organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-(4-Chloro­phen­yl)-2-(4-meth­­oxy­phen­yl)-6,7-di­hydro-4H-pyrazolo­[5,1-c][1,4]oxazine

aSchool of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
*Correspondence e-mail: bxzhao@sdu.edu.cn

(Received 20 June 2011; accepted 30 June 2011; online 9 July 2011)

In the title compound, C19H17ClN2O2, the pyrazole ring is almost planar with a maximum deviation of 0.009 (3) Å and makes a dihedral angle of 8.96 (9)° with the oxazine ring. The dihedral angles between the pyrazole ring and the chlorine- and meth­oxy-substituted benzene rings are 50.95 (8) and 13.24 (9)°, respectively. An inter­molecular C—H⋯N hydrogen bond links the mol­ecules into infinite chains along the a axis. The crystal structure is further stabilized by C—H⋯π inter­actions.

Related literature

For the pharmacological activity of pyrazole fused-heterocycles, see: Liu et al. (2011[Liu, N., Zhang, J.-H., Zhao, B.-X., Zhao, J., Su, L., Dong, W.-L., Zhang, S.-L. & Miao, J.-Y. (2011). Eur. J. Med. Chem. 46, 2359-2367.]); Kumar et al. (2011[Kumar, T. S., Mishra, S., Deflorian, F., Yoo, L. S., Phan, K., Kecskès, M., Szabo, A., Shinkre, B., Gao, Z.-G., Trenkle, W. & Jacobson, K. A. (2011). Bioorg. Med. Chem. Lett. 21, 2740-2745.]); Guerrini et al. (2010[Guerrini, G., Ciciani, G., Bruni, F., Selleri, S., Guarino, C., Melani, F., Montali, M., Daniele, S., Martini, C., Ghelardini, C., Norcini, M., Ciattini, S. & Costanzo, A. (2010). J. Med. Chem. 53, 7532-7548.]). For related structures, see: Wei et al. (2007[Wei, F., Zhao, B.-X., Dong, W.-L., Zuo, H., Shin, D.-S., Wang, D.-W., Xia, Y. & Ge, Y.-Q. (2007). Synth. Commun. 37, 4415-4424.]); Xie et al. (2009[Xie, Y.-S., Zhao, B.-X., Lv, H.-S., Li, J.-K., Wang, B.-S. & Shin, D.-S. (2009). J. Mol. Struct. 930, 83-87.]); Shimizu et al. (1990[Shimizu, T., Hayashi, Y., Miki, M. & Teramura, K. (1990). J. Heterocycl. Chem. 27, 1669-1671.]).

[Scheme 1]

Experimental

Crystal data
  • C19H17ClN2O2

  • Mr = 340.80

  • Monoclinic, P 21 /c

  • a = 6.0800 (8) Å

  • b = 34.224 (5) Å

  • c = 8.1217 (11) Å

  • β = 91.186 (3)°

  • V = 1689.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 298 K

  • 0.15 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.965, Tmax = 0.977

  • 8891 measured reflections

  • 2995 independent reflections

  • 1620 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.123

  • S = 1.02

  • 2995 reflections

  • 218 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N1,N2,C8–C10 and C14–C19 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11B⋯N1i 0.97 2.47 3.419 (3) 167
C13—H13BCg1ii 0.97 2.86 3.762 (3) 156
C6—H6⋯Cg2iii 0.93 2.89 3.608 (3) 135
Symmetry codes: (i) x-1, y, z; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

A wide variety of heterocyclic systems have been explored for developing pharmaceutically important molecules. In the family of heterocyclic compounds, pyrazole derivatives possess important biological activity such as analgesic, anti-inflammatory, antipyretic, antiarrhythmic, tranquilizing, muscle relaxing, psychoanaleptic, anticonvulsant, monoamineoxidase inhibiting, antidiabetic and antibacterial activity. Pyrazole-fused heterocycles including pyrazolo[3,4-b]pyridine, pyrazolo[3,4-d]pyrimidine and pyrazolo[5,1-b][1,3]oxazine have attracted considerable attention. In the structure of raceme (I), two substituted benzene rings are bonded to pyrazolo[5,1-c][1,4]oxazine moiety at C8 and C12 as showed in Fig. 1. The torsion angle of C(1)–O(1)–C(2)–C(3) is -177.6 (2)° for compound (I), demonstrating that the methoxyl group is nearly planar in relation to the benzene ring. The moiety of oxazine ring is approximately planar with maximum mean plane deviation of -0.330 (2) Å for atom O2 and it is coplanar with the pyrazole ring, with a dihedral angle of only about 8.96 (9)°. The dihedral angles formed by chlorine substituted benzene ring and methoxy substituted benzene ring with pyrazole are 50.95 (8)° and 13.24 (9)°, respectively. Regarding the packing structure of compound (I), the C11–H11B···N1 hydrogen bond self-assembles the molecules into C(5) chains parallel to the a axis. Moreover, the structure is consolidated by C–H···π interactions between the aforementioned chains.

Related literature top

For the pharmacological activity of pyrazole fused-heterocycles, see: Liu et al. (2011); Kumar et al. (2011); Guerrini et al. (2010). For related structures, see: Wei et al. (2007); Xie et al. (2009); Shimizu et al. (1990).

Experimental top

To a 100 ml round-bottomed flask equipped with a magnetic stirrer, 1-(4-chlorophenyl)-2-(5-(hydroxymethyl)-3-(4-methoxyphenyl)-1H-pyrazol-1-yl)ethanol (1.0 mmol) and 50% H2SO4 (3 drops) in 35 ml toluene were charged. The flask was stirred and heated at reflux for 4 h, until TLC indicated the end of the reaction. Solvent was removed and the resulting residue was partitioned with water and ethyl acetate. The organic layer was washed successively with brine and water and dried over MgSO4, then evaporated under reduced pressure to give a residue. Compound (I) was obtained without further purification in 84% yield. Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of a solution of the solid in ethanol at room temperature for 3 days.

Refinement top

All the H atoms were positioned in their idealized geometries with C—H = 0.93–0.97Å and were refined using a riding model with Uiso(H) = 1.5Ueq for methyl groups and with Uiso(H) = 1.2Ueq for others.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP view of compound (I), showing 25% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of compound (I). Hydrogen bonds are shown as dashed lines.
6-(4-Chlorophenyl)-2-(4-methoxyphenyl)-6,7-dihydro-4H- pyrazolo[5,1-c][1,4]oxazine top
Crystal data top
C19H17ClN2O2F(000) = 712
Mr = 340.80Dx = 1.340 Mg m3
Dm = 1.340 Mg m3
Dm measured by not measured
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1213 reflections
a = 6.0800 (8) Åθ = 3.4–19.3°
b = 34.224 (5) ŵ = 0.24 mm1
c = 8.1217 (11) ÅT = 298 K
β = 91.186 (3)°Block, colourless
V = 1689.6 (4) Å30.15 × 0.12 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2995 independent reflections
Radiation source: fine-focus sealed tube1620 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ϕ and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 77
Tmin = 0.965, Tmax = 0.977k = 4037
8891 measured reflectionsl = 69
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0496P)2 + 0.0204P]
where P = (Fo2 + 2Fc2)/3
2995 reflections(Δ/σ)max < 0.001
218 parametersΔρmax = 0.16 e Å3
1 restraintΔρmin = 0.24 e Å3
Crystal data top
C19H17ClN2O2V = 1689.6 (4) Å3
Mr = 340.80Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.0800 (8) ŵ = 0.24 mm1
b = 34.224 (5) ÅT = 298 K
c = 8.1217 (11) Å0.15 × 0.12 × 0.10 mm
β = 91.186 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2995 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1620 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.977Rint = 0.043
8891 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0471 restraint
wR(F2) = 0.123H-atom parameters constrained
S = 1.02Δρmax = 0.16 e Å3
2995 reflectionsΔρmin = 0.24 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.30584 (16)0.48228 (2)0.68319 (12)0.1196 (4)
O10.9536 (3)0.04587 (5)0.5717 (3)0.0913 (6)
O20.1081 (3)0.29880 (5)0.4635 (2)0.0731 (5)
N10.6176 (3)0.22476 (6)0.5415 (3)0.0634 (6)
N20.4637 (3)0.25198 (6)0.4972 (2)0.0616 (6)
C11.1487 (5)0.04055 (9)0.6669 (4)0.1062 (11)
H1A1.26290.05680.62430.159*
H1B1.19320.01370.66170.159*
H1C1.12240.04750.77920.159*
C20.8607 (4)0.08212 (8)0.5635 (3)0.0664 (7)
C30.9452 (4)0.11536 (8)0.6365 (3)0.0694 (8)
H31.07510.11420.69880.083*
C40.8355 (4)0.15036 (8)0.6166 (3)0.0683 (7)
H40.89460.17270.66520.082*
C50.6404 (4)0.15335 (7)0.5267 (3)0.0588 (7)
C60.5596 (5)0.11944 (8)0.4548 (4)0.0826 (9)
H60.42980.12040.39240.099*
C70.6668 (5)0.08457 (8)0.4738 (4)0.0857 (9)
H70.60780.06220.42540.103*
C80.5221 (4)0.19052 (7)0.5029 (3)0.0576 (6)
C90.3076 (4)0.19647 (8)0.4394 (3)0.0644 (7)
H90.20730.17740.40600.077*
C100.2768 (4)0.23584 (8)0.4367 (3)0.0610 (7)
C110.0911 (4)0.26170 (8)0.3834 (4)0.0729 (8)
H11A0.09380.26530.26500.087*
H11B0.04760.24950.41040.087*
C120.3161 (4)0.31656 (7)0.4375 (3)0.0659 (7)
H120.34490.31670.31920.079*
C130.4982 (4)0.29340 (7)0.5270 (3)0.0661 (7)
H13A0.64080.30120.48680.079*
H13B0.49510.29870.64420.079*
C140.3092 (4)0.35817 (8)0.4984 (3)0.0626 (7)
C150.4814 (5)0.38322 (8)0.4675 (3)0.0739 (8)
H150.60010.37410.40820.089*
C160.4825 (5)0.42145 (8)0.5224 (4)0.0818 (9)
H160.60030.43780.50050.098*
C170.3068 (5)0.43484 (8)0.6096 (4)0.0790 (8)
C180.1343 (5)0.41086 (9)0.6415 (3)0.0797 (8)
H180.01570.42030.70010.096*
C190.1340 (4)0.37241 (8)0.5870 (3)0.0720 (8)
H190.01600.35620.61000.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1541 (9)0.0772 (6)0.1269 (8)0.0344 (6)0.0109 (7)0.0143 (5)
O10.0986 (15)0.0626 (13)0.1113 (17)0.0022 (11)0.0298 (13)0.0065 (11)
O20.0562 (11)0.0821 (13)0.0810 (14)0.0034 (9)0.0026 (9)0.0061 (10)
N10.0566 (12)0.0586 (14)0.0750 (15)0.0020 (11)0.0004 (11)0.0024 (11)
N20.0523 (12)0.0614 (14)0.0712 (15)0.0045 (11)0.0034 (11)0.0028 (11)
C10.091 (2)0.082 (2)0.144 (3)0.0093 (18)0.020 (2)0.003 (2)
C20.0752 (19)0.0569 (18)0.0669 (19)0.0041 (14)0.0046 (15)0.0004 (14)
C30.0641 (17)0.0671 (19)0.077 (2)0.0056 (14)0.0116 (14)0.0058 (15)
C40.0655 (17)0.0610 (18)0.078 (2)0.0139 (14)0.0026 (15)0.0078 (14)
C50.0616 (16)0.0598 (17)0.0548 (17)0.0096 (13)0.0021 (13)0.0013 (13)
C60.083 (2)0.070 (2)0.094 (2)0.0036 (17)0.0283 (17)0.0106 (17)
C70.091 (2)0.065 (2)0.099 (2)0.0084 (16)0.0333 (19)0.0116 (16)
C80.0619 (17)0.0588 (17)0.0522 (16)0.0094 (13)0.0047 (13)0.0021 (12)
C90.0611 (17)0.074 (2)0.0584 (18)0.0141 (14)0.0027 (14)0.0028 (13)
C100.0566 (16)0.0723 (19)0.0544 (17)0.0065 (14)0.0063 (13)0.0046 (13)
C110.0615 (16)0.081 (2)0.076 (2)0.0010 (15)0.0031 (14)0.0012 (16)
C120.0608 (16)0.0746 (19)0.0626 (18)0.0013 (14)0.0091 (14)0.0027 (14)
C130.0558 (16)0.0622 (17)0.081 (2)0.0028 (13)0.0080 (14)0.0054 (14)
C140.0635 (16)0.0686 (18)0.0558 (17)0.0132 (15)0.0004 (13)0.0026 (13)
C150.0754 (19)0.072 (2)0.075 (2)0.0103 (16)0.0104 (15)0.0025 (15)
C160.085 (2)0.067 (2)0.094 (2)0.0066 (16)0.0010 (18)0.0078 (16)
C170.091 (2)0.074 (2)0.071 (2)0.0246 (14)0.0134 (17)0.0015 (15)
C180.0781 (19)0.085 (2)0.075 (2)0.0335 (13)0.0018 (16)0.0026 (16)
C190.0664 (17)0.083 (2)0.0668 (19)0.0155 (15)0.0013 (15)0.0057 (15)
Geometric parameters (Å, º) top
Cl1—C171.730 (3)C7—H70.9300
O1—C21.364 (3)C8—C91.408 (3)
O1—C11.414 (3)C9—C101.361 (3)
O2—C121.423 (3)C9—H90.9300
O2—C111.429 (3)C10—C111.491 (3)
N1—C81.342 (3)C11—H11A0.9700
N1—N21.363 (2)C11—H11B0.9700
N2—C101.347 (3)C12—C141.508 (3)
N2—C131.452 (3)C12—C131.533 (3)
C1—H1A0.9600C12—H120.9800
C1—H1B0.9600C13—H13A0.9700
C1—H1C0.9600C13—H13B0.9700
C2—C71.375 (3)C14—C151.380 (3)
C2—C31.378 (3)C14—C191.386 (3)
C3—C41.379 (3)C15—C161.382 (3)
C3—H30.9300C15—H150.9300
C4—C51.384 (3)C16—C171.373 (4)
C4—H40.9300C16—H160.9300
C5—C61.384 (3)C17—C181.361 (4)
C5—C81.472 (3)C18—C191.388 (4)
C6—C71.367 (3)C18—H180.9300
C6—H60.9300C19—H190.9300
C2—O1—C1119.1 (2)C9—C10—C11134.1 (2)
C12—O2—C11111.61 (19)O2—C11—C10110.4 (2)
C8—N1—N2104.12 (19)O2—C11—H11A109.6
C10—N2—N1112.7 (2)C10—C11—H11A109.6
C10—N2—C13125.4 (2)O2—C11—H11B109.6
N1—N2—C13121.79 (19)C10—C11—H11B109.6
O1—C1—H1A109.5H11A—C11—H11B108.1
O1—C1—H1B109.5O2—C12—C14108.9 (2)
H1A—C1—H1B109.5O2—C12—C13110.1 (2)
O1—C1—H1C109.5C14—C12—C13111.0 (2)
H1A—C1—H1C109.5O2—C12—H12108.9
H1B—C1—H1C109.5C14—C12—H12108.9
O1—C2—C7115.5 (2)C13—C12—H12108.9
O1—C2—C3125.4 (3)N2—C13—C12109.0 (2)
C7—C2—C3119.1 (3)N2—C13—H13A109.9
C2—C3—C4119.4 (2)C12—C13—H13A109.9
C2—C3—H3120.3N2—C13—H13B109.9
C4—C3—H3120.3C12—C13—H13B109.9
C3—C4—C5122.2 (2)H13A—C13—H13B108.3
C3—C4—H4118.9C15—C14—C19118.0 (3)
C5—C4—H4118.9C15—C14—C12120.1 (2)
C4—C5—C6117.0 (2)C19—C14—C12121.9 (3)
C4—C5—C8123.0 (2)C14—C15—C16121.9 (3)
C6—C5—C8120.1 (2)C14—C15—H15119.1
C7—C6—C5121.3 (3)C16—C15—H15119.1
C7—C6—H6119.3C17—C16—C15118.9 (3)
C5—C6—H6119.3C17—C16—H16120.5
C6—C7—C2121.0 (3)C15—C16—H16120.5
C6—C7—H7119.5C18—C17—C16120.5 (3)
C2—C7—H7119.5C18—C17—Cl1119.5 (2)
N1—C8—C9110.6 (2)C16—C17—Cl1120.0 (3)
N1—C8—C5121.1 (2)C17—C18—C19120.5 (3)
C9—C8—C5128.3 (2)C17—C18—H18119.8
C10—C9—C8106.0 (2)C19—C18—H18119.8
C10—C9—H9127.0C14—C19—C18120.2 (3)
C8—C9—H9127.0C14—C19—H19119.9
N2—C10—C9106.6 (2)C18—C19—H19119.9
N2—C10—C11119.4 (2)
C8—N1—N2—C101.4 (3)C8—C9—C10—N20.5 (3)
C8—N1—N2—C13176.7 (2)C8—C9—C10—C11179.3 (3)
C1—O1—C2—C7177.6 (3)C12—O2—C11—C1054.9 (3)
C1—O1—C2—C32.4 (4)N2—C10—C11—O222.8 (3)
O1—C2—C3—C4179.2 (2)C9—C10—C11—O2157.4 (3)
C7—C2—C3—C40.8 (4)C11—O2—C12—C14170.0 (2)
C2—C3—C4—C50.8 (4)C11—O2—C12—C1368.1 (3)
C3—C4—C5—C60.7 (4)C10—N2—C13—C1215.0 (3)
C3—C4—C5—C8179.5 (2)N1—N2—C13—C12170.3 (2)
C4—C5—C6—C70.8 (4)O2—C12—C13—N244.8 (3)
C8—C5—C6—C7179.5 (3)C14—C12—C13—N2165.4 (2)
C5—C6—C7—C20.8 (5)O2—C12—C14—C15171.6 (2)
O1—C2—C7—C6179.1 (3)C13—C12—C14—C1567.1 (3)
C3—C2—C7—C60.8 (5)O2—C12—C14—C199.0 (3)
N2—N1—C8—C91.7 (3)C13—C12—C14—C19112.4 (3)
N2—N1—C8—C5177.7 (2)C19—C14—C15—C160.0 (4)
C4—C5—C8—N112.5 (4)C12—C14—C15—C16179.4 (2)
C6—C5—C8—N1166.2 (2)C14—C15—C16—C170.2 (4)
C4—C5—C8—C9168.2 (2)C15—C16—C17—C180.0 (4)
C6—C5—C8—C913.1 (4)C15—C16—C17—Cl1178.8 (2)
N1—C8—C9—C101.4 (3)C16—C17—C18—C190.4 (4)
C5—C8—C9—C10177.9 (2)Cl1—C17—C18—C19178.45 (19)
N1—N2—C10—C90.6 (3)C15—C14—C19—C180.3 (4)
C13—N2—C10—C9175.6 (2)C12—C14—C19—C18179.7 (2)
N1—N2—C10—C11179.6 (2)C17—C18—C19—C140.5 (4)
C13—N2—C10—C114.5 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1,N2,C8–C10 and C14–C19 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C11—H11B···N1i0.972.473.419 (3)167
C13—H13B···Cg1ii0.972.863.762 (3)156
C6—H6···Cg2iii0.932.893.608 (3)135
Symmetry codes: (i) x1, y, z; (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC19H17ClN2O2
Mr340.80
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)6.0800 (8), 34.224 (5), 8.1217 (11)
β (°) 91.186 (3)
V3)1689.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.15 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.965, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
8891, 2995, 1620
Rint0.043
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.123, 1.02
No. of reflections2995
No. of parameters218
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.24

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1,N2,C8–C10 and C14–C19 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C11—H11B···N1i0.972.473.419 (3)167
C13—H13B···Cg1ii0.972.863.762 (3)156
C6—H6···Cg2iii0.932.893.608 (3)135
Symmetry codes: (i) x1, y, z; (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z1/2.
 

Acknowledgements

Thanks are due to the Science and Technology Developmental Project of Shandong Province (2008 GG10002034) and the National Natural Science Foundation of China (90813022) for financial support.

References

First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGuerrini, G., Ciciani, G., Bruni, F., Selleri, S., Guarino, C., Melani, F., Montali, M., Daniele, S., Martini, C., Ghelardini, C., Norcini, M., Ciattini, S. & Costanzo, A. (2010). J. Med. Chem. 53, 7532–7548.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKumar, T. S., Mishra, S., Deflorian, F., Yoo, L. S., Phan, K., Kecskès, M., Szabo, A., Shinkre, B., Gao, Z.-G., Trenkle, W. & Jacobson, K. A. (2011). Bioorg. Med. Chem. Lett. 21, 2740–2745.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLiu, N., Zhang, J.-H., Zhao, B.-X., Zhao, J., Su, L., Dong, W.-L., Zhang, S.-L. & Miao, J.-Y. (2011). Eur. J. Med. Chem. 46, 2359–2367.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShimizu, T., Hayashi, Y., Miki, M. & Teramura, K. (1990). J. Heterocycl. Chem. 27, 1669–1671.  CrossRef CAS Google Scholar
First citationWei, F., Zhao, B.-X., Dong, W.-L., Zuo, H., Shin, D.-S., Wang, D.-W., Xia, Y. & Ge, Y.-Q. (2007). Synth. Commun. 37, 4415–4424.  Web of Science CrossRef CAS Google Scholar
First citationXie, Y.-S., Zhao, B.-X., Lv, H.-S., Li, J.-K., Wang, B.-S. & Shin, D.-S. (2009). J. Mol. Struct. 930, 83–87.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds