organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-Methyl 2-chloro-4-di­cyclo­hexyl­amino-4-oxobut-2-enoate

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: wangwangzhaoyang@tom.com

(Received 11 May 2011; accepted 11 July 2011; online 16 July 2011)

In the title compound, C17H26ClNO3, both cyclo­hexyl rings have chair conformations. In the crystal, mol­ecules are linked by weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For the synthesis, see: Song et al. (2009[Song, X.-M., Wang, Z.-Y., Li, J.-X. & Fu, J.-H. (2009). Chin. J. Org. Chem. 11, 1804-1810.]). For the biological activity of 2(5H)-furan­ones, see: Lattmann et al. (2005[Lattmann, E., Dunn, S., Niamsanit, S. & Sattayasai, N. (2005). Bioorg. Med. Chem. Lett. 15, 919-921.]); Rowland et al. (2007[Rowland, S., Clark, P., Gordon, R., Mullen, A., Guay, J., Dufresne, L., Brideau, C., Cote, B., Ducharme, Y. & Mancini, J. (2007). Eur. J. Pharmacol. 560, 216-224.]); Kim et al. (2002[Kim, Y., Nam, N.-H., You, Y.-J. & Ahn, B.-Z. (2002). Bioorg. Med. Chem. Lett. 12, 719-722.]). For chemical, pharmaceutical and agrochemical applications of 3,4-amino-2(5H)-furanones, see: Kimura et al. (2000[Kimura, Y., Mizuno, T., Kawano, T., Okada, K. & Shimad, A. (2000). Phytochemistry, 53, 829-831.]); Tanoury et al. (2008[Tanoury, G. J., Chen, M. Z., Dong, Y., Forslund, R. E. & Magdziak, D. (2008). Org. Lett. 10, 185-188.]). For related structures, see: Lattmann et al. (1999[Lattmann, E., Billington, D. C. & Langley, C. A. (1999). Drug Des. Discov. 16, 243-250.], 2006[Lattmann, E., Sattayasai, N., Schwalbe, C. S., Niamsanit, S., Billington, D. C., Lattmann, P., Langley, C. A., Singh, H. & Dunn, S. (2006). Curr. Drug Discov. Technol. 3, 125-134.]).

[Scheme 1]

Experimental

Crystal data
  • C17H26ClNO3

  • Mr = 327.84

  • Monoclinic, P 21 /c

  • a = 8.8291 (19) Å

  • b = 10.533 (2) Å

  • c = 19.139 (4) Å

  • β = 92.955 (3)°

  • V = 1777.5 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 298 K

  • 0.32 × 0.22 × 0.20 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.931, Tmax = 0.956

  • 8635 measured reflections

  • 3886 independent reflections

  • 2457 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.160

  • S = 1.02

  • 3886 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17A⋯O1i 0.96 2.44 3.323 (4) 153
C9—H9⋯O2ii 0.93 2.50 3.389 (3) 160
Symmetry codes: (i) -x+2, -y+1, -z; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Molecules possessing 2(5H)-furanone moiety are useful heterocyclic compounds due to their valuable biological activities such as antibacterial, anti-inflammatory and antitumor (Lattmann et al., 2005; Rowland et al., 2007; Kim et al., 2002). The 5-alkoxy-3,4-dihalo-2(5H)-furanones being a kind of synthons are widely used in tandem Michael addition-elimination reactions (Song et al., 2009). The 4-amino-2(5H)-furanones exhibit an antibiotic activity against MRSA (Lattmann et al., 1999; Lattmann et al., 2006). Therefore, we are interested in the tandem Michael addition-elimination reaction of the synthon 3,4-dichloro-5-methoxyfuran-2(5H)-one with secondary amines in the present of potassium fluoride. However, we obtained an unanticipated product, (E)-methyl 2-chloro-4-(dicyclohexylamino)-4-oxobut-2-enoate, instead of the expected compound 3-chloro-4-(dicyclohexylamino)-5-methoxyfuran-2(5H)-one (Lattmann et al., 1999). Herein, we report the crystal structure of the title compound.

In the title compound (Fig. 1), the both cyclohexyl rings are in the chair form. The molecular packing (Fig. 2) is stabilized by weak intermolecular C—H···O hydrogen bonds; the first one between the H atom of the vinyl group and the O atom of the ester group (Table 1; C9—H9···O2ii), and a methyl H atom and the O atom of the amide group (Table 1; C17—H17A···O1i).

Related literature top

For the synthesis, see: Song et al. (2009). For the biological activity of 2(5H)-furanones, see: Lattmann et al. (2005); Rowland et al. (2007); Kim et al. (2002). For their antibiotic activity, see: Kimura et al. (2000); Tanoury et al. (2008). For related structures, see: Lattmann et al. (1999, 2006).

Experimental top

The precursor 3,4-dichloro-5-methoxyfuran-2(5H)-one was prepared according to the literature procedure (Song et al., 2009). The solution of dicyclohexylamine (2.736 g, 3.0 mL) in tetrahydrofuran (3.0 mL) was added to a stirred solution of 3,4-dichloro-5-methoxyfuran-(5H)-one (36.39 mg, 2.0 mmol) and potassium fluoride (34.85 mg, 6.0 mmol) in tetrahydrofuran (3.0 mL) under nitrogen atmosphere. After being stirred at room temperature for 24 h, the solvent was removed under reduced pressure. The residual solid was dissolved in dichloromethane and then the combined organic layer was concentrated under reduced pressure. The residue was purified by silica gel column chromatography with the gradient mixture of petroleum ether and ethyl acetate to give the title compound (yield 22.6%). Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in (insert proper solvent) at room temperature.

Refinement top

H atoms were positioned in calculated positions with C—H = 0.93–0.98 Å and were refined using a riding model, with Uiso(H) = 1.5Ueq(C) for methyl and 1.2Ueq(C) for the others.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labelling scheme. Ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C—H···O hydrogen bonds (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) - x + 2, - y + 1, - z; (ii) - x + 2, y + 1/2, - z + 1/2; (iii) - x + 2, y - 1/2, - z + 1/2.]
(E)-Methyl 2-chloro-4-dicyclohexylamino-4-oxobut-2-enoate top
Crystal data top
C17H26ClNO3F(000) = 704
Mr = 327.84Dx = 1.225 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2253 reflections
a = 8.8291 (19) Åθ = 2.2–23.5°
b = 10.533 (2) ŵ = 0.23 mm1
c = 19.139 (4) ÅT = 298 K
β = 92.955 (3)°Block, colourless
V = 1777.5 (6) Å30.32 × 0.22 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
3886 independent reflections
Radiation source: fine-focus sealed tube2457 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 10.0 pixels mm-1θmax = 27.0°, θmin = 2.1°
ϕ and ω scansh = 411
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1312
Tmin = 0.931, Tmax = 0.956l = 2424
8635 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.160 w = 1/[σ2(Fo2) + (0.070P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
3886 reflectionsΔρmax = 0.24 e Å3
201 parametersΔρmin = 0.28 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.015 (3)
Crystal data top
C17H26ClNO3V = 1777.5 (6) Å3
Mr = 327.84Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.8291 (19) ŵ = 0.23 mm1
b = 10.533 (2) ÅT = 298 K
c = 19.139 (4) Å0.32 × 0.22 × 0.20 mm
β = 92.955 (3)°
Data collection top
Bruker APEXII area-detector
diffractometer
3886 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2457 reflections with I > 2σ(I)
Tmin = 0.931, Tmax = 0.956Rint = 0.051
8635 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 1.02Δρmax = 0.24 e Å3
3886 reflectionsΔρmin = 0.28 e Å3
201 parameters
Special details top

Experimental. Data for (I): 1H NMR (400 MHz, CDCl3, TMS): 1.073-1.564 (12H, m, 6CH2), 1.681-2.436 (8H, m, 4CH2), 2.973-3.124 (1H, m, CH), 3.350-3.417 (1H, m, CH), 3.813 (3H, s, CH3), ESI-MS, m/z (%): Calcd for C17H27ClNO3+([M+H]+): 328.16(100.0), 330.16(32.6), found: 328.39(15.0), 330.43(5.0).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.02330 (7)0.47301 (6)0.29004 (3)0.0574 (2)
N10.7284 (2)0.73071 (19)0.10932 (8)0.0427 (5)
C10.6049 (2)0.7104 (2)0.15716 (10)0.0452 (6)
H10.64830.66280.19740.054*
C60.4768 (3)0.6305 (3)0.12475 (14)0.0623 (7)
H6A0.43380.67280.08330.075*
H6B0.51670.54920.11050.075*
C30.4221 (3)0.8114 (3)0.23589 (14)0.0711 (8)
H3A0.46560.76960.27740.085*
H3B0.38150.89240.25010.085*
C20.5460 (3)0.8343 (3)0.18519 (12)0.0588 (7)
H2A0.50620.88610.14650.071*
H2B0.62880.88040.20880.071*
C40.2953 (3)0.7311 (3)0.20438 (14)0.0662 (8)
H4A0.22380.71260.23980.079*
H4B0.24210.77810.16710.079*
C50.3537 (3)0.6090 (3)0.17577 (18)0.0805 (9)
H5A0.27040.56330.15230.097*
H5B0.39370.55680.21420.097*
C90.9064 (2)0.6357 (2)0.19601 (10)0.0407 (5)
H90.90200.69070.23380.049*
C100.9445 (2)0.5170 (2)0.20899 (10)0.0414 (5)
C80.8696 (2)0.6886 (2)0.12389 (10)0.0431 (5)
C70.6909 (3)0.7947 (2)0.04169 (10)0.0469 (6)
H70.58430.82020.04260.056*
C110.9352 (3)0.4105 (2)0.15775 (11)0.0519 (6)
C120.7807 (3)0.9153 (3)0.03266 (13)0.0625 (7)
H12A0.88780.89520.03200.075*
H12B0.76620.97160.07180.075*
C160.7013 (3)0.7045 (3)0.02024 (11)0.0617 (7)
H16A0.63690.63120.01400.074*
H16B0.80490.67520.02330.074*
C130.7293 (4)0.9818 (3)0.03560 (14)0.0788 (10)
H13A0.62541.01040.03270.095*
H13B0.79241.05570.04230.095*
C150.6504 (4)0.7749 (4)0.08734 (13)0.0845 (11)
H15A0.66120.71900.12710.101*
H15B0.54390.79670.08550.101*
C140.7399 (4)0.8930 (4)0.09763 (14)0.0881 (12)
H14A0.70180.93570.13990.106*
H14B0.84520.87100.10330.106*
O10.97348 (18)0.69654 (19)0.08431 (8)0.0573 (5)
O30.8279 (2)0.43037 (19)0.10887 (9)0.0648 (5)
O21.0144 (3)0.3193 (2)0.16138 (10)0.0985 (9)
C170.8142 (4)0.3387 (4)0.05276 (16)0.0938 (11)
H17A0.89390.35200.02130.141*
H17B0.71770.34870.02790.141*
H17C0.82180.25450.07180.141*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0631 (4)0.0582 (4)0.0499 (3)0.0121 (3)0.0066 (3)0.0093 (2)
N10.0360 (10)0.0521 (12)0.0399 (9)0.0072 (8)0.0010 (7)0.0075 (7)
C10.0338 (11)0.0604 (16)0.0417 (11)0.0065 (10)0.0025 (8)0.0121 (10)
C60.0532 (15)0.0544 (18)0.0806 (17)0.0074 (12)0.0148 (13)0.0088 (13)
C30.0494 (15)0.105 (3)0.0594 (14)0.0008 (15)0.0108 (12)0.0137 (15)
C20.0438 (13)0.0717 (19)0.0617 (14)0.0059 (12)0.0110 (11)0.0175 (12)
C40.0413 (14)0.084 (2)0.0744 (17)0.0032 (13)0.0129 (12)0.0066 (14)
C50.0538 (17)0.071 (2)0.118 (2)0.0079 (15)0.0236 (16)0.0114 (17)
C90.0358 (11)0.0439 (14)0.0422 (10)0.0024 (9)0.0014 (8)0.0004 (9)
C100.0362 (11)0.0462 (14)0.0417 (10)0.0056 (9)0.0023 (8)0.0038 (9)
C80.0410 (12)0.0448 (14)0.0434 (11)0.0036 (10)0.0004 (9)0.0023 (9)
C70.0440 (12)0.0558 (15)0.0408 (10)0.0090 (11)0.0004 (9)0.0082 (9)
C110.0612 (15)0.0469 (15)0.0486 (12)0.0088 (12)0.0128 (11)0.0018 (10)
C120.0655 (17)0.0614 (19)0.0607 (14)0.0049 (14)0.0044 (12)0.0136 (12)
C160.0622 (16)0.078 (2)0.0440 (12)0.0043 (14)0.0025 (11)0.0009 (11)
C130.081 (2)0.079 (2)0.0781 (19)0.0246 (17)0.0235 (16)0.0392 (16)
C150.080 (2)0.129 (3)0.0432 (13)0.022 (2)0.0034 (13)0.0081 (15)
C140.092 (2)0.119 (3)0.0547 (15)0.040 (2)0.0198 (15)0.0367 (17)
O10.0416 (9)0.0774 (14)0.0534 (9)0.0111 (8)0.0070 (7)0.0084 (8)
O30.0602 (11)0.0674 (13)0.0654 (10)0.0056 (9)0.0101 (9)0.0238 (9)
O20.150 (2)0.0773 (17)0.0678 (12)0.0605 (16)0.0023 (13)0.0091 (10)
C170.107 (3)0.096 (3)0.0781 (19)0.003 (2)0.0031 (18)0.0433 (18)
Geometric parameters (Å, º) top
Cl1—C101.730 (2)C8—O11.222 (2)
N1—C81.339 (3)C7—C121.512 (4)
N1—C11.475 (3)C7—C161.525 (3)
N1—C71.481 (3)C7—H70.9800
C1—C21.514 (4)C11—O21.189 (3)
C1—C61.517 (3)C11—O31.313 (3)
C1—H10.9800C12—C131.530 (3)
C6—C51.515 (3)C12—H12A0.9700
C6—H6A0.9700C12—H12B0.9700
C6—H6B0.9700C16—C151.530 (4)
C3—C41.504 (4)C16—H16A0.9700
C3—C21.518 (3)C16—H16B0.9700
C3—H3A0.9700C13—C141.518 (5)
C3—H3B0.9700C13—H13A0.9700
C2—H2A0.9700C13—H13B0.9700
C2—H2B0.9700C15—C141.493 (5)
C4—C51.500 (4)C15—H15A0.9700
C4—H4A0.9700C15—H15B0.9700
C4—H4B0.9700C14—H14A0.9700
C5—H5A0.9700C14—H14B0.9700
C5—H5B0.9700O3—C171.444 (3)
C9—C101.315 (3)C17—H17A0.9600
C9—C81.508 (3)C17—H17B0.9600
C9—H90.9300C17—H17C0.9600
C10—C111.489 (3)
C8—N1—C1122.19 (17)N1—C8—C9117.89 (18)
C8—N1—C7119.78 (17)N1—C7—C12112.77 (19)
C1—N1—C7117.97 (16)N1—C7—C16112.1 (2)
N1—C1—C2111.9 (2)C12—C7—C16112.4 (2)
N1—C1—C6112.71 (18)N1—C7—H7106.3
C2—C1—C6111.2 (2)C12—C7—H7106.3
N1—C1—H1106.9C16—C7—H7106.3
C2—C1—H1106.9O2—C11—O3124.8 (2)
C6—C1—H1106.9O2—C11—C10123.9 (2)
C5—C6—C1111.3 (2)O3—C11—C10111.3 (2)
C5—C6—H6A109.4C7—C12—C13110.4 (2)
C1—C6—H6A109.4C7—C12—H12A109.6
C5—C6—H6B109.4C13—C12—H12A109.6
C1—C6—H6B109.4C7—C12—H12B109.6
H6A—C6—H6B108.0C13—C12—H12B109.6
C4—C3—C2112.3 (2)H12A—C12—H12B108.1
C4—C3—H3A109.2C7—C16—C15108.9 (2)
C2—C3—H3A109.2C7—C16—H16A109.9
C4—C3—H3B109.2C15—C16—H16A109.9
C2—C3—H3B109.2C7—C16—H16B109.9
H3A—C3—H3B107.9C15—C16—H16B109.9
C1—C2—C3111.2 (2)H16A—C16—H16B108.3
C1—C2—H2A109.4C14—C13—C12111.0 (2)
C3—C2—H2A109.4C14—C13—H13A109.4
C1—C2—H2B109.4C12—C13—H13A109.4
C3—C2—H2B109.4C14—C13—H13B109.4
H2A—C2—H2B108.0C12—C13—H13B109.4
C5—C4—C3111.5 (2)H13A—C13—H13B108.0
C5—C4—H4A109.3C14—C15—C16112.3 (3)
C3—C4—H4A109.3C14—C15—H15A109.1
C5—C4—H4B109.3C16—C15—H15A109.1
C3—C4—H4B109.3C14—C15—H15B109.1
H4A—C4—H4B108.0C16—C15—H15B109.1
C4—C5—C6112.2 (3)H15A—C15—H15B107.9
C4—C5—H5A109.2C15—C14—C13110.9 (2)
C6—C5—H5A109.2C15—C14—H14A109.5
C4—C5—H5B109.2C13—C14—H14A109.5
C6—C5—H5B109.2C15—C14—H14B109.5
H5A—C5—H5B107.9C13—C14—H14B109.5
C10—C9—C8124.41 (19)H14A—C14—H14B108.1
C10—C9—H9117.8C11—O3—C17116.9 (2)
C8—C9—H9117.8O3—C17—H17A109.5
C9—C10—C11125.92 (19)O3—C17—H17B109.5
C9—C10—Cl1120.73 (17)H17A—C17—H17B109.5
C11—C10—Cl1113.26 (17)O3—C17—H17C109.5
O1—C8—N1124.64 (19)H17A—C17—H17C109.5
O1—C8—C9117.33 (19)H17B—C17—H17C109.5
C8—N1—C1—C2116.2 (2)C10—C9—C8—N1115.7 (3)
C7—N1—C1—C266.8 (3)C8—N1—C7—C1261.9 (3)
C8—N1—C1—C6117.6 (2)C1—N1—C7—C12121.0 (2)
C7—N1—C1—C659.4 (3)C8—N1—C7—C1666.2 (3)
N1—C1—C6—C5178.7 (2)C1—N1—C7—C16110.9 (2)
C2—C1—C6—C554.7 (3)C9—C10—C11—O2152.5 (3)
N1—C1—C2—C3178.38 (19)Cl1—C10—C11—O223.9 (3)
C6—C1—C2—C354.6 (3)C9—C10—C11—O328.0 (3)
C4—C3—C2—C154.5 (3)Cl1—C10—C11—O3155.65 (17)
C2—C3—C4—C553.9 (4)N1—C7—C12—C13176.0 (2)
C3—C4—C5—C653.9 (3)C16—C7—C12—C1356.0 (3)
C1—C6—C5—C454.5 (3)N1—C7—C16—C15176.1 (2)
C8—C9—C10—C1110.0 (4)C12—C7—C16—C1555.7 (3)
C8—C9—C10—Cl1166.08 (16)C7—C12—C13—C1455.2 (3)
C1—N1—C8—O1175.6 (2)C7—C16—C15—C1456.3 (3)
C7—N1—C8—O11.4 (4)C16—C15—C14—C1357.4 (3)
C1—N1—C8—C98.9 (3)C12—C13—C14—C1556.2 (4)
C7—N1—C8—C9174.2 (2)O2—C11—O3—C175.0 (4)
C10—C9—C8—O168.4 (3)C10—C11—O3—C17175.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17A···O1i0.962.443.323 (4)153
C9—H9···O2ii0.932.503.389 (3)160
Symmetry codes: (i) x+2, y+1, z; (ii) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H26ClNO3
Mr327.84
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)8.8291 (19), 10.533 (2), 19.139 (4)
β (°) 92.955 (3)
V3)1777.5 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.32 × 0.22 × 0.20
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.931, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
8635, 3886, 2457
Rint0.051
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.160, 1.02
No. of reflections3886
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.28

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17A···O1i0.962.443.323 (4)152.6
C9—H9···O2ii0.932.503.389 (3)160.0
Symmetry codes: (i) x+2, y+1, z; (ii) x+2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 20772035) and the Natural Science Foundation of Guangdong Province, China (grant No. 5300082).

References

First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKim, Y., Nam, N.-H., You, Y.-J. & Ahn, B.-Z. (2002). Bioorg. Med. Chem. Lett. 12, 719–722.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKimura, Y., Mizuno, T., Kawano, T., Okada, K. & Shimad, A. (2000). Phytochemistry, 53, 829–831.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLattmann, E., Billington, D. C. & Langley, C. A. (1999). Drug Des. Discov. 16, 243–250.  PubMed CAS Google Scholar
First citationLattmann, E., Dunn, S., Niamsanit, S. & Sattayasai, N. (2005). Bioorg. Med. Chem. Lett. 15, 919–921.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLattmann, E., Sattayasai, N., Schwalbe, C. S., Niamsanit, S., Billington, D. C., Lattmann, P., Langley, C. A., Singh, H. & Dunn, S. (2006). Curr. Drug Discov. Technol. 3, 125–134.  CSD CrossRef PubMed CAS Google Scholar
First citationRowland, S., Clark, P., Gordon, R., Mullen, A., Guay, J., Dufresne, L., Brideau, C., Cote, B., Ducharme, Y. & Mancini, J. (2007). Eur. J. Pharmacol. 560, 216–224.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, X.-M., Wang, Z.-Y., Li, J.-X. & Fu, J.-H. (2009). Chin. J. Org. Chem. 11, 1804–1810.  Google Scholar
First citationTanoury, G. J., Chen, M. Z., Dong, Y., Forslund, R. E. & Magdziak, D. (2008). Org. Lett. 10, 185–188.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds