organic compounds
tert-Butyl 1-hydroxypiperidine-2-carboxylate
aFachbereich Chemie, Organische Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Strasse, D-67663 Kaiserslautern, Germany, and bFachbereich Chemie, Anorganische Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Strasse, D-67663 Kaiserslautern, Germany
*Correspondence e-mail: hartung@chemie.uni-kl.de
The title compound, C10H19NO3, is a disubstituted piperidine bearing substituents in two equatorial positions. One of the substituents is a hydroxy group bound to nitrogen and the second a tert-butyl ester group bound to the carbon next to the endocyclic nitrogen. Enantiomers of the title compound form hydrogen-bridged dimers across a center of inversion.
Related literature
For bond lengths, see: Allen et al. (1987). For structural features associated with hydroxylamine, see: Chung-Phillips & Jebber (1995). For details of vanadium(V)- and molybdenum(VI)-catalysed oxidations, see: Hartung & Greb (2002); Reinhardt (2006). For a related structure, see: Kliegel et al. (2002). For the synthesis of 1-hydroxy piperidine-2-carboxylic acid, see: Murahashi & Shiota (1987).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536811026894/nc2235sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811026894/nc2235Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811026894/nc2235Isup3.cml
To a suspension of crude N-hydroxypiperidine-2-carboxylic acid (1.15 g, 8 mmol) (Murahashi & Shiota, 1987) in tert-butyl acetate (20 ml) was added at 298 K HClO4 [0.2 ml, 70% (w/w)]. The mixture was stirred for 10 min at 298 K and treated with a second batch of HClO4 [2 ml, 70% (w/w)]. Stirring was continued for 20 h at 298 K. pH of the reaction mixture was adjusted to 8–9 by addition of satd. aq. NaHCO3 [150 ml, 10% (w/w)] and NaOH pellets (0.8 g, 20 mmol). The resulting mixture was extracted with EtOAc (4 x 40 ml). Combined organic washings were dried (MgSO4) and concentrated under reduced pressure to furnish a brown oily residue that was purified by δH p.p.m.): 1.20–1.30 (m, 1H), 1.47 (s, 9H), 1.52–1.78 (m, 4H), 1.97 (d, J = 11.1 Hz, 1H), 2.52 (t, J = 9.1 Hz, 1H), 3.02 (d, J = 10.6 Hz, 1H), 3.37 (d, J = 10.2 Hz, 1H), 6.56 (br s, 1H, OH). 13C NMR (151 MHz, CDCl3, δC p.p.m.): 23.1, 25.1, 28.0, 29.3, 57.4, 71.2, 81.2, 171.9. Anal. calcd. for C15H23NO2: C, 59.68; H, 9.52; N, 6.96%; Found C, 59.96; H, 9.49; N 6.94%. Crystalls suitable for X-ray diffraction were obtained by slow of (I) at 340 K and 0.1 mbar.
[SiO2, pentane/EtOAc = 2:1 (v/v)]. Yield: 412 mg (25%); mp 356 K; 1H NMR (600 MHz, CDCl3,All H atoms were positioned geometrically and treated as riding atoms, with C—H distances in the range 0.98–1.00Å and with Uiso(H) set at 1.2Ueq (CH2, CH) or 1.5Ueq (CH3 and OH) of the parent atom. A free rotating group
was used for CH3 and OH H atoms.Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell
CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C10H19NO3 | F(000) = 440 |
Mr = 201.26 | Dx = 1.133 Mg m−3 |
Monoclinic, P21/n | Melting point: 356 K |
Hall symbol: -P 2yn | Cu Kα radiation, λ = 1.54184 Å |
a = 10.1685 (3) Å | Cell parameters from 2751 reflections |
b = 12.1271 (2) Å | θ = 3.6–62.6° |
c = 10.2083 (3) Å | µ = 0.68 mm−1 |
β = 110.377 (3)° | T = 150 K |
V = 1180.06 (5) Å3 | Indifferent fragment, colourless |
Z = 4 | 0.24 × 0.21 × 0.19 mm |
Oxford Diffraction Gemini S Ultra diffractometer | 1851 independent reflections |
Radiation source: fine-focus sealed tube | 1440 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
Detector resolution: 16.1399 pixels mm-1 | θmax = 62.7°, θmin = 6.4° |
ω–scans | h = −11→11 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | k = −13→12 |
Tmin = 0.854, Tmax = 0.882 | l = −11→11 |
5815 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.049 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.146 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.1003P)2] where P = (Fo2 + 2Fc2)/3 |
1851 reflections | (Δ/σ)max = 0.001 |
131 parameters | Δρmax = 0.39 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
C10H19NO3 | V = 1180.06 (5) Å3 |
Mr = 201.26 | Z = 4 |
Monoclinic, P21/n | Cu Kα radiation |
a = 10.1685 (3) Å | µ = 0.68 mm−1 |
b = 12.1271 (2) Å | T = 150 K |
c = 10.2083 (3) Å | 0.24 × 0.21 × 0.19 mm |
β = 110.377 (3)° |
Oxford Diffraction Gemini S Ultra diffractometer | 1851 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | 1440 reflections with I > 2σ(I) |
Tmin = 0.854, Tmax = 0.882 | Rint = 0.026 |
5815 measured reflections |
R[F2 > 2σ(F2)] = 0.049 | 0 restraints |
wR(F2) = 0.146 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.39 e Å−3 |
1851 reflections | Δρmin = −0.23 e Å−3 |
131 parameters |
Experimental. CrysAlis RED, Oxford Diffraction Ltd., (Version 1.171.31.8) Empirical absorption correction using spherical harmonics,implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.22238 (18) | 0.85238 (14) | −0.04530 (19) | 0.0323 (4) | |
O1 | 0.11112 (15) | 0.80571 (12) | −0.08516 (16) | 0.0512 (5) | |
O2 | 0.32151 (13) | 0.84628 (10) | −0.10296 (13) | 0.0368 (4) | |
C2 | 0.27379 (18) | 0.92188 (14) | 0.08639 (18) | 0.0330 (4) | |
H2 | 0.3532 | 0.9699 | 0.0850 | 0.040* | |
N1 | 0.15807 (15) | 0.98997 (12) | 0.09477 (14) | 0.0313 (4) | |
O3 | 0.12723 (13) | 1.06522 (10) | −0.02218 (14) | 0.0401 (4) | |
H3 | 0.0425 | 1.0839 | −0.0481 | 0.060* | |
C3 | 0.3223 (2) | 0.84527 (16) | 0.2126 (2) | 0.0439 (5) | |
H3A | 0.2449 | 0.7946 | 0.2093 | 0.053* | |
H3B | 0.4019 | 0.8002 | 0.2085 | 0.053* | |
C4 | 0.3675 (2) | 0.9091 (2) | 0.3492 (2) | 0.0541 (6) | |
H4A | 0.4526 | 0.9528 | 0.3590 | 0.065* | |
H4B | 0.3901 | 0.8572 | 0.4289 | 0.065* | |
C5 | 0.2493 (2) | 0.9855 (2) | 0.3503 (2) | 0.0529 (6) | |
H5A | 0.1686 | 0.9411 | 0.3532 | 0.063* | |
H5B | 0.2814 | 1.0323 | 0.4351 | 0.063* | |
C6 | 0.2036 (2) | 1.05791 (16) | 0.2217 (2) | 0.0427 (5) | |
H6A | 0.1254 | 1.1060 | 0.2230 | 0.051* | |
H6B | 0.2826 | 1.1056 | 0.2217 | 0.051* | |
C7 | 0.3043 (2) | 0.77301 (16) | −0.22421 (19) | 0.0386 (5) | |
C8 | 0.1799 (2) | 0.8114 (2) | −0.3490 (2) | 0.0554 (6) | |
H8A | 0.1910 | 0.8897 | −0.3664 | 0.083* | |
H8B | 0.0931 | 0.8008 | −0.3292 | 0.083* | |
H8C | 0.1755 | 0.7683 | −0.4317 | 0.083* | |
C9 | 0.2929 (3) | 0.65452 (17) | −0.1852 (2) | 0.0519 (6) | |
H9A | 0.2054 | 0.6440 | −0.1668 | 0.078* | |
H9B | 0.3728 | 0.6360 | −0.1012 | 0.078* | |
H9C | 0.2932 | 0.6065 | −0.2623 | 0.078* | |
C10 | 0.4397 (2) | 0.79292 (19) | −0.2509 (2) | 0.0509 (6) | |
H10A | 0.5193 | 0.7704 | −0.1688 | 0.076* | |
H10B | 0.4481 | 0.8715 | −0.2691 | 0.076* | |
H10C | 0.4395 | 0.7498 | −0.3322 | 0.076* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0292 (9) | 0.0312 (9) | 0.0348 (10) | 0.0023 (7) | 0.0091 (8) | −0.0018 (8) |
O1 | 0.0362 (8) | 0.0574 (9) | 0.0610 (10) | −0.0095 (7) | 0.0185 (7) | −0.0249 (7) |
O2 | 0.0354 (7) | 0.0415 (7) | 0.0341 (7) | −0.0039 (5) | 0.0131 (6) | −0.0072 (5) |
C2 | 0.0282 (9) | 0.0354 (9) | 0.0346 (10) | 0.0003 (7) | 0.0099 (7) | −0.0031 (8) |
N1 | 0.0323 (8) | 0.0312 (8) | 0.0297 (8) | 0.0030 (6) | 0.0100 (6) | 0.0012 (6) |
O3 | 0.0359 (7) | 0.0372 (7) | 0.0476 (8) | 0.0030 (5) | 0.0151 (6) | 0.0163 (6) |
C3 | 0.0411 (11) | 0.0414 (10) | 0.0452 (12) | 0.0090 (8) | 0.0097 (9) | 0.0070 (9) |
C4 | 0.0517 (12) | 0.0692 (13) | 0.0336 (11) | 0.0100 (11) | 0.0052 (9) | 0.0044 (10) |
C5 | 0.0500 (12) | 0.0755 (14) | 0.0312 (11) | 0.0035 (11) | 0.0117 (9) | −0.0094 (10) |
C6 | 0.0361 (10) | 0.0424 (11) | 0.0490 (12) | −0.0018 (8) | 0.0144 (9) | −0.0150 (9) |
C7 | 0.0433 (11) | 0.0444 (10) | 0.0280 (9) | −0.0017 (8) | 0.0120 (8) | −0.0086 (8) |
C8 | 0.0564 (14) | 0.0666 (14) | 0.0355 (11) | −0.0055 (11) | 0.0063 (10) | −0.0027 (10) |
C9 | 0.0704 (15) | 0.0476 (12) | 0.0461 (12) | −0.0023 (10) | 0.0307 (11) | −0.0073 (10) |
C10 | 0.0546 (13) | 0.0609 (13) | 0.0411 (11) | −0.0055 (10) | 0.0217 (10) | −0.0095 (10) |
C1—O1 | 1.202 (2) | C5—H5A | 0.9900 |
C1—O2 | 1.335 (2) | C5—H5B | 0.9900 |
C1—C2 | 1.517 (2) | C6—H6A | 0.9900 |
O2—C7 | 1.484 (2) | C6—H6B | 0.9900 |
C2—N1 | 1.464 (2) | C7—C9 | 1.506 (3) |
C2—C3 | 1.524 (3) | C7—C10 | 1.514 (3) |
C2—H2 | 1.0000 | C7—C8 | 1.522 (3) |
N1—O3 | 1.4477 (18) | C8—H8A | 0.9800 |
N1—C6 | 1.468 (2) | C8—H8B | 0.9800 |
O3—H3 | 0.8400 | C8—H8C | 0.9800 |
C3—C4 | 1.520 (3) | C9—H9A | 0.9800 |
C3—H3A | 0.9900 | C9—H9B | 0.9800 |
C3—H3B | 0.9900 | C9—H9C | 0.9800 |
C4—C5 | 1.521 (3) | C10—H10A | 0.9800 |
C4—H4A | 0.9900 | C10—H10B | 0.9800 |
C4—H4B | 0.9900 | C10—H10C | 0.9800 |
C5—C6 | 1.512 (3) | ||
O1—C1—O2 | 126.22 (16) | H5A—C5—H5B | 108.1 |
O1—C1—C2 | 123.69 (16) | N1—C6—C5 | 110.36 (16) |
O2—C1—C2 | 109.97 (14) | N1—C6—H6A | 109.6 |
C1—O2—C7 | 120.89 (13) | C5—C6—H6A | 109.6 |
N1—C2—C1 | 109.21 (13) | N1—C6—H6B | 109.6 |
N1—C2—C3 | 108.94 (15) | C5—C6—H6B | 109.6 |
C1—C2—C3 | 108.69 (15) | H6A—C6—H6B | 108.1 |
N1—C2—H2 | 110.0 | O2—C7—C9 | 110.40 (15) |
C1—C2—H2 | 110.0 | O2—C7—C10 | 101.79 (14) |
C3—C2—H2 | 110.0 | C9—C7—C10 | 110.98 (17) |
O3—N1—C2 | 104.77 (12) | O2—C7—C8 | 109.72 (16) |
O3—N1—C6 | 106.58 (13) | C9—C7—C8 | 113.25 (18) |
C2—N1—C6 | 110.82 (13) | C10—C7—C8 | 110.10 (17) |
N1—O3—H3 | 109.5 | C7—C8—H8A | 109.5 |
C4—C3—C2 | 111.74 (16) | C7—C8—H8B | 109.5 |
C4—C3—H3A | 109.3 | H8A—C8—H8B | 109.5 |
C2—C3—H3A | 109.3 | C7—C8—H8C | 109.5 |
C4—C3—H3B | 109.3 | H8A—C8—H8C | 109.5 |
C2—C3—H3B | 109.3 | H8B—C8—H8C | 109.5 |
H3A—C3—H3B | 107.9 | C7—C9—H9A | 109.5 |
C3—C4—C5 | 109.27 (17) | C7—C9—H9B | 109.5 |
C3—C4—H4A | 109.8 | H9A—C9—H9B | 109.5 |
C5—C4—H4A | 109.8 | C7—C9—H9C | 109.5 |
C3—C4—H4B | 109.8 | H9A—C9—H9C | 109.5 |
C5—C4—H4B | 109.8 | H9B—C9—H9C | 109.5 |
H4A—C4—H4B | 108.3 | C7—C10—H10A | 109.5 |
C6—C5—C4 | 110.60 (17) | C7—C10—H10B | 109.5 |
C6—C5—H5A | 109.5 | H10A—C10—H10B | 109.5 |
C4—C5—H5A | 109.5 | C7—C10—H10C | 109.5 |
C6—C5—H5B | 109.5 | H10A—C10—H10C | 109.5 |
C4—C5—H5B | 109.5 | H10B—C10—H10C | 109.5 |
O1—C1—O2—C7 | −3.0 (3) | C1—C2—C3—C4 | −176.65 (16) |
C2—C1—O2—C7 | 173.14 (14) | C2—C3—C4—C5 | 54.3 (2) |
O1—C1—C2—N1 | −42.6 (2) | C3—C4—C5—C6 | −53.9 (3) |
O2—C1—C2—N1 | 141.07 (14) | O3—N1—C6—C5 | −175.52 (14) |
O1—C1—C2—C3 | 76.1 (2) | C2—N1—C6—C5 | −62.1 (2) |
O2—C1—C2—C3 | −100.19 (17) | C4—C5—C6—N1 | 58.1 (2) |
C1—C2—N1—O3 | −65.86 (16) | C1—O2—C7—C9 | −61.7 (2) |
C3—C2—N1—O3 | 175.55 (13) | C1—O2—C7—C10 | −179.57 (16) |
C1—C2—N1—C6 | 179.56 (14) | C1—O2—C7—C8 | 63.8 (2) |
C3—C2—N1—C6 | 60.98 (19) | C2—N1—O3—H3 | 152.19 |
N1—C2—C3—C4 | −57.7 (2) | C6—N1—O3—H3 | −90.30 |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···N1i | 0.84 | 2.12 | 2.8136 (19) | 139 |
Symmetry code: (i) −x, −y+2, −z. |
Experimental details
Crystal data | |
Chemical formula | C10H19NO3 |
Mr | 201.26 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 150 |
a, b, c (Å) | 10.1685 (3), 12.1271 (2), 10.2083 (3) |
β (°) | 110.377 (3) |
V (Å3) | 1180.06 (5) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 0.68 |
Crystal size (mm) | 0.24 × 0.21 × 0.19 |
Data collection | |
Diffractometer | Oxford Diffraction Gemini S Ultra diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2008) |
Tmin, Tmax | 0.854, 0.882 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5815, 1851, 1440 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.576 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.049, 0.146, 1.09 |
No. of reflections | 1851 |
No. of parameters | 131 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.39, −0.23 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···N1i | 0.84 | 2.12 | 2.8136 (19) | 139 |
Symmetry code: (i) −x, −y+2, −z. |
Acknowledgements
This work was supported by the Deutsche Bundesstiftung Umwelt (grant No. 20007/885; scholarship for OB).
References
Allen, F. H., Kennard, O. & Watson, D. G. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Chung-Phillips, A. & Jebber, K. A. (1995). J. Chem. Phys. 102, 7080–7087. CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Hartung, J. & Greb, M. (2002). J. Organomet. Chem. 661, 67–84. Web of Science CrossRef CAS Google Scholar
Kliegel, W., Riebe, U., Patrick, B. O., Rettig, S. J. & Trotter, J. (2002). Acta Cryst. E58, o509–o510. Web of Science CSD CrossRef IUCr Journals Google Scholar
Murahashi, S. & Shiota, T. (1987). Tetrahedron Lett. 28, 6469–6472. CrossRef CAS Web of Science Google Scholar
Oxford Diffraction (2008). CrysAlis RED and CrysAlis CCD. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Reinhardt, G. (2006). J. Mol. Catal. A, 251, 177–184. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
1-Hydroxypiperidine-2-carboxylate (Murahashi & Shiota, 1987) attracted our attention, because the compound was expected to bind as dianion to early transition metal ions, such as vanadium(V) or molybdenum(VI). Complexes formed from vanadium(V) or molybdenum(VI) ions are formaly d0-metal centers. Complexes having such an electron configuration are able to activate peroxides at low temperatures, which is of importance for modern sustainable oxidation catalysis, for example in natural product synthesis (Hartung & Greb, 2002) or bleaching (Reinhardt, 2006). Since impurities from the synthesis of 1-hydroxypiperidine-2-carboxylate were difficult to separate from standard liquid/liquid and liquid/solid partitioning processes, we chose to convert this acid into a derived O-tert-butyl ester for subsequent sublimination. Colorless crystals of the title compound that deposited from the sublimation process were investigated via X-ray diffraction, in order to obtain a deeper structural insight into the product class of N-hydroxy α-aminocarboxylic acid esters.
The central structural element of the title compound, is a disubstituted piperidine ring. The N-heterocycle bears a hydroxy substituent at nitrogen and a tert-butyl O-ester substituent at the carbon next to the endocyclic nitrogen. Both substituents are bond to equatorial sites in piperidine (Figure 1). A distorted gauche arrangement of subunits C6–N1–O3–H3 = -90.30 ° and C2–N1–O3–H3 151.18 °, in combination with a N1–O3 distance of 1.4477 (18) Å, reflect typical structural characteristics of with compounds having a nitrogen oxygen single bond, such as hydroxylamine (Chung-Phillips & Jebber, 1995) or N-hydroxypiperidinium chloride (Kliegel et al., 2002). The geometrical parameters for the tert-butyl O-ester group in terms of bond distances and angles agree with reference data reported previously (Allen et al., 1987).
In the crystal, association of the title compound, occurs predominantly via H-bonding. Enantiomers of the title compound thus form H-bridged dimers (Figure 2 and Table 1) across a center of inversion [N1i···H3–O3 = 2.12 Å, N1i···O3 = 2.8136 (19)].