organic compounds
2-Amino-3-carboxypyridinium nitrate
aLaboratoire de Chimie Appliquée et Technologie des Matériaux LCATM, Université Larbi Ben M'hidi, 04000 Oum El Bouaghi, Algeria, bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Faculté des Sciences Exactes, Université Mentouri Constantine 25000, Algeria., and cCentre de Difractométrie X, UMR 6226 CNRS Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du Général Leclerc, 35042 Rennes, France
*Correspondence e-mail: bouacida_sofiane@yahoo.fr
In the 6H7N2O2+·NO3−, the cations are linked via C—H⋯O hydrogen bonds, forming infinite chains running along the b axis. These chains are further linked through N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds to the nitrate anions, forming well-separated infinite planar layers parallel to (001).
of the title compound, CRelated literature
For hybrid compounds based on nicotinic acid, see: Athimoolam et al. (2005); Athimoolam & Rajaram (2005a,b); Chen (2009); Slouf (2001); Ye et al. (2010). For hybrid compounds based on amino-nicotinic acid derivatives, see: Akriche & Rzaigui (2007); Berrah et al. (2011a); Giantsidis & Turnbull (2000). For related nitrate compounds, see: Berrah et al. (2011b); Jebas et al. (2006).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2006); cell SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536811027978/lx2193sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811027978/lx2193Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811027978/lx2193Isup3.cml
The title compound was synthesized by reacting 3-amino-pyridine-2-carboxylic acid (0.138 mg, 1 mmol) with nitriic acid (1 mmol)in a solution of equal volume of H2O and CH3OH. Slow evaporation leads to well crystallized colourless needles.
All the Friedel pairs were merged. All non-H atoms were refined with anisotropic atomic displacement parameters. The remaining H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent atoms (C, N or O) with C–H = 0.93 Å, O–H = 0.82 Å and N–H = 0.86 Å with Uiso(H) = 1.2 Ueq(C or N) and Uiso(H = 1.5 Ueq(O).
Data collection: APEX2 (Bruker, 2006); cell
SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The structure of the title compound with the atomic labelling scheme. Displacement are drawn at the 50% probability level. | |
Fig. 2. A part of crystal packing showing cationic infinite chains linked to nitrate anions via [N–H···O, O–H···O and C–H···O] hydrogen contacts. Hydrogen bonds are shown as dashed lines. [Symmetry codes: (i) y + 1/2, -x, z - 1/4; (ii) -y + 1/2, x, z - 1/4; (iii) -y, -x + 1/2, z - 1/4; (iv) y, x - 1/2, z - 1/4; (v) -x + 1/2, y - 1/2, z.] | |
Fig. 3. Layered packing of the structure viewed down the b axis. |
C6H7N2O2+·NO3− | Dx = 1.652 Mg m−3 |
Mr = 201.15 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, I41cd | Cell parameters from 491 reflections |
Hall symbol: I 4bw -2c | θ = 3.3–20.3° |
a = 16.122 (2) Å | µ = 0.15 mm−1 |
c = 12.446 (3) Å | T = 150 K |
V = 3235.0 (11) Å3 | Needle, colourless |
Z = 16 | 0.39 × 0.07 × 0.05 mm |
F(000) = 1664 |
Bruker APEXII diffractometer | 921 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.112 |
CCD rotation images, thin slices scans | θmax = 27.5°, θmin = 3.3° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | h = −16→20 |
Tmin = 0.476, Tmax = 0.993 | k = −13→20 |
5438 measured reflections | l = −16→10 |
1509 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.059 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.158 | H-atom parameters constrained |
S = 0.97 | w = 1/[σ2(Fo2) + (0.076P)2] where P = (Fo2 + 2Fc2)/3 |
1509 reflections | (Δ/σ)max < 0.001 |
128 parameters | Δρmax = 0.41 e Å−3 |
1 restraint | Δρmin = −0.28 e Å−3 |
C6H7N2O2+·NO3− | Z = 16 |
Mr = 201.15 | Mo Kα radiation |
Tetragonal, I41cd | µ = 0.15 mm−1 |
a = 16.122 (2) Å | T = 150 K |
c = 12.446 (3) Å | 0.39 × 0.07 × 0.05 mm |
V = 3235.0 (11) Å3 |
Bruker APEXII diffractometer | 1509 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | 921 reflections with I > 2σ(I) |
Tmin = 0.476, Tmax = 0.993 | Rint = 0.112 |
5438 measured reflections |
R[F2 > 2σ(F2)] = 0.059 | 1 restraint |
wR(F2) = 0.158 | H-atom parameters constrained |
S = 0.97 | Δρmax = 0.41 e Å−3 |
1509 reflections | Δρmin = −0.28 e Å−3 |
128 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.1754 (3) | 0.1137 (3) | 0.0309 (6) | 0.0288 (11) | |
C2 | 0.1875 (3) | 0.0223 (2) | 0.0276 (6) | 0.0229 (10) | |
C3 | 0.1218 (3) | −0.0300 (3) | 0.0259 (6) | 0.0295 (12) | |
H3 | 0.0686 | −0.0078 | 0.0264 | 0.035* | |
C4 | 0.1311 (3) | −0.1174 (3) | 0.0233 (7) | 0.0309 (11) | |
H4 | 0.0854 | −0.1526 | 0.0215 | 0.037* | |
C5 | 0.2092 (3) | −0.1469 (3) | 0.0235 (7) | 0.0302 (12) | |
H5 | 0.2179 | −0.2039 | 0.0221 | 0.036* | |
C6 | 0.2702 (2) | −0.0099 (3) | 0.0279 (10) | 0.0234 (10) | |
N1 | 0.1623 (2) | −0.0149 (2) | 0.2777 (8) | 0.0247 (8) | |
N2 | 0.2755 (2) | −0.0950 (2) | 0.0256 (5) | 0.0269 (9) | |
H2 | 0.3242 | −0.1168 | 0.0256 | 0.032* | |
N3 | 0.3388 (2) | 0.0327 (2) | 0.0312 (5) | 0.0308 (10) | |
H3A | 0.3858 | 0.0075 | 0.032 | 0.037* | |
H3B | 0.3371 | 0.086 | 0.0326 | 0.037* | |
O1 | 0.20156 (19) | 0.05016 (19) | 0.2755 (4) | 0.0313 (8) | |
O2 | 0.08451 (16) | −0.01536 (18) | 0.2757 (5) | 0.0293 (8) | |
O3 | 0.19907 (18) | −0.08530 (18) | 0.2798 (5) | 0.0309 (8) | |
O5 | 0.09671 (19) | 0.13575 (18) | 0.0242 (4) | 0.0342 (9) | |
H51 | 0.0932 | 0.1865 | 0.0259 | 0.051* | |
O4 | 0.2318 (2) | 0.1628 (2) | 0.0360 (4) | 0.0355 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.035 (3) | 0.017 (2) | 0.035 (3) | −0.002 (2) | −0.001 (4) | −0.004 (3) |
C2 | 0.020 (2) | 0.021 (3) | 0.028 (2) | 0.0022 (16) | 0.001 (3) | 0.002 (4) |
C3 | 0.025 (3) | 0.021 (2) | 0.042 (3) | −0.0068 (19) | 0.000 (4) | 0.003 (3) |
C4 | 0.042 (3) | 0.016 (3) | 0.035 (3) | −0.001 (2) | −0.003 (5) | 0.000 (3) |
C5 | 0.040 (3) | 0.014 (2) | 0.036 (3) | −0.014 (2) | −0.004 (4) | −0.001 (4) |
C6 | 0.022 (2) | 0.026 (3) | 0.022 (2) | −0.0025 (18) | −0.006 (5) | 0.003 (3) |
N1 | 0.0198 (18) | 0.020 (2) | 0.0341 (18) | −0.0058 (16) | 0.006 (4) | −0.001 (4) |
N2 | 0.024 (2) | 0.022 (2) | 0.035 (2) | 0.0103 (15) | −0.005 (3) | −0.002 (3) |
N3 | 0.0137 (19) | 0.029 (2) | 0.050 (2) | −0.0035 (15) | 0.003 (3) | 0.002 (3) |
O1 | 0.0253 (18) | 0.0256 (17) | 0.043 (2) | −0.0062 (15) | 0.000 (3) | −0.006 (3) |
O2 | 0.0124 (15) | 0.0231 (18) | 0.052 (2) | 0.0030 (13) | 0.004 (3) | 0.004 (3) |
O3 | 0.0130 (16) | 0.0233 (17) | 0.056 (2) | 0.0049 (13) | −0.002 (3) | −0.007 (3) |
O5 | 0.0233 (17) | 0.0205 (19) | 0.059 (2) | 0.0042 (14) | 0.004 (3) | 0.000 (3) |
O4 | 0.0253 (19) | 0.0212 (18) | 0.060 (3) | 0.0027 (15) | −0.003 (3) | −0.005 (3) |
C1—O4 | 1.207 (6) | C5—H5 | 0.93 |
C1—O5 | 1.319 (6) | C6—N3 | 1.303 (5) |
C1—C2 | 1.487 (6) | C6—N2 | 1.375 (6) |
C2—C3 | 1.354 (6) | N1—O1 | 1.225 (4) |
C2—C6 | 1.431 (5) | N1—O2 | 1.255 (4) |
C3—C4 | 1.417 (6) | N1—O3 | 1.281 (4) |
C3—H3 | 0.93 | N2—H2 | 0.86 |
C4—C5 | 1.347 (8) | N3—H3A | 0.86 |
C4—H4 | 0.93 | N3—H3B | 0.86 |
C5—N2 | 1.359 (6) | O5—H51 | 0.82 |
O4—C1—O5 | 123.4 (4) | N2—C5—H5 | 119.4 |
O4—C1—C2 | 123.5 (4) | N3—C6—N2 | 118.2 (4) |
O5—C1—C2 | 113.0 (4) | N3—C6—C2 | 126.9 (5) |
C3—C2—C6 | 120.2 (4) | N2—C6—C2 | 114.8 (4) |
C3—C2—C1 | 121.0 (4) | O1—N1—O2 | 121.4 (4) |
C6—C2—C1 | 118.8 (4) | O1—N1—O3 | 121.4 (3) |
C2—C3—C4 | 122.5 (4) | O2—N1—O3 | 117.2 (3) |
C2—C3—H3 | 118.8 | C5—N2—C6 | 124.5 (4) |
C4—C3—H3 | 118.8 | C5—N2—H2 | 117.8 |
C5—C4—C3 | 116.8 (4) | C6—N2—H2 | 117.8 |
C5—C4—H4 | 121.6 | C6—N3—H3A | 120 |
C3—C4—H4 | 121.6 | C6—N3—H3B | 120 |
C4—C5—N2 | 121.2 (4) | H3A—N3—H3B | 120 |
C4—C5—H5 | 119.4 | C1—O5—H51 | 109.5 |
O4—C1—C2—C3 | 177.5 (7) | C3—C2—C6—N3 | −178.8 (9) |
O5—C1—C2—C3 | −4.4 (11) | C1—C2—C6—N3 | 0.4 (17) |
O4—C1—C2—C6 | −1.6 (13) | C3—C2—C6—N2 | 0.3 (14) |
O5—C1—C2—C6 | 176.4 (9) | C1—C2—C6—N2 | 179.5 (7) |
C6—C2—C3—C4 | −0.6 (12) | C4—C5—N2—C6 | 0.0 (14) |
C1—C2—C3—C4 | −179.7 (7) | N3—C6—N2—C5 | 179.1 (8) |
C2—C3—C4—C5 | 0.5 (11) | C2—C6—N2—C5 | −0.1 (15) |
C3—C4—C5—N2 | −0.3 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O3i | 0.86 | 1.97 | 2.803 (4) | 162 |
N3—H3A···O2i | 0.86 | 2.18 | 3.017 (4) | 165 |
N3—H3A···O2ii | 0.86 | 2.43 | 2.967 (4) | 121 |
N3—H3B···O4 | 0.86 | 2.10 | 2.716 (5) | 128 |
O5—H51···O3iii | 0.82 | 1.85 | 2.670 (4) | 180 |
C4—H4···O1iv | 0.93 | 2.42 | 3.197 (6) | 141 |
C5—H5···O4v | 0.93 | 2.30 | 3.216 (6) | 167 |
Symmetry codes: (i) y+1/2, −x, z−1/4; (ii) −y+1/2, x, z−1/4; (iii) −y, −x+1/2, z−1/4; (iv) y, x−1/2, z−1/4; (v) −x+1/2, y−1/2, z. |
Experimental details
Crystal data | |
Chemical formula | C6H7N2O2+·NO3− |
Mr | 201.15 |
Crystal system, space group | Tetragonal, I41cd |
Temperature (K) | 150 |
a, c (Å) | 16.122 (2), 12.446 (3) |
V (Å3) | 3235.0 (11) |
Z | 16 |
Radiation type | Mo Kα |
µ (mm−1) | 0.15 |
Crystal size (mm) | 0.39 × 0.07 × 0.05 |
Data collection | |
Diffractometer | Bruker APEXII diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2002) |
Tmin, Tmax | 0.476, 0.993 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5438, 1509, 921 |
Rint | 0.112 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.059, 0.158, 0.97 |
No. of reflections | 1509 |
No. of parameters | 128 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.41, −0.28 |
Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SIR2002 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O3i | 0.86 | 1.97 | 2.803 (4) | 162 |
N3—H3A···O2i | 0.86 | 2.18 | 3.017 (4) | 165 |
N3—H3A···O2ii | 0.86 | 2.43 | 2.967 (4) | 121 |
N3—H3B···O4 | 0.86 | 2.10 | 2.716 (5) | 128 |
O5—H51···O3iii | 0.82 | 1.85 | 2.670 (4) | 180 |
C4—H4···O1iv | 0.93 | 2.42 | 3.197 (6) | 141 |
C5—H5···O4v | 0.93 | 2.30 | 3.216 (6) | 167 |
Symmetry codes: (i) y+1/2, −x, z−1/4; (ii) −y+1/2, x, z−1/4; (iii) −y, −x+1/2, z−1/4; (iv) y, x−1/2, z−1/4; (v) −x+1/2, y−1/2, z. |
Footnotes
‡Current address: Département Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Larbi Ben M'hidi, 04000 Oum El Bouaghi, Algeria.
Acknowledgements
We are grateful to the LCATM Laboratory, Université Larbi Ben M'hidi, Oum El Bouaghi, Algeria, for financial support.
References
Akriche, S. & Rzaigui, M. (2007). Acta Cryst. E63, o3460. Web of Science CSD CrossRef IUCr Journals Google Scholar
Athimoolam, S., Anitha, K. & Rajaram, R. K. (2005). Acta Cryst. E61, o2553–o2555. CSD CrossRef IUCr Journals Google Scholar
Athimoolam, S. & Rajaram, R. K. (2005a). Acta Cryst. E61, o2674–o2676. CSD CrossRef IUCr Journals Google Scholar
Athimoolam, S. & Rajaram, R. K. (2005b). Acta Cryst. E61, o2764–o2767. CSD CrossRef IUCr Journals Google Scholar
Berrah, F., Ouakkaf, A., Bouacida, S. & Roisnel, T. (2011a). Acta Cryst. E67, o953–o954. Web of Science CrossRef IUCr Journals Google Scholar
Berrah, F., Ouakkaf, A., Bouacida, S. & Roisnel, T. (2011b). Acta Cryst. E67, o525–o526. Web of Science CrossRef IUCr Journals Google Scholar
Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany. Google Scholar
Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Chen, L.-Z. (2009). Acta Cryst. E65, o2350. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Giantsidis, J. & Turnbull, M. M. (2000). Acta Cryst. C56, 334–335. CSD CrossRef CAS IUCr Journals Google Scholar
Jebas, S. R., Balasubramanian, T. & Light, M. E. (2006). Acta Cryst. E62, o3481–o3482. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Slouf, M. (2001). Acta Cryst. E57, o61–o62. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ye, H.-Y., Chen, L.-Z. & Xiong, R.-G. (2010). Acta Cryst. B66, 387–395. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Crystal structures of hybrid compounds based on nicotinic acid or its amino derivatives and inorganic acids have been reported (Athimoolam et al., 2005; Athimoolam & Rajaram, 2005a, b; Chen, 2009; Giantsidis & Turnbull, 2000; Jebas et al., 2006; Slouf, 2001; Ye et al., 2010) showing interesting structural diversity governed mainly by hydrogen bonds. Anion substitution seems to have an important influence on hydrogen bound patterns. In attempt to elucidate this influence and as part of our search for new hybrid compounds based on protonated N-hyterocycle, we report in this paper the new structure of 2-aminonicotinium nitrate; its homologues obtained with phosphate and sulfate anions have been described previously (Akriche & Rzaigui, 2007; Berrah et al., 2011a).
The asymmetric unit of the title compound (Fig. 1) contains one cation and one anion with geometry similar to that observed in similar compounds (Akriche & Rzaigui, 2007; Berrah et al., 2011a, b; Jebas et al., 2006). However in this structure, cations do not form dimers via N–H···O hydrogen bonds as observed in the structures obtained with phosphate and sulfate anions but they are linked to each other via C–H···O hydrogen bonds to form infinite chains running along the b axis (Table 1 & Fig. 2,). These chains are further linked, through N–H···O, O–H···O and C–H···O hydrogen contacts, to nitrate anions to form well separated infinite planar layers parallel to (001) (Fig. 3). A such two-dimensional network have been already observed in compounds including nicotinium entities (Giantsidis & Turnbull, 2000; Slouf, 2001; Ye et al., 2010).