organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o2057-o2058

2-Amino-3-carb­­oxy­pyridinium nitrate

aLaboratoire de Chimie Appliquée et Technologie des Matériaux LCATM, Université Larbi Ben M'hidi, 04000 Oum El Bouaghi, Algeria, bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Faculté des Sciences Exactes, Université Mentouri Constantine 25000, Algeria., and cCentre de Difractométrie X, UMR 6226 CNRS Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du Général Leclerc, 35042 Rennes, France
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

(Received 7 July 2011; accepted 12 July 2011; online 16 July 2011)

In the crystal structure of the title compound, C6H7N2O2+·NO3, the cations are linked via C—H⋯O hydrogen bonds, forming infinite chains running along the b axis. These chains are further linked through N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds to the nitrate anions, forming well-separated infinite planar layers parallel to (001).

Related literature

For hybrid compounds based on nicotinic acid, see: Athimoolam et al. (2005[Athimoolam, S., Anitha, K. & Rajaram, R. K. (2005). Acta Cryst. E61, o2553-o2555.]); Athimoolam & Rajaram (2005a[Athimoolam, S. & Rajaram, R. K. (2005a). Acta Cryst. E61, o2674-o2676.],b[Athimoolam, S. & Rajaram, R. K. (2005b). Acta Cryst. E61, o2764-o2767.]); Chen (2009[Chen, L.-Z. (2009). Acta Cryst. E65, o2350.]); Slouf (2001[Slouf, M. (2001). Acta Cryst. E57, o61-o62.]); Ye et al. (2010[Ye, H.-Y., Chen, L.-Z. & Xiong, R.-G. (2010). Acta Cryst. B66, 387-395.]). For hybrid compounds based on amino-nicotinic acid derivatives, see: Akriche & Rzaigui (2007[Akriche, S. & Rzaigui, M. (2007). Acta Cryst. E63, o3460.]); Berrah et al. (2011a[Berrah, F., Ouakkaf, A., Bouacida, S. & Roisnel, T. (2011a). Acta Cryst. E67, o953-o954.]); Giantsidis & Turnbull (2000[Giantsidis, J. & Turnbull, M. M. (2000). Acta Cryst. C56, 334-335.]). For related nitrate compounds, see: Berrah et al. (2011b[Berrah, F., Ouakkaf, A., Bouacida, S. & Roisnel, T. (2011b). Acta Cryst. E67, o525-o526.]); Jebas et al. (2006[Jebas, S. R., Balasubramanian, T. & Light, M. E. (2006). Acta Cryst. E62, o3481-o3482.]).

[Scheme 1]

Experimental

Crystal data
  • C6H7N2O2+·NO3

  • Mr = 201.15

  • Tetragonal, I 41 c d

  • a = 16.122 (2) Å

  • c = 12.446 (3) Å

  • V = 3235.0 (11) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 150 K

  • 0.39 × 0.07 × 0.05 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]) Tmin = 0.476, Tmax = 0.993

  • 5438 measured reflections

  • 1509 independent reflections

  • 921 reflections with I > 2σ(I)

  • Rint = 0.112

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.158

  • S = 0.97

  • 1509 reflections

  • 128 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3i 0.86 1.97 2.803 (4) 162
N3—H3A⋯O2i 0.86 2.18 3.017 (4) 165
N3—H3A⋯O2ii 0.86 2.43 2.967 (4) 121
N3—H3B⋯O4 0.86 2.10 2.716 (5) 128
O5—H51⋯O3iii 0.82 1.85 2.670 (4) 180
C4—H4⋯O1iv 0.93 2.42 3.197 (6) 141
C5—H5⋯O4v 0.93 2.30 3.216 (6) 167
Symmetry codes: (i) [y+{\script{1\over 2}}, -x, z-{\script{1\over 4}}]; (ii) [-y+{\script{1\over 2}}, x, z-{\script{1\over 4}}]; (iii) [-y, -x+{\script{1\over 2}}, z-{\script{1\over 4}}]; (iv) [y, x-{\script{1\over 2}}, z-{\script{1\over 4}}]; (v) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Crystal structures of hybrid compounds based on nicotinic acid or its amino derivatives and inorganic acids have been reported (Athimoolam et al., 2005; Athimoolam & Rajaram, 2005a, b; Chen, 2009; Giantsidis & Turnbull, 2000; Jebas et al., 2006; Slouf, 2001; Ye et al., 2010) showing interesting structural diversity governed mainly by hydrogen bonds. Anion substitution seems to have an important influence on hydrogen bound patterns. In attempt to elucidate this influence and as part of our search for new hybrid compounds based on protonated N-hyterocycle, we report in this paper the new structure of 2-aminonicotinium nitrate; its homologues obtained with phosphate and sulfate anions have been described previously (Akriche & Rzaigui, 2007; Berrah et al., 2011a).

The asymmetric unit of the title compound (Fig. 1) contains one cation and one anion with geometry similar to that observed in similar compounds (Akriche & Rzaigui, 2007; Berrah et al., 2011a, b; Jebas et al., 2006). However in this structure, cations do not form dimers via N–H···O hydrogen bonds as observed in the structures obtained with phosphate and sulfate anions but they are linked to each other via C–H···O hydrogen bonds to form infinite chains running along the b axis (Table 1 & Fig. 2,). These chains are further linked, through N–H···O, O–H···O and C–H···O hydrogen contacts, to nitrate anions to form well separated infinite planar layers parallel to (001) (Fig. 3). A such two-dimensional network have been already observed in compounds including nicotinium entities (Giantsidis & Turnbull, 2000; Slouf, 2001; Ye et al., 2010).

Related literature top

For hybrid compounds based on nicotinic acid, see: Athimoolam et al. (2005); Athimoolam & Rajaram (2005a,b); Chen (2009); Slouf (2001); Ye et al. (2010). For hybrid compounds based on amino-nicotinic acid derivatives, see: Akriche & Rzaigui (2007); Berrah et al. (2011a); Giantsidis & Turnbull (2000). For related nitrate compounds, see: Berrah et al. (2011b); Jebas et al. (2006).

Experimental top

The title compound was synthesized by reacting 3-amino-pyridine-2-carboxylic acid (0.138 mg, 1 mmol) with nitriic acid (1 mmol)in a solution of equal volume of H2O and CH3OH. Slow evaporation leads to well crystallized colourless needles.

Refinement top

All the Friedel pairs were merged. All non-H atoms were refined with anisotropic atomic displacement parameters. The remaining H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent atoms (C, N or O) with C–H = 0.93 Å, O–H = 0.82 Å and N–H = 0.86 Å with Uiso(H) = 1.2 Ueq(C or N) and Uiso(H = 1.5 Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with the atomic labelling scheme. Displacement are drawn at the 50% probability level.
[Figure 2] Fig. 2. A part of crystal packing showing cationic infinite chains linked to nitrate anions via [N–H···O, O–H···O and C–H···O] hydrogen contacts. Hydrogen bonds are shown as dashed lines. [Symmetry codes: (i) y + 1/2, -x, z - 1/4; (ii) -y + 1/2, x, z - 1/4; (iii) -y, -x + 1/2, z - 1/4; (iv) y, x - 1/2, z - 1/4; (v) -x + 1/2, y - 1/2, z.]
[Figure 3] Fig. 3. Layered packing of the structure viewed down the b axis.
2-Amino-3-carboxypyridinium nitrate top
Crystal data top
C6H7N2O2+·NO3Dx = 1.652 Mg m3
Mr = 201.15Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41cdCell parameters from 491 reflections
Hall symbol: I 4bw -2cθ = 3.3–20.3°
a = 16.122 (2) ŵ = 0.15 mm1
c = 12.446 (3) ÅT = 150 K
V = 3235.0 (11) Å3Needle, colourless
Z = 160.39 × 0.07 × 0.05 mm
F(000) = 1664
Data collection top
Bruker APEXII
diffractometer
921 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.112
CCD rotation images, thin slices scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 1620
Tmin = 0.476, Tmax = 0.993k = 1320
5438 measured reflectionsl = 1610
1509 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: difference Fourier map
wR(F2) = 0.158H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.076P)2]
where P = (Fo2 + 2Fc2)/3
1509 reflections(Δ/σ)max < 0.001
128 parametersΔρmax = 0.41 e Å3
1 restraintΔρmin = 0.28 e Å3
Crystal data top
C6H7N2O2+·NO3Z = 16
Mr = 201.15Mo Kα radiation
Tetragonal, I41cdµ = 0.15 mm1
a = 16.122 (2) ÅT = 150 K
c = 12.446 (3) Å0.39 × 0.07 × 0.05 mm
V = 3235.0 (11) Å3
Data collection top
Bruker APEXII
diffractometer
1509 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
921 reflections with I > 2σ(I)
Tmin = 0.476, Tmax = 0.993Rint = 0.112
5438 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0591 restraint
wR(F2) = 0.158H-atom parameters constrained
S = 0.97Δρmax = 0.41 e Å3
1509 reflectionsΔρmin = 0.28 e Å3
128 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1754 (3)0.1137 (3)0.0309 (6)0.0288 (11)
C20.1875 (3)0.0223 (2)0.0276 (6)0.0229 (10)
C30.1218 (3)0.0300 (3)0.0259 (6)0.0295 (12)
H30.06860.00780.02640.035*
C40.1311 (3)0.1174 (3)0.0233 (7)0.0309 (11)
H40.08540.15260.02150.037*
C50.2092 (3)0.1469 (3)0.0235 (7)0.0302 (12)
H50.21790.20390.02210.036*
C60.2702 (2)0.0099 (3)0.0279 (10)0.0234 (10)
N10.1623 (2)0.0149 (2)0.2777 (8)0.0247 (8)
N20.2755 (2)0.0950 (2)0.0256 (5)0.0269 (9)
H20.32420.11680.02560.032*
N30.3388 (2)0.0327 (2)0.0312 (5)0.0308 (10)
H3A0.38580.00750.0320.037*
H3B0.33710.0860.03260.037*
O10.20156 (19)0.05016 (19)0.2755 (4)0.0313 (8)
O20.08451 (16)0.01536 (18)0.2757 (5)0.0293 (8)
O30.19907 (18)0.08530 (18)0.2798 (5)0.0309 (8)
O50.09671 (19)0.13575 (18)0.0242 (4)0.0342 (9)
H510.09320.18650.02590.051*
O40.2318 (2)0.1628 (2)0.0360 (4)0.0355 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.035 (3)0.017 (2)0.035 (3)0.002 (2)0.001 (4)0.004 (3)
C20.020 (2)0.021 (3)0.028 (2)0.0022 (16)0.001 (3)0.002 (4)
C30.025 (3)0.021 (2)0.042 (3)0.0068 (19)0.000 (4)0.003 (3)
C40.042 (3)0.016 (3)0.035 (3)0.001 (2)0.003 (5)0.000 (3)
C50.040 (3)0.014 (2)0.036 (3)0.014 (2)0.004 (4)0.001 (4)
C60.022 (2)0.026 (3)0.022 (2)0.0025 (18)0.006 (5)0.003 (3)
N10.0198 (18)0.020 (2)0.0341 (18)0.0058 (16)0.006 (4)0.001 (4)
N20.024 (2)0.022 (2)0.035 (2)0.0103 (15)0.005 (3)0.002 (3)
N30.0137 (19)0.029 (2)0.050 (2)0.0035 (15)0.003 (3)0.002 (3)
O10.0253 (18)0.0256 (17)0.043 (2)0.0062 (15)0.000 (3)0.006 (3)
O20.0124 (15)0.0231 (18)0.052 (2)0.0030 (13)0.004 (3)0.004 (3)
O30.0130 (16)0.0233 (17)0.056 (2)0.0049 (13)0.002 (3)0.007 (3)
O50.0233 (17)0.0205 (19)0.059 (2)0.0042 (14)0.004 (3)0.000 (3)
O40.0253 (19)0.0212 (18)0.060 (3)0.0027 (15)0.003 (3)0.005 (3)
Geometric parameters (Å, º) top
C1—O41.207 (6)C5—H50.93
C1—O51.319 (6)C6—N31.303 (5)
C1—C21.487 (6)C6—N21.375 (6)
C2—C31.354 (6)N1—O11.225 (4)
C2—C61.431 (5)N1—O21.255 (4)
C3—C41.417 (6)N1—O31.281 (4)
C3—H30.93N2—H20.86
C4—C51.347 (8)N3—H3A0.86
C4—H40.93N3—H3B0.86
C5—N21.359 (6)O5—H510.82
O4—C1—O5123.4 (4)N2—C5—H5119.4
O4—C1—C2123.5 (4)N3—C6—N2118.2 (4)
O5—C1—C2113.0 (4)N3—C6—C2126.9 (5)
C3—C2—C6120.2 (4)N2—C6—C2114.8 (4)
C3—C2—C1121.0 (4)O1—N1—O2121.4 (4)
C6—C2—C1118.8 (4)O1—N1—O3121.4 (3)
C2—C3—C4122.5 (4)O2—N1—O3117.2 (3)
C2—C3—H3118.8C5—N2—C6124.5 (4)
C4—C3—H3118.8C5—N2—H2117.8
C5—C4—C3116.8 (4)C6—N2—H2117.8
C5—C4—H4121.6C6—N3—H3A120
C3—C4—H4121.6C6—N3—H3B120
C4—C5—N2121.2 (4)H3A—N3—H3B120
C4—C5—H5119.4C1—O5—H51109.5
O4—C1—C2—C3177.5 (7)C3—C2—C6—N3178.8 (9)
O5—C1—C2—C34.4 (11)C1—C2—C6—N30.4 (17)
O4—C1—C2—C61.6 (13)C3—C2—C6—N20.3 (14)
O5—C1—C2—C6176.4 (9)C1—C2—C6—N2179.5 (7)
C6—C2—C3—C40.6 (12)C4—C5—N2—C60.0 (14)
C1—C2—C3—C4179.7 (7)N3—C6—N2—C5179.1 (8)
C2—C3—C4—C50.5 (11)C2—C6—N2—C50.1 (15)
C3—C4—C5—N20.3 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.861.972.803 (4)162
N3—H3A···O2i0.862.183.017 (4)165
N3—H3A···O2ii0.862.432.967 (4)121
N3—H3B···O40.862.102.716 (5)128
O5—H51···O3iii0.821.852.670 (4)180
C4—H4···O1iv0.932.423.197 (6)141
C5—H5···O4v0.932.303.216 (6)167
Symmetry codes: (i) y+1/2, x, z1/4; (ii) y+1/2, x, z1/4; (iii) y, x+1/2, z1/4; (iv) y, x1/2, z1/4; (v) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC6H7N2O2+·NO3
Mr201.15
Crystal system, space groupTetragonal, I41cd
Temperature (K)150
a, c (Å)16.122 (2), 12.446 (3)
V3)3235.0 (11)
Z16
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.39 × 0.07 × 0.05
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.476, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
5438, 1509, 921
Rint0.112
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.158, 0.97
No. of reflections1509
No. of parameters128
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.28

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SIR2002 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.861.972.803 (4)162
N3—H3A···O2i0.862.183.017 (4)165
N3—H3A···O2ii0.862.432.967 (4)121
N3—H3B···O40.862.102.716 (5)128
O5—H51···O3iii0.821.852.670 (4)180
C4—H4···O1iv0.932.423.197 (6)141
C5—H5···O4v0.932.303.216 (6)167
Symmetry codes: (i) y+1/2, x, z1/4; (ii) y+1/2, x, z1/4; (iii) y, x+1/2, z1/4; (iv) y, x1/2, z1/4; (v) x+1/2, y1/2, z.
 

Footnotes

Current address: Département Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Larbi Ben M'hidi, 04000 Oum El Bouaghi, Algeria.

Acknowledgements

We are grateful to the LCATM Laboratory, Université Larbi Ben M'hidi, Oum El Bouaghi, Algeria, for financial support.

References

First citationAkriche, S. & Rzaigui, M. (2007). Acta Cryst. E63, o3460.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAthimoolam, S., Anitha, K. & Rajaram, R. K. (2005). Acta Cryst. E61, o2553–o2555.  CSD CrossRef IUCr Journals Google Scholar
First citationAthimoolam, S. & Rajaram, R. K. (2005a). Acta Cryst. E61, o2674–o2676.  CSD CrossRef IUCr Journals Google Scholar
First citationAthimoolam, S. & Rajaram, R. K. (2005b). Acta Cryst. E61, o2764–o2767.  CSD CrossRef IUCr Journals Google Scholar
First citationBerrah, F., Ouakkaf, A., Bouacida, S. & Roisnel, T. (2011a). Acta Cryst. E67, o953–o954.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBerrah, F., Ouakkaf, A., Bouacida, S. & Roisnel, T. (2011b). Acta Cryst. E67, o525–o526.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChen, L.-Z. (2009). Acta Cryst. E65, o2350.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGiantsidis, J. & Turnbull, M. M. (2000). Acta Cryst. C56, 334–335.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationJebas, S. R., Balasubramanian, T. & Light, M. E. (2006). Acta Cryst. E62, o3481–o3482.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSlouf, M. (2001). Acta Cryst. E57, o61–o62.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYe, H.-Y., Chen, L.-Z. & Xiong, R.-G. (2010). Acta Cryst. B66, 387–395.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o2057-o2058
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds