metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{μ-6,6′-Dimeth­­oxy-2,2′-[ethane-1,2-diyl­bis­(nitrilo­methanylyl­­idene)]diphenolato-1κ4O6,O1,O1′,O6′;2κ4O1,N,N′,O1′}(methanol-1κO)(tetra­fluoridoborato-1κ2F,F′)-2-copper(II)-1-sodium

aSchool of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
*Correspondence e-mail: gaodapo@sohu.com

(Received 5 July 2011; accepted 15 July 2011; online 23 July 2011)

In the dinuclear salen-type title complex, [CuNa(BF4)(C18H18N2O4)(CH3OH)], the CuII atom is chelated by two O atoms and two N atoms of the deprotonated Schiff base in a square-planar geometry. The Na atom is seven-coordinate as it is linked to four O atoms of the same Schiff base ligand, one O atom of the methanol and two tetra­fluorido­borate F atoms. The remaining two F atoms of the anion are disordered over two sites in a 0.598 (18):0.402 (18) ratio.

Related literature

For similar copper–sodium complexes, see: Hazra et al. (2009[Hazra, S., Koner, R., Nayak, M., Sparkes, H. A., Howard, J. A. K. & Mohanta, S. (2009). Cryst. Growth Des. 9, 3603-3608.]); Sasmal et al. (2010[Sasmal, S., Majumder, S., Hazra, S., Sparkes, H. A., Howard, J. A. K., Nayak, M. & Mohanta, S. (2010). CrystEngComm, 12, 4131-4140.]).

[Scheme 1]

Experimental

Crystal data
  • [CuNa(BF4)(C18H18N2O4)(CH4O)]

  • Mr = 531.73

  • Monoclinic, P 21 /c

  • a = 12.885 (3) Å

  • b = 14.248 (5) Å

  • c = 13.508 (7) Å

  • β = 117.544 (17)°

  • V = 2198.7 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.08 mm−1

  • T = 293 K

  • 0.33 × 0.27 × 0.25 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.720, Tmax = 0.778

  • 20737 measured reflections

  • 5016 independent reflections

  • 3439 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.130

  • S = 1.05

  • 5016 reflections

  • 320 parameters

  • 36 restraints

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.77 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O1 1.877 (2)
Cu1—O3 1.887 (2)
Cu1—N2 1.917 (3)
Cu1—N1 1.921 (3)
F1—Na1 2.533 (4)
F2—Na1 2.432 (3)
Na1—O1 2.319 (2)
Na1—O5 2.338 (3)
Na1—O3 2.349 (2)
Na1—O2 2.571 (3)
Na1—O4 2.662 (3)

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In continuation of our study of salen-type Cu—Na heterodinuclear complexes (Hazra et al., 2009; Sasmal et al., 2010), we present here the crystal structure of the title compound. As shown in Fig. 1, the hexadentate Schiff base ligand links Cu and Na atoms into a dinuclear complex through two phenolate O atoms. The NaI centre in (I) is seven-coordinated by four O atoms from the ligand, one O atom from the methanol and two F atoms from the tetrafluoroborate, which is similar with the bonding reported for another copper-sodium complex of the similar ligand (Sasmal et al., 2010). The CuII center is four-coordinate by two N atoms, two O atoms from the ligand giving rise to a square geometry.

Related literature top

For similar copper–sodium complexes, see: Hazra et al. (2009); Sasmal et al. (2010).

Experimental top

The title complex was obtained by the treatment of copper(II) acetate monohydrate (0.050 g, 0.25 mmol) with the Schiff base (0.082 g, 0.25 mmol) in water/methanol (5:15). The first two reactants were stirred for 2 h, and the mixture was stirred for another 3 h after the addition of sodium (I) tetrafluoroborate (0.052 g, 0.25 mmol). The reaction mixture was filtered; diethyl ether was allowed to diffuse slowly into the solution of the filtrate. Single crystals were obtained after several days. Analysis calculated for for C19H22BCuF4N2NaO5 C19H22B1Cu1F1N2NaO5: C 42.92, H 4.17, N 5.27%; found: C 42.38, H 4.38, N 5.00%.

Refinement top

Two F atoms disordered in two positions with occupation of 0.6 to F3, F4 and 0.4 t0 F3' F4'. H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic C), C—H = 0.97 Å (methylene C), and with Uiso(H) = 1.2Ueq(C) or C—H = 0.96 Å (methly C) and with Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the the title compound, showing 30% probability displacement ellipsoids.
{µ-6,6'-Dimethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethanylylidene)] diphenolato-1κ4O6,O1,O1',O6'; 2κ4O1,N,N',O1'}(methanol- 1κO)(tetrafluoridoborato-1κ2F,F')- 2-copper(II)-1-sodium top
Crystal data top
[CuNa(BF4)(C18H18N2O4)(CH4O)]F(000) = 1084
Mr = 531.73Dx = 1.606 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 12791 reflections
a = 12.885 (3) Åθ = 3.0–27.5°
b = 14.248 (5) ŵ = 1.08 mm1
c = 13.508 (7) ÅT = 293 K
β = 117.544 (17)°Block, brown
V = 2198.7 (14) Å30.33 × 0.27 × 0.25 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5016 independent reflections
Radiation source: fine-focus sealed tube3439 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1616
Tmin = 0.720, Tmax = 0.778k = 1818
20737 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0664P)2 + 0.3095P]
where P = (Fo2 + 2Fc2)/3
5016 reflections(Δ/σ)max < 0.001
320 parametersΔρmax = 0.49 e Å3
36 restraintsΔρmin = 0.77 e Å3
Crystal data top
[CuNa(BF4)(C18H18N2O4)(CH4O)]V = 2198.7 (14) Å3
Mr = 531.73Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.885 (3) ŵ = 1.08 mm1
b = 14.248 (5) ÅT = 293 K
c = 13.508 (7) Å0.33 × 0.27 × 0.25 mm
β = 117.544 (17)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5016 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3439 reflections with I > 2σ(I)
Tmin = 0.720, Tmax = 0.778Rint = 0.057
20737 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05036 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.05Δρmax = 0.49 e Å3
5016 reflectionsΔρmin = 0.77 e Å3
320 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. ISOR 0.005 F2 F3 F4 F3' F4' ISOR 0.001 F1

SPLIT F3 F4 WITH THE OCCUPATION OF 0.60 FOR F3 AND F4, WHILE 0.40 FOR F3' AND F4'

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
B10.4588 (4)0.6368 (4)0.7395 (4)0.0644 (12)
C10.1383 (3)0.8585 (2)0.4357 (3)0.0394 (7)
C20.2498 (3)0.8999 (2)0.4724 (3)0.0428 (7)
C30.2622 (3)0.9962 (2)0.4754 (3)0.0520 (9)
H30.33611.02280.50140.062*
C40.1641 (4)1.0532 (2)0.4394 (3)0.0603 (10)
H40.17291.11800.44170.072*
C50.0555 (4)1.0158 (2)0.4011 (3)0.0535 (9)
H50.00931.05520.37580.064*
C60.0398 (3)0.9171 (2)0.3992 (3)0.0429 (7)
C70.0766 (3)0.8817 (2)0.3595 (3)0.0478 (8)
H70.13680.92550.33710.057*
C80.2263 (3)0.7663 (3)0.3176 (4)0.0614 (10)
H8A0.27940.80990.26210.074*
H8B0.24180.76750.38140.074*
C90.2462 (3)0.6683 (3)0.2691 (4)0.0608 (10)
H9A0.30740.63760.28000.073*
H9B0.27130.67170.18950.073*
C100.1397 (3)0.5225 (2)0.3216 (3)0.0466 (8)
H100.21260.49360.29290.056*
C110.0396 (3)0.4631 (2)0.3596 (3)0.0415 (7)
C120.0573 (3)0.3646 (2)0.3493 (3)0.0534 (9)
H120.13270.34090.32330.064*
C130.0325 (4)0.3045 (2)0.3764 (3)0.0603 (10)
H130.01830.24030.36760.072*
C140.1472 (4)0.3382 (2)0.4178 (3)0.0535 (9)
H140.20900.29660.43600.064*
C150.1678 (3)0.4333 (2)0.4312 (3)0.0430 (7)
C160.0759 (3)0.4983 (2)0.4018 (3)0.0395 (7)
C170.3769 (3)0.4155 (3)0.5113 (4)0.0727 (12)
H17A0.37550.37050.56360.109*
H17B0.44640.45300.54690.109*
H17C0.37630.38330.44860.109*
C180.4534 (3)0.8701 (3)0.5375 (4)0.0744 (13)
H18A0.45320.90910.47940.112*
H18B0.50530.81800.55030.112*
H18C0.47930.90610.60480.112*
C190.3012 (5)0.6111 (4)0.2577 (4)0.111 (2)
H19A0.27220.55370.27280.166*
H19B0.36120.59710.23660.166*
H19C0.23840.64380.19780.166*
Cu10.00033 (3)0.68991 (2)0.38549 (3)0.03933 (15)
F10.3435 (3)0.6599 (2)0.6971 (3)0.1045 (9)
F20.4815 (2)0.6418 (2)0.6487 (2)0.0929 (8)
F30.4532 (9)0.5441 (4)0.7756 (5)0.102 (3)0.598 (18)
F40.5310 (7)0.6847 (8)0.8305 (7)0.099 (2)0.598 (18)
F3'0.5214 (16)0.5676 (9)0.7911 (9)0.124 (5)0.402 (18)
F4'0.5110 (9)0.7239 (8)0.8004 (10)0.081 (3)0.402 (18)
N10.1050 (2)0.79428 (19)0.3521 (2)0.0458 (7)
N20.1379 (2)0.61370 (19)0.3237 (2)0.0448 (6)
Na10.28783 (11)0.66051 (9)0.49108 (11)0.0476 (3)
O10.13430 (18)0.76601 (14)0.4389 (2)0.0481 (6)
O20.3381 (2)0.83617 (16)0.5045 (2)0.0547 (7)
O30.10354 (18)0.58764 (14)0.4150 (2)0.0457 (6)
O40.27683 (19)0.47424 (15)0.4739 (2)0.0546 (6)
O50.3468 (3)0.6662 (2)0.3515 (2)0.0732 (8)
H10.37770.71660.34440.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
B10.048 (2)0.073 (3)0.063 (3)0.015 (2)0.018 (2)0.006 (3)
C10.0422 (16)0.0348 (15)0.0385 (17)0.0012 (13)0.0165 (14)0.0022 (13)
C20.0480 (17)0.0348 (15)0.0422 (17)0.0006 (14)0.0178 (14)0.0026 (14)
C30.063 (2)0.0373 (16)0.059 (2)0.0128 (16)0.0319 (18)0.0068 (16)
C40.090 (3)0.0321 (16)0.076 (3)0.0003 (18)0.053 (2)0.0002 (17)
C50.073 (2)0.0345 (16)0.065 (2)0.0152 (17)0.043 (2)0.0065 (16)
C60.0543 (18)0.0368 (15)0.0432 (18)0.0078 (14)0.0272 (15)0.0050 (14)
C70.0456 (17)0.0494 (19)0.051 (2)0.0160 (15)0.0244 (16)0.0147 (16)
C80.0354 (17)0.070 (2)0.077 (3)0.0132 (17)0.0247 (18)0.009 (2)
C90.0308 (16)0.073 (2)0.067 (2)0.0030 (16)0.0126 (16)0.001 (2)
C100.0397 (16)0.055 (2)0.0420 (18)0.0143 (15)0.0164 (14)0.0059 (15)
C110.0465 (16)0.0403 (16)0.0398 (17)0.0078 (14)0.0218 (14)0.0048 (14)
C120.065 (2)0.0458 (19)0.055 (2)0.0210 (17)0.0327 (19)0.0045 (16)
C130.084 (3)0.0321 (16)0.070 (3)0.0097 (18)0.040 (2)0.0048 (17)
C140.076 (3)0.0350 (15)0.059 (2)0.0044 (16)0.038 (2)0.0039 (16)
C150.0510 (17)0.0369 (15)0.0497 (19)0.0013 (14)0.0306 (16)0.0006 (14)
C160.0462 (17)0.0378 (15)0.0371 (16)0.0022 (13)0.0216 (14)0.0015 (14)
C170.054 (2)0.062 (2)0.108 (4)0.0147 (19)0.043 (2)0.013 (2)
C180.044 (2)0.067 (2)0.101 (3)0.0151 (19)0.024 (2)0.015 (2)
C190.142 (5)0.108 (4)0.074 (3)0.034 (4)0.043 (3)0.018 (3)
Cu10.02938 (19)0.0377 (2)0.0470 (2)0.00197 (15)0.01437 (17)0.00150 (17)
F10.0963 (12)0.1098 (12)0.1087 (13)0.0003 (9)0.0486 (9)0.0025 (9)
F20.0854 (17)0.125 (2)0.0776 (16)0.0071 (16)0.0454 (14)0.0047 (16)
F30.116 (5)0.078 (3)0.098 (4)0.007 (3)0.039 (3)0.036 (2)
F40.093 (4)0.110 (5)0.080 (3)0.022 (3)0.028 (3)0.007 (3)
F3'0.124 (6)0.108 (6)0.120 (5)0.018 (4)0.040 (4)0.025 (4)
F4'0.078 (4)0.075 (5)0.081 (5)0.004 (3)0.028 (3)0.023 (4)
N10.0359 (13)0.0518 (16)0.0495 (16)0.0087 (12)0.0195 (12)0.0092 (13)
N20.0328 (13)0.0533 (16)0.0444 (15)0.0012 (12)0.0147 (12)0.0007 (13)
Na10.0361 (6)0.0456 (7)0.0581 (8)0.0021 (5)0.0192 (6)0.0034 (6)
O10.0350 (11)0.0301 (10)0.0698 (15)0.0034 (9)0.0163 (11)0.0073 (11)
O20.0383 (12)0.0416 (12)0.0728 (17)0.0061 (10)0.0162 (12)0.0005 (12)
O30.0336 (10)0.0344 (10)0.0653 (15)0.0019 (9)0.0195 (10)0.0025 (10)
O40.0418 (12)0.0421 (12)0.0812 (18)0.0065 (10)0.0294 (12)0.0047 (12)
O50.094 (2)0.0694 (16)0.0692 (19)0.0225 (16)0.0490 (17)0.0134 (15)
Geometric parameters (Å, º) top
B1—F3'1.260 (10)C12—H120.9300
B1—F41.336 (8)C13—C141.402 (6)
B1—F11.363 (5)C13—H130.9300
B1—F21.387 (6)C14—C151.376 (4)
B1—F31.422 (8)C14—H140.9300
B1—F4'1.469 (10)C15—O41.377 (4)
B1—Na13.064 (5)C15—C161.409 (4)
C1—O11.320 (4)C16—O31.311 (4)
C1—C61.404 (4)C17—O41.419 (4)
C1—C21.414 (4)C17—H17A0.9600
C2—O21.360 (4)C17—H17B0.9600
C2—C31.380 (4)C17—H17C0.9600
C3—C41.388 (5)C18—O21.424 (4)
C3—H30.9300C18—H18A0.9600
C4—C51.356 (5)C18—H18B0.9600
C4—H40.9300C18—H18C0.9600
C5—C61.420 (4)C19—O51.371 (6)
C5—H50.9300C19—H19A0.9600
C6—C71.430 (5)C19—H19B0.9600
C7—N11.289 (4)C19—H19C0.9600
C7—H70.9300Cu1—O11.877 (2)
C8—N11.465 (4)Cu1—O31.887 (2)
C8—C91.513 (5)Cu1—N21.917 (3)
C8—H8A0.9700Cu1—N11.921 (3)
C8—H8B0.9700Cu1—Na13.3236 (15)
C9—N21.464 (4)F1—Na12.533 (4)
C9—H9A0.9700F2—Na12.432 (3)
C9—H9B0.9700Na1—O12.319 (2)
C10—N21.299 (4)Na1—O52.338 (3)
C10—C111.426 (5)Na1—O32.349 (2)
C10—H100.9300Na1—O22.571 (3)
C11—C161.417 (4)Na1—O42.662 (3)
C11—C121.418 (4)O5—H10.8472
C12—C131.347 (5)
F3'—B1—F484.0 (6)O2—C18—H18A109.5
F3'—B1—F1135.7 (11)O2—C18—H18B109.5
F4—B1—F1115.0 (6)H18A—C18—H18B109.5
F3'—B1—F2100.8 (8)O2—C18—H18C109.5
F4—B1—F2116.5 (6)H18A—C18—H18C109.5
F1—B1—F2104.5 (4)H18B—C18—H18C109.5
F3'—B1—F337.3 (7)O5—C19—H19A109.5
F4—B1—F3106.4 (6)O5—C19—H19B109.5
F1—B1—F398.6 (6)H19A—C19—H19B109.5
F2—B1—F3114.6 (5)O5—C19—H19C109.5
F3'—B1—F4'109.9 (7)H19A—C19—H19C109.5
F4—B1—F4'27.1 (4)H19B—C19—H19C109.5
F1—B1—F4'99.1 (5)O1—Cu1—O386.09 (9)
F2—B1—F4'102.9 (7)O1—Cu1—N2177.21 (11)
F3—B1—F4'132.5 (7)O3—Cu1—N294.40 (11)
F3'—B1—Na1130.1 (7)O1—Cu1—N193.86 (11)
F4—B1—Na1142.5 (6)O3—Cu1—N1178.71 (12)
F1—B1—Na154.7 (2)N2—Cu1—N185.59 (12)
F2—B1—Na150.6 (2)O1—Cu1—Na142.57 (7)
F3—B1—Na1110.7 (4)O3—Cu1—Na143.55 (6)
F4'—B1—Na1115.5 (6)N2—Cu1—Na1137.94 (9)
O1—C1—C6124.2 (3)N1—Cu1—Na1136.43 (9)
O1—C1—C2117.0 (3)B1—F1—Na199.3 (3)
C6—C1—C2118.8 (3)B1—F2—Na1103.3 (2)
O2—C2—C3125.8 (3)C7—N1—C8120.7 (3)
O2—C2—C1113.5 (3)C7—N1—Cu1125.8 (2)
C3—C2—C1120.7 (3)C8—N1—Cu1113.4 (2)
C2—C3—C4119.8 (3)C10—N2—C9121.1 (3)
C2—C3—H3120.1C10—N2—Cu1125.4 (2)
C4—C3—H3120.1C9—N2—Cu1113.3 (2)
C5—C4—C3121.1 (3)O1—Na1—O5106.39 (11)
C5—C4—H4119.5O1—Na1—O366.79 (8)
C3—C4—H4119.5O5—Na1—O3107.61 (11)
C4—C5—C6120.6 (3)O1—Na1—F2136.25 (11)
C4—C5—H5119.7O5—Na1—F297.21 (12)
C6—C5—H5119.7O3—Na1—F2139.01 (11)
C1—C6—C5119.0 (3)O1—Na1—F196.01 (11)
C1—C6—C7122.8 (3)O5—Na1—F1148.64 (12)
C5—C6—C7118.1 (3)O3—Na1—F1101.22 (11)
N1—C7—C6125.5 (3)F2—Na1—F151.90 (11)
N1—C7—H7117.3O1—Na1—O262.75 (8)
C6—C7—H7117.3O5—Na1—O281.83 (10)
N1—C8—C9109.3 (3)O3—Na1—O2129.21 (9)
N1—C8—H8A109.8F2—Na1—O285.51 (10)
C9—C8—H8A109.8F1—Na1—O289.52 (10)
N1—C8—H8B109.8O1—Na1—O4128.03 (9)
C9—C8—H8B109.8O5—Na1—O489.32 (10)
H8A—C8—H8B108.3O3—Na1—O461.24 (7)
N2—C9—C8110.0 (3)F2—Na1—O487.64 (9)
N2—C9—H9A109.7F1—Na1—O493.96 (10)
C8—C9—H9A109.7O2—Na1—O4168.04 (10)
N2—C9—H9B109.7O1—Na1—B1118.99 (12)
C8—C9—H9B109.7O5—Na1—B1123.34 (14)
H9A—C9—H9B108.2O3—Na1—B1119.99 (13)
N2—C10—C11125.6 (3)F2—Na1—B126.14 (12)
N2—C10—H10117.2F1—Na1—B126.03 (12)
C11—C10—H10117.2O2—Na1—B190.00 (12)
C16—C11—C12118.8 (3)O4—Na1—B188.16 (12)
C16—C11—C10122.8 (3)O1—Na1—Cu133.19 (5)
C12—C11—C10118.3 (3)O5—Na1—Cu1111.29 (10)
C13—C12—C11121.5 (3)O3—Na1—Cu133.61 (5)
C13—C12—H12119.2F2—Na1—Cu1151.40 (9)
C11—C12—H12119.2F1—Na1—Cu199.51 (9)
C12—C13—C14120.4 (3)O2—Na1—Cu195.86 (6)
C12—C13—H13119.8O4—Na1—Cu194.84 (6)
C14—C13—H13119.8B1—Na1—Cu1125.32 (11)
C15—C14—C13119.6 (3)C1—O1—Cu1127.34 (19)
C15—C14—H14120.2C1—O1—Na1128.05 (19)
C13—C14—H14120.2Cu1—O1—Na1104.24 (10)
C14—C15—O4124.7 (3)C2—O2—C18118.1 (3)
C14—C15—C16121.6 (3)C2—O2—Na1118.72 (18)
O4—C15—C16113.6 (3)C18—O2—Na1123.0 (2)
O3—C16—C15117.4 (3)C16—O3—Cu1126.9 (2)
O3—C16—C11124.6 (3)C16—O3—Na1130.14 (19)
C15—C16—C11118.0 (3)Cu1—O3—Na1102.84 (9)
O4—C17—H17A109.5C15—O4—C17118.8 (3)
O4—C17—H17B109.5C15—O4—Na1117.52 (18)
H17A—C17—H17B109.5C17—O4—Na1123.6 (2)
O4—C17—H17C109.5C19—O5—Na1124.5 (3)
H17A—C17—H17C109.5C19—O5—H1113.8
H17B—C17—H17C109.5Na1—O5—H1117.7

Experimental details

Crystal data
Chemical formula[CuNa(BF4)(C18H18N2O4)(CH4O)]
Mr531.73
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.885 (3), 14.248 (5), 13.508 (7)
β (°) 117.544 (17)
V3)2198.7 (14)
Z4
Radiation typeMo Kα
µ (mm1)1.08
Crystal size (mm)0.33 × 0.27 × 0.25
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.720, 0.778
No. of measured, independent and
observed [I > 2σ(I)] reflections
20737, 5016, 3439
Rint0.057
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.130, 1.05
No. of reflections5016
No. of parameters320
No. of restraints36
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.77

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—O11.877 (2)Na1—O12.319 (2)
Cu1—O31.887 (2)Na1—O52.338 (3)
Cu1—N21.917 (3)Na1—O32.349 (2)
Cu1—N11.921 (3)Na1—O22.571 (3)
F1—Na12.533 (4)Na1—O42.662 (3)
F2—Na12.432 (3)
 

Acknowledgements

The authors gratefully acknowledge financial support from Heilongjiang Province (11551334 and 12511386) and Heilongjiang University.

References

First citationHazra, S., Koner, R., Nayak, M., Sparkes, H. A., Howard, J. A. K. & Mohanta, S. (2009). Cryst. Growth Des. 9, 3603–3608.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSasmal, S., Majumder, S., Hazra, S., Sparkes, H. A., Howard, J. A. K., Nayak, M. & Mohanta, S. (2010). CrystEngComm, 12, 4131–4140.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds