organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o2012-o2013

1,5-Anhydro-2-de­­oxy-1,2-C-di­chloro­methyl­ene-3,4,6-tri-O-(4-meth­­oxy­benz­yl)-D-glycero-D-gulo-hexitol

aResearch Center in Synthesis and Catalysis, Department of Chemistry, University of Johannesburg (APK Campus), PO Box 524, Auckland Park, Johannesburg 2006, South Africa
*Correspondence e-mail: hhkinfe@uj.ac.za, mullera@uj.ac.za

(Received 10 June 2011; accepted 5 July 2011; online 13 July 2011)

The pyranosyl ring in the title compound, C31H34Cl2O7, adopts a twist-boat conformation. The 4-meth­oxy­benzyl groups are located in equatorial positions with the meth­oxy groups nearly coplanar with their respective rings [dihedral angles of 0.2 (3) and 9.4 (2)°]. The aromatic rings adopt orientations enabling them to participate in C—H⋯π inter­actions with neighboring meth­oxy groups. The crystal structure is additionally stabilized by weak C—H⋯O inter­actions.

Related literature

For the synthesis and chemistry of cyclo­propanated carbohydrates, see: Cousins & Hoberg (2000[Cousins, G. S. & Hoberg, J. O. (2000). Chem. Soc. Rev. 29, 165-174.]); Yu & Pagenkopf (2005[Yu, M. & Pagenkopf, B. L. (2005). Tetrahedron, 61, 321-347.]). For the modified Simmons–Smith reaction route of preparing cyclo­propanated sugars, see: Gammon et al. (2007[Gammon, D. W., Kinfe, H. H., De Vos, D. E., Jacobs, P. A. & Sels, B. F. (2007). J. Carbohydr. Chem. 26, 141-157.]); Ramana et al. (1997[Ramana, C. V., Murali, R. & Nagarajan, M. J. (1997). J. Org. Chem. 62, 7694-7703.]); Murali et al. (1995[Murali, R., Ramana, C. V. & Nagarajan, M. J. (1995). Chem. Soc., Chem. Commun. pp. 217-218.]); Boeckman et al. (1987[Boeckman, R. K., Charette, A. B. Jr, Asberom, T. & Johnston, B. H. (1987). J. Am. Chem. Soc. 109, 7553-7555.]); Hoberg & Bozell (1995[Hoberg, J. O. & Bozell, J. J. (1995). Tetrahedron Lett. 36, 6831-6834.]). For the dihalocarbene cyclo­propanation route, see: Gammon et al. (2007[Gammon, D. W., Kinfe, H. H., De Vos, D. E., Jacobs, P. A. & Sels, B. F. (2007). J. Carbohydr. Chem. 26, 141-157.]); Ramana et al. (1997[Ramana, C. V., Murali, R. & Nagarajan, M. J. (1997). J. Org. Chem. 62, 7694-7703.]); Murali et al. (1995[Murali, R., Ramana, C. V. & Nagarajan, M. J. (1995). Chem. Soc., Chem. Commun. pp. 217-218.]); Brimacombe et al. (1967[Brimacombe, J. S., Evans, M. E., Forbes, E. J., Foster, A. B. & Webber, J. M. (1967). Carbohydr. Res. 4, 239-243.]); Weber & Hall (1979[Weber, G. F. & Hall, S. S. (1979). J. Org. Chem. 44, 447-449.]). For the diazo­cyclo­propanation route, see: Hoberg & Claffey (1996[Hoberg, J. & Claffey, D. J. (1996). Tetrahedron Lett. 37, 2533-2536.]); Henry & Fraser-Reid (1995[Henry, K. J. & Fraser-Reid, B. (1995). Tetrahedron Lett. 36, 8901-8904.]); Timmers et al. (1996)[Timmers, C. M., Leeuwenburgh, M. A., Verheijen, J. C., Vandermarel, G. A. & van Boom, J. H. (1996). Tetrahedron Asymmetry, 7, 49-52.]. For ring puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C31H34Cl2O7

  • Mr = 589.48

  • Monoclinic, P 21

  • a = 5.3480 (4) Å

  • b = 18.1110 (14) Å

  • c = 14.8230 (11) Å

  • β = 91.162 (2)°

  • V = 1435.43 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 100 K

  • 0.53 × 0.44 × 0.39 mm

Data collection
  • Bruker KappaCCD APEX DUO 4K diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus and SADABS. BrukerAXS Inc ed. Madison, Wisconsin, USA.]) Tmin = 0.869, Tmax = 0.901

  • 13864 measured reflections

  • 4689 independent reflections

  • 4635 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.062

  • S = 1.04

  • 4689 reflections

  • 364 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1023 Friedel pairs

  • Flack parameter: 0.03 (3)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C17–C22, C9–C14 and C25–C30 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1i 1.00 2.38 3.3487 (16) 164
C23—H23B⋯O7ii 0.98 2.50 3.399 (2) 153
C26—H26⋯O3i 0.95 2.54 3.2301 (16) 130
C31—H31C⋯O1iii 0.98 2.49 3.466 (2) 172
C15—H15ACg1iv 0.98 2.95 3.927 (3) 174
C15—H15CCg2v 0.98 2.99 3.873 (2) 151
C24—H24BCg3v 0.99 2.90 3.7983 (17) 152
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z+1; (iii) [-x, y+{\script{1\over 2}}, -z]; (iv) [-x+1, y-{\script{1\over 2}}, -z+1]; (v) x+1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus and SADABS. BrukerAXS Inc ed. Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus and SADABS. BrukerAXS Inc ed. Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus and SADABS. BrukerAXS Inc ed. Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

1,2-Cyclopropanated sugars have found widespread applications in organic synthesis (Cousins & Hoberg, 2000; Yu & Pagenkopf, 2005). The high reactivity of strained cyclopropanes in conjunction with the inherent optical purity of sugars makes cyclopropanated carbohydrates indispensable chiral building blocks. Due to the resemblance of cyclopropyl to an olefinic functionality and assistance from the lone pair of electrons on the pyran ring oxygen atom, 1,2-cyclopropanated sugars undergo regioselective ring opening to afford 2-C branched and C-1 functionalized sugar derivatives (Gammon et al., 2007; Ramana et al., 1997; Murali et al., 1995). The most common methods of preparing cyclopropanated sugars are: the modified Simmons-Smith reaction (see Gammon et al., 2007; Ramana et al., 1997; Murali et al., 1995; Boeckman et al., 1987; Hoberg & Bozell, 1995), dihalocarbene cyclopropanation (see Gammon et al., 2007; Ramana et al., 1997; Murali et al., 1995; Brimacombe et al., 1967; Weber & Hall, 1979) and diazocyclopropanation (see Hoberg & Claffey, 1996; Henry & Fraser-Reid, 1995; Timmers et al., 1996). The Simmons-Smith cyclopropanation involves treating a glycal with CH2I2/Zn/CuCl activated with acetyl chloride. Under those conditions a cyclopropane syn to the oxygen of the C-3 of the respective glycal is formed. On the other hand, the dihalocarbene cyclopropanation of glycals affords a cyclopropane with a stereochemistry opposite to that of the Simmons-Smith cyclopropanation. Herein we report the dihalocarbene cyclopropanation of per-p-methoxybenzyl protected glucal (A in Fig. 2) and the confirmation of the stereochemistry of the cyclopropanated product (I in Fig. 2).

The title compound (see Fig. 1 and Scheme 1) crystallizes in the P21 (Z=2) space group resulting in molecules lying on general positions in the unit cell. All bond lengths are within their normal ranges (Allen et al., 1987). The pyran ring is in a twist-boat conformation with ring puckering parameters of q2 = 0.7035 (14) Å, q3 = -0.0851 (15) Å, Q = 0.7086 (14)Å and ϕ2 = 346.57 (12)° (see Cremer & Pople, 1975). The O-p-methoxybenzyl groups are all in equatorial positions with the methoxy groups nearly coplanar with their respective rings (dihedral angles of 0.16 (27)° and 9.36 (21)° for rings C9—C14 and C17—C22 respectively). The aromatic rings adopt orientations enabling them to participate in C—H···Cg interactions with neighboring methoxy groups (Table 1). There are also several weak C—H···O interactions (Table 1) that aid in the stabilization of the crystal structure.

Related literature top

For the synthesis and chemistry of cyclopropanated carbohydrates, see: Cousins & Hoberg (2000); Yu & Pagenkopf (2005). For the modified Simmons–Smith reaction route of preparing cyclopropanated sugars, see: Gammon et al. (2007); Ramana et al. (1997); Murali et al. (1995); Boeckman et al. (1987); Hoberg & Bozell (1995). For the dihalocarbene cyclopropanation route, see: Gammon et al. (2007); Ramana et al. (1997); Murali et al. (1995); Brimacombe et al. (1967); Weber & Hall (1979). For the diazocyclopropanation route, see: Hoberg & Claffey (1996); Henry & Fraser-Reid (1995); Timmers et al. (1996). For ring puckering analysis, see: Cremer & Pople (1975). For standard bond lengths, see: Allen et al. (1987).

Experimental top

50% aq NaOH (3 mL) was added to a vigorously stirred solution of glucal (see A in Fig. 2; 0.5 g, 0.99 mmol) in chloroform (5 ml) containing benzyltriethylammonium chloride (0.11 g, 0.49 mmol). After stirring at 35°C overnight, the reaction mixture was diluted with water and the aqueous phase was extracted with dichloromethane. The combined organic phases were dried over MgSO4, filtered and evaporated in vacuo. Chromatography on silica gel (ethyl acetate/hexane, 5:95) of the residue and recrystallization from hexane gave the title compound in 80% yield as a white solid.

Analytical data: 1H NMR (CDCl3, 400 MHz) δ 7.32 (d, J = 8.0 Hz, 2H), 7.21 (d, J = 8.4 Hz, 2H), 7.11 (d, J = 8.0 Hz, 2H), 6.88 (d, J = 8.4 Hz, 2H), 6.86 (d, J = 8.0 Hz, 2H), 6.81 (d, J = 8.0 Hz, 2H), 4.77 (d, J = 10.8 Hz, 2H), 4.70 (d, J = 11.2 Hz, 2H), 4.60 (d, J = 11.2 Hz, 2H), 4.46 (d, J = 12.4 Hz, 2H), 4.42 (d, J = 12.4 Hz, 2H), 4.35 (d, J = 11.6 Hz, 2H), 3.84 (d, J = 8.0 Hz, 1H), 3.82–3.60 (m, 12H), 3.58–3.40 (m, 2H), 1.73 (dd, J = 4.2 and 7.8 Hz, 1H); 13C NMR (CDCl3, 100 MHz) δ 159.4, 159.3, 159.2, 130.4, 130.0, 129.8, 129.7, 129.5, 129.3, 113.9, 113.8, 113.7, 79.8, 74.7, 74.1, 72.9, 71.5, 69.7, 61.5, 58.9, 55.2, 34.3.

Refinement top

All hydrogen atoms were positioned in geometrically idealized positions with C—H = 1.00 Å, 0.99 Å, 0.98 Å and 0.95 Å for methine, methylene, methyl and aromatic H atoms respectively. All hydrogen atoms were allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq, except for methyl where Uiso(H) = 1.5Ueq was utilized. The initial positions of methyl hydrogen atoms were located from a Fourier difference map and refined as fixed rotor. The Friedel pair coverage for the collection is fairly low, possibly due to an inadequate collection strategy. A recollection was not deemed neccesary since the D-enantiomer can be unambiguously assigned from the known configuration of the starting glucal. The Flack parameter refined to 0.03 (3). The highest residual electron density of 0.28 e.Å-3 is 0.77 Å from Cl2 and has no physical meaning.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus and XPREP (Bruker, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of I. Displacement ellipsoids are drawn at a 50% probability level. Hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. Reaction scheme for the dihalocarbene cyclopropanation of the protected glucal (PMB = p-methoxybenzyl).
1,5-Anhydro-2-deoxy-1,2-C-dichloromethylene-3,4,6-tri-O-(4-methoxybenzyl)-D-glycero-D-gulo-hexitol top
Crystal data top
C31H34Cl2O7F(000) = 620
Mr = 589.48Dx = 1.364 Mg m3
Monoclinic, P21Melting point = 343–345 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 5.3480 (4) ÅCell parameters from 9926 reflections
b = 18.1110 (14) Åθ = 2.6–28.3°
c = 14.8230 (11) ŵ = 0.27 mm1
β = 91.162 (2)°T = 100 K
V = 1435.43 (19) Å3Cuboid, colourless
Z = 20.53 × 0.44 × 0.39 mm
Data collection top
Bruker KappaCCD APEX DUO 4K
diffractometer
4635 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 28.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)\bbr00
h = 77
Tmin = 0.869, Tmax = 0.901k = 1124
13864 measured reflectionsl = 1919
4689 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.062 w = 1/[σ2(Fo2) + (0.0333P)2 + 0.3097P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4689 reflectionsΔρmax = 0.28 e Å3
364 parametersΔρmin = 0.16 e Å3
1 restraintAbsolute structure: Flack (1983), 1023 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (3)
Crystal data top
C31H34Cl2O7V = 1435.43 (19) Å3
Mr = 589.48Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.3480 (4) ŵ = 0.27 mm1
b = 18.1110 (14) ÅT = 100 K
c = 14.8230 (11) Å0.53 × 0.44 × 0.39 mm
β = 91.162 (2)°
Data collection top
Bruker KappaCCD APEX DUO 4K
diffractometer
4689 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)\bbr00
4635 reflections with I > 2σ(I)
Tmin = 0.869, Tmax = 0.901Rint = 0.026
13864 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.062Δρmax = 0.28 e Å3
S = 1.04Δρmin = 0.16 e Å3
4689 reflectionsAbsolute structure: Flack (1983), 1023 Friedel pairs
364 parametersAbsolute structure parameter: 0.03 (3)
1 restraint
Special details top

Experimental. The intensity data was collected on a Bruker APEX Duo 4 K KappaCCD diffractometer using an exposure time of 60 s/frame. A total of 1324 frames were collected with a frame width of 0.5° covering up to θ = 28.3° with 99.6% completeness accomplished.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5746 (3)0.37183 (8)0.12955 (9)0.0159 (3)
H10.72670.40230.11820.019*
C20.3481 (3)0.41817 (8)0.09697 (9)0.0141 (3)
H20.20590.41140.1390.017*
C30.2681 (2)0.39508 (8)0.00162 (9)0.0135 (2)
H30.41120.4010.04020.016*
C40.1924 (2)0.31426 (8)0.00670 (9)0.0143 (2)
H40.01240.30390.01860.017*
C50.3834 (2)0.26695 (8)0.05720 (9)0.0162 (3)
H50.32030.22890.10010.019*
C60.3340 (3)0.25520 (8)0.04201 (9)0.0160 (3)
C70.5711 (3)0.35798 (9)0.23087 (9)0.0203 (3)
H7A0.73350.33720.25170.024*
H7B0.54360.4050.26320.024*
C80.2633 (3)0.31871 (11)0.33538 (10)0.0256 (3)
H8A0.13140.28110.34350.031*
H8B0.18150.36770.33540.031*
C90.4444 (3)0.31468 (10)0.41480 (9)0.0225 (3)
C100.6119 (3)0.25666 (10)0.42635 (10)0.0252 (3)
H100.61560.21830.38260.03*
C110.7754 (3)0.25366 (10)0.50125 (10)0.0263 (3)
H110.89190.21430.50750.032*
C120.7657 (3)0.30875 (11)0.56633 (11)0.0286 (3)
C130.5962 (4)0.36662 (12)0.55592 (13)0.0366 (4)
H130.58820.40410.60060.044*
C140.4393 (4)0.36961 (11)0.48059 (12)0.0315 (4)
H140.32630.40980.47360.038*
C151.0910 (4)0.25312 (14)0.65659 (15)0.0446 (5)
H15A1.00160.20630.66360.067*
H15B1.19190.2630.71120.067*
H15C1.20050.250.60450.067*
C160.2468 (3)0.54661 (9)0.12345 (9)0.0173 (3)
H16A0.08320.53180.09670.021*
H16B0.29250.59510.09780.021*
C170.2251 (3)0.55341 (8)0.22438 (9)0.0167 (3)
C180.0275 (3)0.52223 (9)0.27015 (10)0.0207 (3)
H180.10310.49850.23680.025*
C190.0161 (3)0.52497 (10)0.36452 (10)0.0228 (3)
H190.120.50320.3950.027*
C200.2065 (3)0.55998 (9)0.41261 (10)0.0206 (3)
C210.4042 (3)0.59335 (10)0.36741 (10)0.0229 (3)
H210.53210.61850.40060.027*
C220.4127 (3)0.58960 (9)0.27443 (10)0.0206 (3)
H220.54790.61190.2440.025*
C230.0028 (4)0.54396 (14)0.55311 (11)0.0376 (5)
H23A0.1450.56960.52860.056*
H23B0.02580.55650.61710.056*
H23C0.02050.49050.54690.056*
C240.0170 (3)0.43201 (9)0.12203 (9)0.0156 (3)
H24A0.03040.38030.13550.019*
H24B0.17020.44370.15560.019*
C250.1908 (3)0.48286 (8)0.15179 (8)0.0149 (3)
C260.3255 (3)0.52635 (9)0.09302 (9)0.0157 (3)
H260.28690.52430.03020.019*
C270.5166 (3)0.57303 (9)0.12405 (9)0.0165 (3)
H270.6080.60190.08260.02*
C280.5722 (3)0.57693 (9)0.21629 (9)0.0174 (3)
C290.4381 (3)0.53311 (10)0.27614 (9)0.0223 (3)
H290.47570.53520.3390.027*
C300.2511 (3)0.48674 (9)0.24411 (9)0.0202 (3)
H300.16190.4570.28540.024*
C310.9079 (3)0.66226 (9)0.19589 (10)0.0229 (3)
H31A0.98140.62930.15120.034*
H31B1.04160.68650.2310.034*
H31C0.80570.69980.16490.034*
O10.60536 (18)0.30368 (6)0.08006 (7)0.0172 (2)
O20.3745 (2)0.30744 (7)0.24945 (7)0.0234 (2)
O30.43372 (19)0.49265 (6)0.10078 (7)0.0165 (2)
O40.06550 (18)0.44011 (6)0.02738 (6)0.0157 (2)
O50.9144 (3)0.31154 (10)0.64279 (9)0.0426 (4)
O60.2183 (2)0.56619 (8)0.50476 (7)0.0269 (3)
O70.7547 (2)0.62045 (7)0.25488 (7)0.0228 (2)
Cl10.55865 (6)0.27721 (2)0.12181 (2)0.02147 (8)
Cl20.16666 (7)0.17496 (2)0.07142 (3)0.02262 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0144 (6)0.0158 (7)0.0173 (6)0.0011 (5)0.0020 (5)0.0001 (5)
C20.0148 (6)0.0141 (7)0.0136 (5)0.0005 (5)0.0001 (4)0.0008 (5)
C30.0134 (6)0.0132 (6)0.0138 (5)0.0018 (5)0.0003 (4)0.0003 (5)
C40.0131 (6)0.0128 (6)0.0170 (5)0.0003 (5)0.0001 (4)0.0000 (5)
C50.0153 (6)0.0140 (7)0.0192 (6)0.0003 (5)0.0019 (5)0.0014 (5)
C60.0135 (6)0.0146 (7)0.0198 (6)0.0024 (5)0.0001 (5)0.0021 (5)
C70.0213 (7)0.0225 (8)0.0170 (6)0.0019 (6)0.0056 (5)0.0017 (6)
C80.0262 (7)0.0330 (9)0.0175 (6)0.0021 (7)0.0026 (5)0.0029 (6)
C90.0256 (7)0.0240 (8)0.0177 (6)0.0037 (6)0.0018 (5)0.0032 (6)
C100.0315 (8)0.0255 (9)0.0186 (6)0.0003 (7)0.0004 (6)0.0021 (6)
C110.0296 (8)0.0246 (8)0.0244 (7)0.0027 (7)0.0017 (6)0.0036 (6)
C120.0313 (8)0.0304 (9)0.0238 (7)0.0019 (7)0.0094 (6)0.0003 (7)
C130.0479 (11)0.0282 (10)0.0332 (9)0.0030 (9)0.0153 (8)0.0117 (8)
C140.0377 (9)0.0235 (9)0.0329 (8)0.0042 (7)0.0107 (7)0.0032 (7)
C150.0461 (11)0.0433 (12)0.0434 (10)0.0023 (10)0.0240 (9)0.0071 (9)
C160.0207 (6)0.0159 (7)0.0154 (6)0.0036 (6)0.0008 (5)0.0011 (5)
C170.0185 (6)0.0156 (7)0.0160 (6)0.0042 (6)0.0008 (5)0.0022 (5)
C180.0200 (6)0.0222 (8)0.0198 (6)0.0007 (6)0.0000 (5)0.0044 (6)
C190.0225 (7)0.0252 (8)0.0210 (6)0.0023 (6)0.0051 (5)0.0024 (6)
C200.0226 (7)0.0228 (8)0.0164 (6)0.0038 (6)0.0000 (5)0.0013 (6)
C210.0209 (7)0.0283 (9)0.0193 (6)0.0014 (6)0.0033 (5)0.0036 (6)
C220.0193 (7)0.0232 (8)0.0194 (6)0.0020 (6)0.0014 (5)0.0017 (6)
C230.0373 (9)0.0563 (14)0.0193 (7)0.0073 (10)0.0069 (7)0.0003 (8)
C240.0193 (6)0.0150 (7)0.0124 (5)0.0003 (5)0.0012 (4)0.0006 (5)
C250.0164 (6)0.0144 (6)0.0140 (5)0.0032 (5)0.0007 (5)0.0012 (5)
C260.0186 (6)0.0159 (7)0.0125 (5)0.0029 (5)0.0008 (5)0.0014 (5)
C270.0185 (6)0.0151 (7)0.0160 (6)0.0022 (5)0.0016 (5)0.0004 (5)
C280.0171 (6)0.0177 (7)0.0173 (6)0.0008 (5)0.0005 (5)0.0028 (5)
C290.0247 (7)0.0285 (9)0.0134 (5)0.0037 (7)0.0020 (5)0.0002 (6)
C300.0238 (7)0.0234 (8)0.0134 (6)0.0036 (6)0.0005 (5)0.0025 (6)
C310.0211 (7)0.0199 (8)0.0277 (7)0.0014 (6)0.0016 (6)0.0004 (6)
O10.0137 (4)0.0163 (5)0.0215 (4)0.0012 (4)0.0024 (3)0.0021 (4)
O20.0285 (5)0.0264 (6)0.0151 (4)0.0079 (5)0.0027 (4)0.0027 (4)
O30.0182 (5)0.0140 (5)0.0176 (4)0.0005 (4)0.0023 (4)0.0028 (4)
O40.0185 (5)0.0161 (5)0.0123 (4)0.0046 (4)0.0021 (3)0.0003 (4)
O50.0490 (8)0.0447 (9)0.0331 (6)0.0073 (7)0.0226 (6)0.0062 (6)
O60.0290 (6)0.0368 (7)0.0149 (5)0.0019 (5)0.0007 (4)0.0011 (5)
O70.0223 (5)0.0268 (6)0.0192 (5)0.0066 (5)0.0027 (4)0.0030 (4)
Cl10.01893 (15)0.02378 (18)0.02188 (15)0.00135 (14)0.00472 (12)0.00492 (14)
Cl20.02241 (16)0.01435 (16)0.03092 (17)0.00321 (14)0.00394 (13)0.00353 (14)
Geometric parameters (Å, º) top
C1—O11.4469 (18)C15—H15C0.98
C1—C71.5231 (18)C16—O31.4425 (17)
C1—C21.5433 (19)C16—C171.5080 (18)
C1—H11C16—H16A0.99
C2—O31.4252 (18)C16—H16B0.99
C2—C31.5267 (18)C17—C181.388 (2)
C2—H21C17—C221.399 (2)
C3—O41.4159 (16)C18—C191.402 (2)
C3—C41.521 (2)C18—H180.95
C3—H31C19—C201.385 (2)
C4—C61.504 (2)C19—H190.95
C4—C51.5189 (19)C20—O61.3707 (17)
C4—H41C20—C211.400 (2)
C5—O11.3966 (17)C21—C221.382 (2)
C5—C61.5039 (19)C21—H210.95
C5—H51C22—H220.95
C6—Cl11.7489 (14)C23—O61.427 (2)
C6—Cl21.7570 (15)C23—H23A0.98
C7—O21.4252 (19)C23—H23B0.98
C7—H7A0.99C23—H23C0.98
C7—H7B0.99C24—O41.4292 (15)
C8—O21.4312 (18)C24—C251.503 (2)
C8—C91.511 (2)C24—H24A0.99
C8—H8A0.99C24—H24B0.99
C8—H8B0.99C25—C261.3869 (19)
C9—C101.389 (2)C25—C301.4013 (18)
C9—C141.394 (2)C26—C271.397 (2)
C10—C111.400 (2)C26—H260.95
C10—H100.95C27—C281.3951 (18)
C11—C121.389 (2)C27—H270.95
C11—H110.95C28—O71.3705 (18)
C12—O51.3724 (19)C28—C291.399 (2)
C12—C131.392 (3)C29—C301.383 (2)
C13—C141.384 (2)C29—H290.95
C13—H130.95C30—H300.95
C14—H140.95C31—O71.4277 (18)
C15—O51.430 (3)C31—H31A0.98
C15—H15A0.98C31—H31B0.98
C15—H15B0.98C31—H31C0.98
O1—C1—C7111.30 (12)H15A—C15—H15C109.5
O1—C1—C2113.69 (11)H15B—C15—H15C109.5
C7—C1—C2111.89 (11)O3—C16—C17110.74 (11)
O1—C1—H1106.5O3—C16—H16A109.5
C7—C1—H1106.5C17—C16—H16A109.5
C2—C1—H1106.5O3—C16—H16B109.5
O3—C2—C3112.32 (11)C17—C16—H16B109.5
O3—C2—C1104.64 (11)H16A—C16—H16B108.1
C3—C2—C1110.13 (11)C18—C17—C22118.47 (13)
O3—C2—H2109.9C18—C17—C16121.78 (13)
C3—C2—H2109.9C22—C17—C16119.71 (13)
C1—C2—H2109.9C17—C18—C19121.48 (14)
O4—C3—C4111.51 (11)C17—C18—H18119.3
O4—C3—C2108.76 (11)C19—C18—H18119.3
C4—C3—C2106.72 (11)C20—C19—C18118.90 (14)
O4—C3—H3109.9C20—C19—H19120.5
C4—C3—H3109.9C18—C19—H19120.5
C2—C3—H3109.9O6—C20—C19124.68 (14)
C6—C4—C559.67 (9)O6—C20—C21114.93 (13)
C6—C4—C3121.57 (11)C19—C20—C21120.39 (13)
C5—C4—C3112.98 (11)C22—C21—C20119.77 (14)
C6—C4—H4116.6C22—C21—H21120.1
C5—C4—H4116.6C20—C21—H21120.1
C3—C4—H4116.6C21—C22—C17120.96 (14)
O1—C5—C6115.86 (11)C21—C22—H22119.5
O1—C5—C4114.25 (12)C17—C22—H22119.5
C6—C5—C459.67 (9)O6—C23—H23A109.5
O1—C5—H5118O6—C23—H23B109.5
C6—C5—H5118H23A—C23—H23B109.5
C4—C5—H5118O6—C23—H23C109.5
C5—C6—C460.66 (9)H23A—C23—H23C109.5
C5—C6—Cl1121.32 (10)H23B—C23—H23C109.5
C4—C6—Cl1121.48 (11)O4—C24—C25110.10 (11)
C5—C6—Cl2115.98 (10)O4—C24—H24A109.6
C4—C6—Cl2116.64 (10)C25—C24—H24A109.6
Cl1—C6—Cl2111.97 (8)O4—C24—H24B109.6
O2—C7—C1108.68 (11)C25—C24—H24B109.6
O2—C7—H7A110H24A—C24—H24B108.2
C1—C7—H7A110C26—C25—C30118.22 (13)
O2—C7—H7B110C26—C25—C24123.65 (12)
C1—C7—H7B110C30—C25—C24118.13 (12)
H7A—C7—H7B108.3C25—C26—C27121.51 (12)
O2—C8—C9114.52 (13)C25—C26—H26119.2
O2—C8—H8A108.6C27—C26—H26119.2
C9—C8—H8A108.6C28—C27—C26119.56 (13)
O2—C8—H8B108.6C28—C27—H27120.2
C9—C8—H8B108.6C26—C27—H27120.2
H8A—C8—H8B107.6O7—C28—C27125.03 (13)
C10—C9—C14118.39 (15)O7—C28—C29115.55 (12)
C10—C9—C8122.28 (15)C27—C28—C29119.41 (14)
C14—C9—C8119.29 (16)C30—C29—C28120.22 (13)
C9—C10—C11121.18 (16)C30—C29—H29119.9
C9—C10—H10119.4C28—C29—H29119.9
C11—C10—H10119.4C29—C30—C25121.08 (13)
C12—C11—C10119.42 (16)C29—C30—H30119.5
C12—C11—H11120.3C25—C30—H30119.5
C10—C11—H11120.3O7—C31—H31A109.5
O5—C12—C11124.79 (17)O7—C31—H31B109.5
O5—C12—C13115.41 (16)H31A—C31—H31B109.5
C11—C12—C13119.80 (15)O7—C31—H31C109.5
C14—C13—C12120.10 (17)H31A—C31—H31C109.5
C14—C13—H13119.9H31B—C31—H31C109.5
C12—C13—H13119.9C5—O1—C1115.13 (10)
C13—C14—C9121.09 (17)C7—O2—C8113.70 (12)
C13—C14—H14119.5C2—O3—C16115.26 (10)
C9—C14—H14119.5C3—O4—C24111.19 (10)
O5—C15—H15A109.5C12—O5—C15117.45 (16)
O5—C15—H15B109.5C20—O6—C23117.13 (13)
H15A—C15—H15B109.5C28—O7—C31117.52 (11)
O5—C15—H15C109.5
O1—C1—C2—O3140.75 (11)C22—C17—C18—C191.4 (2)
C7—C1—C2—O392.10 (13)C16—C17—C18—C19176.15 (15)
O1—C1—C2—C319.84 (16)C17—C18—C19—C200.3 (3)
C7—C1—C2—C3146.98 (12)C18—C19—C20—O6179.70 (15)
O3—C2—C3—O461.95 (14)C18—C19—C20—C211.3 (3)
C1—C2—C3—O4178.14 (11)O6—C20—C21—C22179.18 (15)
O3—C2—C3—C4177.64 (10)C19—C20—C21—C221.7 (3)
C1—C2—C3—C461.44 (13)C20—C21—C22—C170.6 (3)
O4—C3—C4—C6125.64 (12)C18—C17—C22—C211.0 (2)
C2—C3—C4—C6115.73 (13)C16—C17—C22—C21176.63 (15)
O4—C3—C4—C5166.90 (10)O4—C24—C25—C264.7 (2)
C2—C3—C4—C548.27 (14)O4—C24—C25—C30175.07 (13)
C6—C4—C5—O1106.90 (13)C30—C25—C26—C270.0 (2)
C3—C4—C5—O17.35 (15)C24—C25—C26—C27179.74 (14)
C3—C4—C5—C6114.25 (12)C25—C26—C27—C280.8 (2)
O1—C5—C6—C4104.19 (14)C26—C27—C28—O7179.99 (14)
O1—C5—C6—Cl16.86 (18)C26—C27—C28—C291.0 (2)
C4—C5—C6—Cl1111.05 (13)O7—C28—C29—C30179.52 (15)
O1—C5—C6—Cl2148.46 (10)C27—C28—C29—C300.4 (2)
C4—C5—C6—Cl2107.35 (11)C28—C29—C30—C250.4 (3)
C3—C4—C6—C599.86 (14)C26—C25—C30—C290.6 (2)
C5—C4—C6—Cl1110.80 (12)C24—C25—C30—C29179.18 (15)
C3—C4—C6—Cl110.94 (18)C6—C5—O1—C1120.36 (13)
C5—C4—C6—Cl2106.27 (12)C4—C5—O1—C153.75 (15)
C3—C4—C6—Cl2153.86 (10)C7—C1—O1—C588.59 (14)
O1—C1—C7—O257.49 (15)C2—C1—O1—C538.87 (15)
C2—C1—C7—O270.93 (16)C1—C7—O2—C8148.42 (13)
O2—C8—C9—C1049.6 (2)C9—C8—O2—C757.37 (19)
O2—C8—C9—C14132.47 (17)C3—C2—O3—C1693.89 (13)
C14—C9—C10—C111.1 (2)C1—C2—O3—C16146.66 (10)
C8—C9—C10—C11179.03 (15)C17—C16—O3—C285.55 (14)
C9—C10—C11—C121.6 (3)C4—C3—O4—C2474.90 (13)
C10—C11—C12—O5179.50 (17)C2—C3—O4—C24167.69 (11)
C10—C11—C12—C130.7 (3)C25—C24—O4—C3177.44 (11)
O5—C12—C13—C14179.22 (19)C11—C12—O5—C150.4 (3)
C11—C12—C13—C140.6 (3)C13—C12—O5—C15179.80 (19)
C12—C13—C14—C91.1 (3)C19—C20—O6—C239.0 (3)
C10—C9—C14—C130.2 (3)C21—C20—O6—C23170.06 (17)
C8—C9—C14—C13177.76 (18)C27—C28—O7—C313.3 (2)
O3—C16—C17—C18103.82 (16)C29—C28—O7—C31175.76 (14)
O3—C16—C17—C2273.73 (18)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C17–C22, C9–C14 and C25–C30 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i1.002.383.3487 (16)164
C23—H23B···O7ii0.982.503.399 (2)153
C26—H26···O3i0.952.543.2301 (16)130
C31—H31C···O1iii0.982.493.466 (2)172
C15—H15A···Cg1iv0.982.953.927 (3)174
C15—H15C···Cg2v0.982.993.873 (2)151
C24—H24B···Cg3v0.992.903.7983 (17)152
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z+1; (iii) x, y+1/2, z; (iv) x+1, y1/2, z+1; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC31H34Cl2O7
Mr589.48
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)5.3480 (4), 18.1110 (14), 14.8230 (11)
β (°) 91.162 (2)
V3)1435.43 (19)
Z2
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.53 × 0.44 × 0.39
Data collection
DiffractometerBruker KappaCCD APEX DUO 4K
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)\bbr00
Tmin, Tmax0.869, 0.901
No. of measured, independent and
observed [I > 2σ(I)] reflections
13864, 4689, 4635
Rint0.026
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.062, 1.04
No. of reflections4689
No. of parameters364
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.16
Absolute structureFlack (1983), 1023 Friedel pairs
Absolute structure parameter0.03 (3)

Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SAINT-Plus and XPREP (Bruker, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C17–C22, C9–C14 and C25–C30 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i1.002.383.3487 (16)164
C23—H23B···O7ii0.982.503.399 (2)153
C26—H26···O3i0.952.543.2301 (16)130
C31—H31C···O1iii0.982.493.466 (2)172
C15—H15A···Cg1iv0.982.953.927 (3)174
C15—H15C···Cg2v0.982.993.873 (2)151
C24—H24B···Cg3v0.992.903.7983 (17)152
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z+1; (iii) x, y+1/2, z; (iv) x+1, y1/2, z+1; (v) x+1, y, z.
 

Acknowledgements

Research funds of the University of Johannesburg and the Center for Synthesis and Catalysis are gratefully acknowledged. Mr C. Ncube is thanked for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBoeckman, R. K., Charette, A. B. Jr, Asberom, T. & Johnston, B. H. (1987). J. Am. Chem. Soc. 109, 7553–7555.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrimacombe, J. S., Evans, M. E., Forbes, E. J., Foster, A. B. & Webber, J. M. (1967). Carbohydr. Res. 4, 239–243.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2, SAINT-Plus and SADABS. BrukerAXS Inc ed. Madison, Wisconsin, USA.  Google Scholar
First citationCousins, G. S. & Hoberg, J. O. (2000). Chem. Soc. Rev. 29, 165–174.  Web of Science CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGammon, D. W., Kinfe, H. H., De Vos, D. E., Jacobs, P. A. & Sels, B. F. (2007). J. Carbohydr. Chem. 26, 141–157.  Web of Science CrossRef CAS Google Scholar
First citationHenry, K. J. & Fraser-Reid, B. (1995). Tetrahedron Lett. 36, 8901–8904.  CrossRef CAS Web of Science Google Scholar
First citationHoberg, J. O. & Bozell, J. J. (1995). Tetrahedron Lett. 36, 6831–6834.  CrossRef CAS Google Scholar
First citationHoberg, J. & Claffey, D. J. (1996). Tetrahedron Lett. 37, 2533–2536.  CrossRef CAS Web of Science Google Scholar
First citationMurali, R., Ramana, C. V. & Nagarajan, M. J. (1995). Chem. Soc., Chem. Commun. pp. 217–218.  Google Scholar
First citationRamana, C. V., Murali, R. & Nagarajan, M. J. (1997). J. Org. Chem. 62, 7694–7703.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTimmers, C. M., Leeuwenburgh, M. A., Verheijen, J. C., Vandermarel, G. A. & van Boom, J. H. (1996). Tetrahedron Asymmetry, 7, 49–52.  CrossRef CAS Web of Science Google Scholar
First citationWeber, G. F. & Hall, S. S. (1979). J. Org. Chem. 44, 447–449.  CrossRef CAS Web of Science Google Scholar
First citationYu, M. & Pagenkopf, B. L. (2005). Tetrahedron, 61, 321–347.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o2012-o2013
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds