organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Bis(4-methyl­phenyl­sulfon­yl)­suberamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 19 July 2011; accepted 22 July 2011; online 30 July 2011)

In the crystal structure of the title compound, C22H28N2O6S2, the asymmetric unit contains one half mol­ecule with a center of symmetry at the mid-point of the central C—C bond. The conformations of all the N—H, C= O and C—H bonds in the central amide and aliphatic segments are anti to their adjacent bonds. The mol­ecule is bent at the S atom with an C—SO2—NH—C(O) torsion angle of −76.4 (3)°. The dihedral angle between the benzene ring and the SO2—NH—C(O) segment in the two halves of the mol­ecule is 67.2 (1)°. In the crystal, N—H⋯O(C) inter­molecular hydrogen bonds link the mol­ecules into chains along the b axis.

Related literature

For studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Arjunan et al. (2004[Arjunan, V., Mohan, S., Subramanian, S. & Gowda, B. T. (2004). Spectrochim. Acta Part A, 60, 1141-1159.]); Gowda et al. (1999[Gowda, B. T., Bhat, D. K., Fuess, H. & Weiss, A. (1999). Z. Naturforsch. Teil A, 54, 261-267.], 2006[Gowda, B. T., Kožíšek, J. & Fuess, H. (2006). Z. Naturforsch. Teil A, 61, 588-594.]); for N-(ar­yl)-methane­sulfonamides, see: Gowda et al. (2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2337.]); and for N-(aryl­sulfon­yl)-amides, see: Rodrigues et al. (2011[Rodrigues, V. Z., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o2101.])

[Scheme 1]

Experimental

Crystal data
  • C22H28N2O6S2

  • Mr = 480.58

  • Monoclinic, P 21 /c

  • a = 8.025 (1) Å

  • b = 15.835 (2) Å

  • c = 10.106 (1) Å

  • β = 112.31 (1)°

  • V = 1188.1 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.06 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.944, Tmax = 0.984

  • 4285 measured reflections

  • 2174 independent reflections

  • 1326 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.139

  • S = 1.04

  • 2174 reflections

  • 149 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3i 0.85 (2) 2.12 (2) 2.968 (3) 177 (3)
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The amide and sulfonamide moieties are important constituents of many biologically significant compounds. As part of our studies on the effects of ring and side chain substitutions on the structures and other aspects of N-(aryl)-amides (Arjunan et al., 2004; Gowda et al., 1999, 2006), N-(aryl)-methanesulfonamides (Gowda et al., 2007) and N-(arylsulfonyl)-amides (Rodrigues et al., 2011), the crystal structure of N,N-bis(4-methylphenylsulfonyl)-suberamide (I) has been determined (Fig. 1).

In the two C—SO2—NH—CO—CH2—CH2—CH2— central segments of the structure, all the N—H, C=O and C—H bonds in the amide and aliphatic segments are anti to the adjacent bonds, similar to that observed in N,N-bis(4-chlorophenylsulfonyl)-suberamide (II) (Rodrigues et al., 2011). The orientations of sulfonamide groups with respect to the attached phenyl rings are given by the C2—C1—S1—N1 and C6—C1—S1—N1 torsion angles of 78.2 (4)° and -104.3 (3)°, respectively, compared to the corresponding angles of 67.2 (3)° and -113.9 (4)° in (II).

The molecule is bent at the S atom with the C1—S1—N1—C7 torsion angle of -76.4 (3)°, compared to the value of -80.6 (4)° in (II). In (I), the aliphatic chain is almost linear with C7—C8—C9—C10 torsion angle of -176.9 (3)°, compared to the value of -179.4 (4)° in (II).

The dihedral angle between the benzene ring and the SO2—NH—C(O) segment in the two halves of the molecule is 67.2 (1)°, compared to the value of 79.5 (2)° in (II).

The structure shows simultaneous of N—H···O(C) and N—H···O(S) intermolecular hydrogen bonds (Table 1), which link the molecules into infinite chains along the b-axis.

Related literature top

For studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Arjunan et al. (2004); Gowda et al. (1999, 2006); for N-(aryl)-methanesulfonamides, see: Gowda et al. (2007); and for N-(arylsulfonyl)-amides, see: Rodrigues et al. (2011)

Experimental top

N,N-Bis(4-methylphenylsulfonyl)-suberamide was prepared by refluxing a mixture of suberic acid (0.01 mol) with 4-methylbenzenesulfonamide (0.02 mol) and POCl3 (0.02 mol) for 1 h on a water bath. The reaction mixture was allowed to cool and added ether to it. The solid product obtained was filtered, washed thoroughly with ether and hot ethanol. The compound was recrystallized to the constant melting point and was characterized by its infrared and NMR spectra.

Plate like colorless single crystals used in the X-ray diffraction studies were grown by a slow evaporation of a solution of the compound in ethanol at room temperature.

Refinement top

The H atom of the NH group was located in a difference map and later restrained to the distance N—H = 0.86 (2) Å. The other H atoms were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93 Å, the methyl C—H = 0.96Å and the methylene C—H = 0.97 Å. All H atoms were refined with isotropic displacement parameters. The Uiso(H) values were set at 1.2Ueq(C-aromatic, N) and 1.5Ueq(C-methyl).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented as small spheres of arbitrary radii (Symmetry code: (i) -x + 2, -y + 2, -z + 1).
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
N,N'-Bis(4-methylphenylsulfonyl)suberamide top
Crystal data top
C22H28N2O6S2F(000) = 508
Mr = 480.58Dx = 1.343 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1291 reflections
a = 8.025 (1) Åθ = 2.6–27.9°
b = 15.835 (2) ŵ = 0.26 mm1
c = 10.106 (1) ÅT = 293 K
β = 112.31 (1)°Plate, colourless
V = 1188.1 (2) Å30.22 × 0.20 × 0.06 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2174 independent reflections
Radiation source: fine-focus sealed tube1326 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Rotation method data acquisition using ω and ϕ scansθmax = 25.4°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 89
Tmin = 0.944, Tmax = 0.984k = 1819
4285 measured reflectionsl = 125
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0552P)2 + 0.6042P]
where P = (Fo2 + 2Fc2)/3
2174 reflections(Δ/σ)max < 0.001
149 parametersΔρmax = 0.24 e Å3
1 restraintΔρmin = 0.18 e Å3
Crystal data top
C22H28N2O6S2V = 1188.1 (2) Å3
Mr = 480.58Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.025 (1) ŵ = 0.26 mm1
b = 15.835 (2) ÅT = 293 K
c = 10.106 (1) Å0.22 × 0.20 × 0.06 mm
β = 112.31 (1)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2174 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1326 reflections with I > 2σ(I)
Tmin = 0.944, Tmax = 0.984Rint = 0.027
4285 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0581 restraint
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.24 e Å3
2174 reflectionsΔρmin = 0.18 e Å3
149 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5932 (5)0.5531 (2)0.2952 (4)0.0497 (9)
C20.6538 (6)0.5479 (3)0.4421 (4)0.0737 (13)
H20.62700.59050.49420.088*
C30.7543 (6)0.4790 (3)0.5116 (4)0.0764 (13)
H30.79740.47660.61090.092*
C40.7924 (5)0.4137 (3)0.4374 (4)0.0618 (10)
C50.7280 (6)0.4193 (3)0.2923 (5)0.0729 (12)
H50.74940.37520.24010.088*
C60.6318 (5)0.4888 (3)0.2201 (4)0.0659 (11)
H60.59330.49200.12110.079*
C70.6778 (4)0.7666 (2)0.3447 (3)0.0426 (8)
C80.7768 (5)0.8427 (2)0.3252 (4)0.0514 (9)
H8A0.69280.87860.25250.062*
H8B0.86810.82450.29020.062*
C90.8661 (5)0.8942 (2)0.4590 (3)0.0502 (9)
H9A0.95600.85960.52990.060*
H9B0.77650.90990.49740.060*
C100.9552 (5)0.9732 (2)0.4338 (3)0.0472 (9)
H10A0.86511.00720.36190.057*
H10B1.04500.95720.39580.057*
C110.8969 (6)0.3379 (3)0.5150 (5)0.0877 (14)
H11A0.81680.29890.53360.132*
H11B0.98820.35550.60400.132*
H11C0.95250.31090.45720.132*
N10.6017 (4)0.71857 (18)0.2220 (3)0.0503 (8)
H1N0.622 (5)0.730 (2)0.147 (3)0.060*
O10.3945 (4)0.62103 (16)0.0532 (2)0.0675 (8)
O20.3391 (3)0.66139 (16)0.2692 (3)0.0676 (8)
O30.6643 (3)0.74728 (14)0.4557 (2)0.0530 (7)
S10.46037 (13)0.63862 (6)0.20264 (10)0.0530 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.058 (2)0.046 (2)0.046 (2)0.0189 (18)0.0211 (19)0.0049 (17)
C20.121 (4)0.052 (3)0.048 (2)0.004 (3)0.032 (2)0.005 (2)
C30.115 (4)0.061 (3)0.044 (2)0.007 (3)0.020 (2)0.001 (2)
C40.060 (2)0.064 (3)0.064 (3)0.009 (2)0.026 (2)0.000 (2)
C50.083 (3)0.074 (3)0.067 (3)0.013 (3)0.034 (2)0.009 (2)
C60.077 (3)0.073 (3)0.046 (2)0.005 (2)0.022 (2)0.006 (2)
C70.050 (2)0.038 (2)0.040 (2)0.0043 (17)0.0181 (17)0.0070 (15)
C80.065 (2)0.043 (2)0.047 (2)0.0127 (18)0.0215 (18)0.0077 (16)
C90.057 (2)0.039 (2)0.049 (2)0.0055 (18)0.0142 (17)0.0054 (16)
C100.049 (2)0.038 (2)0.047 (2)0.0009 (17)0.0093 (17)0.0032 (15)
C110.084 (3)0.081 (4)0.096 (4)0.018 (3)0.033 (3)0.018 (3)
N10.072 (2)0.0452 (17)0.0398 (16)0.0234 (16)0.0283 (16)0.0108 (14)
O10.0841 (19)0.0595 (18)0.0454 (14)0.0210 (14)0.0091 (13)0.0094 (12)
O20.0662 (17)0.0630 (18)0.0816 (19)0.0098 (14)0.0372 (16)0.0012 (14)
O30.0784 (18)0.0485 (15)0.0385 (13)0.0094 (13)0.0292 (13)0.0069 (11)
S10.0622 (6)0.0473 (6)0.0471 (5)0.0178 (5)0.0179 (4)0.0062 (4)
Geometric parameters (Å, º) top
C1—C61.374 (5)C8—H8A0.9700
C1—C21.378 (5)C8—H8B0.9700
C1—S11.757 (4)C9—C101.510 (4)
C2—C31.379 (6)C9—H9A0.9700
C2—H20.9300C9—H9B0.9700
C3—C41.379 (5)C10—C10i1.515 (6)
C3—H30.9300C10—H10A0.9700
C4—C51.360 (5)C10—H10B0.9700
C4—C111.503 (6)C11—H11A0.9600
C5—C61.383 (6)C11—H11B0.9600
C5—H50.9300C11—H11C0.9600
C6—H60.9300N1—S11.661 (3)
C7—O31.206 (3)N1—H1N0.851 (18)
C7—N11.384 (4)O1—S11.425 (2)
C7—C81.498 (4)O2—S11.423 (3)
C8—C91.507 (4)
C6—C1—C2119.3 (4)C8—C9—C10113.0 (3)
C6—C1—S1119.7 (3)C8—C9—H9A109.0
C2—C1—S1121.0 (3)C10—C9—H9A109.0
C3—C2—C1119.7 (4)C8—C9—H9B109.0
C3—C2—H2120.2C10—C9—H9B109.0
C1—C2—H2120.2H9A—C9—H9B107.8
C2—C3—C4121.6 (4)C9—C10—C10i114.3 (3)
C2—C3—H3119.2C9—C10—H10A108.7
C4—C3—H3119.2C10i—C10—H10A108.7
C5—C4—C3117.7 (4)C9—C10—H10B108.7
C5—C4—C11121.6 (4)C10i—C10—H10B108.7
C3—C4—C11120.7 (4)H10A—C10—H10B107.6
C4—C5—C6121.9 (4)C4—C11—H11A109.5
C4—C5—H5119.0C4—C11—H11B109.5
C6—C5—H5119.0H11A—C11—H11B109.5
C1—C6—C5119.7 (4)C4—C11—H11C109.5
C1—C6—H6120.1H11A—C11—H11C109.5
C5—C6—H6120.1H11B—C11—H11C109.5
O3—C7—N1122.0 (3)C7—N1—S1125.0 (2)
O3—C7—C8124.5 (3)C7—N1—H1N121 (2)
N1—C7—C8113.6 (3)S1—N1—H1N114 (2)
C7—C8—C9114.3 (3)O2—S1—O1120.31 (18)
C7—C8—H8A108.7O2—S1—N1108.08 (15)
C9—C8—H8A108.7O1—S1—N1103.64 (15)
C7—C8—H8B108.7O2—S1—C1109.20 (16)
C9—C8—H8B108.7O1—S1—C1108.66 (17)
H8A—C8—H8B107.6N1—S1—C1105.98 (16)
C6—C1—C2—C31.0 (6)C8—C9—C10—C10i179.5 (4)
S1—C1—C2—C3178.5 (3)O3—C7—N1—S19.4 (5)
C1—C2—C3—C41.7 (7)C8—C7—N1—S1170.9 (3)
C2—C3—C4—C50.3 (6)C7—N1—S1—O240.5 (3)
C2—C3—C4—C11177.9 (4)C7—N1—S1—O1169.2 (3)
C3—C4—C5—C61.8 (6)C7—N1—S1—C176.5 (3)
C11—C4—C5—C6180.0 (4)C6—C1—S1—O2139.5 (3)
C2—C1—C6—C51.0 (6)C2—C1—S1—O238.0 (4)
S1—C1—C6—C5176.5 (3)C6—C1—S1—O16.5 (3)
C4—C5—C6—C12.4 (6)C2—C1—S1—O1170.9 (3)
O3—C7—C8—C91.7 (5)C6—C1—S1—N1104.3 (3)
N1—C7—C8—C9178.0 (3)C2—C1—S1—N178.2 (3)
C7—C8—C9—C10176.5 (3)
Symmetry code: (i) x+2, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3ii0.85 (2)2.12 (2)2.968 (3)177 (3)
Symmetry code: (ii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC22H28N2O6S2
Mr480.58
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.025 (1), 15.835 (2), 10.106 (1)
β (°) 112.31 (1)
V3)1188.1 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.22 × 0.20 × 0.06
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.944, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
4285, 2174, 1326
Rint0.027
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.139, 1.04
No. of reflections2174
No. of parameters149
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.18

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.851 (18)2.118 (18)2.968 (3)177 (3)
Symmetry code: (i) x, y+3/2, z1/2.
 

Acknowledgements

VZR thanks the University Grants Commission, Government of India, New Delhi, for the award of an RFSMS research fellowship.

References

First citationArjunan, V., Mohan, S., Subramanian, S. & Gowda, B. T. (2004). Spectrochim. Acta Part A, 60, 1141–1159.  CrossRef CAS Google Scholar
First citationGowda, B. T., Bhat, D. K., Fuess, H. & Weiss, A. (1999). Z. Naturforsch. Teil A, 54, 261–267.  CAS Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2337.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Kožíšek, J. & Fuess, H. (2006). Z. Naturforsch. Teil A, 61, 588–594.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationRodrigues, V. Z., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o2101.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds