670 (7)0.23267 (17)0.59071 (10)0.0706 (7)
H130.65570.28060.56230.085*
C140.5300 (6)0.25464 (15)0.65666 (10)0.0580 (6)
H140.59560.31680.67300.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0648 (11)0.0426 (8)0.0491 (8)0.0002 (9)0.0042 (8)0.0007 (7)
O10.0824 (11)0.0514 (7)0.0717 (9)0.0092 (9)0.0031 (9)0.0038 (7)
O20.1197 (16)0.0691 (9)0.0694 (9)0.0189 (12)0.0108 (11)0.0142 (8)
C10.0609 (13)0.0437 (9)0.0585 (11)0.0030 (10)0.0017 (10)0.0003 (9)
C20.0685 (15)0.0513 (10)0.0570 (11)0.0023 (12)0.0054 (11)0.0071 (9)
C30.0624 (13)0.0509 (10)0.0516 (10)0.0062 (11)0.0002 (11)0.0008 (9)
C40.0776 (17)0.0688 (12)0.0547 (12)0.0082 (13)0.0035 (11)0.0005 (10)
C50.0798 (18)0.0711 (13)0.0632 (14)0.0008 (15)0.0110 (13)0.0132 (11)
C60.0685 (16)0.0564 (11)0.0767 (14)0.0005 (12)0.0096 (13)0.0088 (11)
C70.0619 (13)0.0499 (10)0.0598 (12)0.0004 (11)0.0024 (12)0.0010 (9)
C80.0538 (12)0.0448 (9)0.0507 (10)0.0079 (10)0.0012 (9)0.0028 (8)
C90.0509 (12)0.0521 (10)0.0477 (10)0.0018 (10)0.0011 (9)0.0003 (8)
C100.0625 (14)0.0527 (11)0.0622 (13)0.0027 (11)0.0032 (12)0.0012 (9)
C110.0782 (17)0.0662 (12)0.0646 (14)0.0101 (14)0.0076 (13)0.0139 (11)
C120.0856 (19)0.0907 (16)0.0475 (11)0.0272 (16)0.0009 (12)0.0046 (12)
C130.0742 (17)0.0805 (15)0.0571 (12)0.0090 (14)0.0097 (13)0.0159 (11)
C140.0598 (14)0.0561 (10)0.0581 (11)0.0023 (11)0.0022 (11)0.0069 (9)
Geometric parameters (Å, º) top
N1—C11.380 (2)C6—H60.9300
N1—C81.427 (2)C7—C81.374 (3)
N1—C91.436 (2)C7—H70.9300
O1—C11.210 (2)C9—C141.381 (3)
O2—C21.205 (2)C9—C101.383 (3)
C1—C21.545 (3)C10—C111.376 (3)
C2—C31.453 (3)C10—H100.9300
C3—C41.381 (3)C11—C121.368 (3)
C3—C81.395 (3)C11—H110.9300
C4—C51.378 (3)C12—C131.366 (3)
C4—H40.9300C12—H120.9300
C5—C61.377 (3)C13—C141.381 (3)
C5—H50.9300C13—H130.9300
C6—C71.394 (3)C14—H140.9300
C1—N1—C8109.94 (15)C6—C7—H7121.5
C1—N1—C9124.71 (15)C7—C8—C3120.98 (17)
C8—N1—C9125.34 (15)C7—C8—N1128.50 (16)
O1—C1—N1127.60 (18)C3—C8—N1110.52 (16)
O1—C1—C2126.19 (18)C14—C9—C10120.60 (17)
N1—C1—C2106.20 (16)C14—C9—N1118.86 (16)
O2—C2—C3131.34 (19)C10—C9—N1120.53 (17)
O2—C2—C1123.17 (19)C11—C10—C9119.18 (19)
C3—C2—C1105.49 (16)C11—C10—H10120.4
C4—C3—C8120.96 (19)C9—C10—H10120.4
C4—C3—C2131.19 (19)C12—C11—C10120.3 (2)
C8—C3—C2107.85 (16)C12—C11—H11119.8
C5—C4—C3118.6 (2)C10—C11—H11119.8
C5—C4—H4120.7C13—C12—C11120.5 (2)
C3—C4—H4120.7C13—C12—H12119.7
C6—C5—C4119.9 (2)C11—C12—H12119.7
C6—C5—H5120.1C12—C13—C14120.2 (2)
C4—C5—H5120.1C12—C13—H13119.9
C5—C6—C7122.5 (2)C14—C13—H13119.9
C5—C6—H6118.8C13—C14—C9119.12 (19)
C7—C6—H6118.8C13—C14—H14120.4
C8—C7—C6117.03 (19)C9—C14—H14120.4
C8—C7—H7121.5
C8—N1—C1—O1179.8 (2)C2—C3—C8—C7179.5 (2)
C9—N1—C1—O11.2 (3)C4—C3—C8—N1179.6 (2)
C8—N1—C1—C20.4 (2)C2—C3—C8—N10.0 (2)
C9—N1—C1—C2179.38 (19)C1—N1—C8—C7179.2 (2)
O1—C1—C2—O20.6 (4)C9—N1—C8—C70.3 (3)
N1—C1—C2—O2178.8 (2)C1—N1—C8—C30.3 (2)
O1—C1—C2—C3179.8 (2)C9—N1—C8—C3179.23 (19)
N1—C1—C2—C30.4 (2)C1—N1—C9—C1449.4 (3)
O2—C2—C3—C40.6 (4)C8—N1—C9—C14129.4 (2)
C1—C2—C3—C4179.8 (2)C1—N1—C9—C10129.4 (2)
O2—C2—C3—C8178.9 (3)C8—N1—C9—C1051.9 (3)
C1—C2—C3—C80.3 (2)C14—C9—C10—C111.0 (3)
C8—C3—C4—C50.6 (3)N1—C9—C10—C11179.7 (2)
C2—C3—C4—C5179.9 (2)C9—C10—C11—C121.2 (4)
C3—C4—C5—C60.1 (4)C10—C11—C12—C130.5 (4)
C4—C5—C6—C70.6 (4)C11—C12—C13—C140.5 (4)
C5—C6—C7—C80.3 (4)C12—C13—C14—C90.7 (4)
C6—C7—C8—C30.4 (3)C10—C9—C14—C130.0 (3)
C6—C7—C8—N1179.8 (2)N1—C9—C14—C13178.8 (2)
C4—C3—C8—C70.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.932.583.297 (3)134
C7—H7···O1ii0.932.523.262 (2)137
C11—H11···O2iii0.932.583.407 (3)149
Symmetry codes: (i) x+1/2, y+1/2, z+2; (ii) x+1, y1/2, z+3/2; (iii) x, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC14H9NO2
Mr223.22
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)3.9677 (1), 13.3259 (4), 20.3397 (7)
V3)1075.42 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.37 × 0.30 × 0.15
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7556, 1462, 1085
Rint0.051
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.081, 1.06
No. of reflections1462
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.12

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXTL (Sheldrick, 2008), Mercury (Allen et al., 2004) and DIAMOND (Brandenburg, 1998)', publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.932.583.297 (3)133.8
C7—H7···O1ii0.932.523.262 (2)137.1
C11—H11···O2iii0.932.583.407 (3)149.2
Symmetry codes: (i) x+1/2, y+1/2, z+2; (ii) x+1, y1/2, z+3/2; (iii) x, y1/2, z+3/2.
 

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPrakash, C. R., Raja, S. & Saravanan, G. (2010). Int J. Pharm. Pharm. Sci. 2, 177–181.  CAS Google Scholar
First citationRathna, A. & Chandrasekhar, J. (1991). J. Chem. Soc. Perkins Trans. 2, pp. 1661–1666.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds