organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(4-Chloro­benz­yl)-1H-tetra­zole

aCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
*Correspondence e-mail: hgf1000@163.com

(Received 12 July 2011; accepted 15 July 2011; online 23 July 2011)

In the title compound, C8H7ClN4, the phenyl and tetra­zole rings are inclined at a dihedral angle of 67.52 (6)°. In the crystal, mol­ecules are linked by an N—H⋯N hydrogen bond into a chain structure along [010]. ππ inter­actions with centroid–centroid distances of 3.526 (1) Å between adjacent tetra­zole rings further link the chains, forming a ribbon structure.

Related literature

For background to tetra­zole compounds, see: Kitagawa et al. (2004[Kitagawa, S., Kitaura, R. & Noro, S. I. (2004). Angew. Chem. Int. Ed., 43, 2334-2375.]); Zhao et al. (2008[Zhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev., 37, 84-100.]); For the synthesis, see: Luo et al. (2006[Luo, J., Zhang, X.-R., Cui, L.-L., Dai, W.-Q. & Liu, B.-S. (2006). Acta Cryst. C62, m614-m616.]).

[Scheme 1]

Experimental

Crystal data
  • C8H7ClN4

  • Mr = 194.63

  • Monoclinic, P 21 /c

  • a = 14.654 (3) Å

  • b = 4.9321 (10) Å

  • c = 12.688 (3) Å

  • β = 105.63 (3)°

  • V = 883.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 293 K

  • 0.40 × 0.38 × 0.15 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.860, Tmax = 0.944

  • 8039 measured reflections

  • 2015 independent reflections

  • 1546 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.094

  • S = 1.08

  • 2015 reflections

  • 122 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H1⋯N1i 0.90 (1) 1.92 (1) 2.8013 (15) 168 (2)
Symmetry code: (i) x, y+1, z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002)[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands,Texas, USA.]; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The tetrazole has attracted considerable interesting owing to their structural characterization in coordination chemistry and the extensively application in medicinal chemistry and materials science (Zhao et al. 2008; Kitagawa et al. 2004). Here, we report the synthesis and crystal structure of the title compound.

As shown in fig.1, the benzenyl plane and tetrazole rings form a dihedral angle about 67.52 (6) ° (Fig. 1). In the crystal packing, the molecules are linked by N—H···N hydrogen bonds into a chain structure alone [010] (Fig. 2, Table 1). The ππ interactions with distances of 3.526 (1) Å (center to center) between the adjacent tetrazole rings further link them to form ribbon structure (Fig. 3).

Related literature top

For background to tetrazole compounds, see: Kitagawa et al. (2004); Zhao et al. (2008); For the synthesis, see: Luo et al. (2006).

Experimental top

The title compound was prepared as follows (Luo et al. 2006):2-(4-chlorophenyl)acetonitrile (6.06 g, 0.04 mol), NaN3 (3.9 g, 0.06 mol) and NH4Cl (3.21 g, 0.06 mol) were dissolved in DMF (120 ml). The mixture was reflux for 20 h under stirring. Then, it was cooled to room temperature and the mixture was filtered. The solvent was evaporated and the residue was poured into cold water (30 ml) to give the title compound (4.32 g, 55.5 %). The crystals suitable for X-ray diffraction were obtained from 10 mL mixed solution of ethanol and water (1:1).

Refinement top

The anormal reflection data (-12 3 3) have been omitted during the refinement.H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic); C—H = 0.97 Å (methylene), and with Uiso(H) = 1.2Ueq(C). N-bounded H atom was found from Fourier map and was refined restrainedly with N—H = 0.90 Å.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids at the 50% probability level for non-H atoms.
[Figure 2] Fig. 2. A partial packing view, showing chain structure along [0 1 0].
[Figure 3] Fig. 3. A partial packing view, showing double chain structure forming by N—H···N hydrogen bonds and ππ intercations.
5-(4-Chlorobenzyl)-1H-tetrazole top
Crystal data top
C8H7ClN4F(000) = 400
Mr = 194.63Dx = 1.464 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6142 reflections
a = 14.654 (3) Åθ = 3.3–25.1°
b = 4.9321 (10) ŵ = 0.39 mm1
c = 12.688 (3) ÅT = 293 K
β = 105.63 (3)°Block, colorless
V = 883.1 (3) Å30.40 × 0.38 × 0.15 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2015 independent reflections
Radiation source: fine-focus sealed tube1546 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1819
Tmin = 0.860, Tmax = 0.944k = 66
8039 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.0994P]
where P = (Fo2 + 2Fc2)/3
2015 reflections(Δ/σ)max = 0.001
122 parametersΔρmax = 0.18 e Å3
1 restraintΔρmin = 0.33 e Å3
Crystal data top
C8H7ClN4V = 883.1 (3) Å3
Mr = 194.63Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.654 (3) ŵ = 0.39 mm1
b = 4.9321 (10) ÅT = 293 K
c = 12.688 (3) Å0.40 × 0.38 × 0.15 mm
β = 105.63 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2015 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1546 reflections with I > 2σ(I)
Tmin = 0.860, Tmax = 0.944Rint = 0.025
8039 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0331 restraint
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.18 e Å3
2015 reflectionsΔρmin = 0.33 e Å3
122 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.37038 (9)0.2990 (3)1.07319 (14)0.0463 (4)
C20.29853 (11)0.4022 (3)1.11205 (14)0.0503 (4)
H20.29110.34501.17910.060*
C30.23731 (10)0.5923 (3)1.05032 (13)0.0465 (4)
H30.18910.66381.07680.056*
C40.24675 (9)0.6773 (3)0.95005 (12)0.0380 (3)
C50.31899 (11)0.5667 (3)0.91227 (15)0.0467 (4)
H50.32590.62030.84460.056*
C60.38090 (11)0.3781 (3)0.97347 (15)0.0518 (4)
H60.42920.30570.94730.062*
C70.18309 (10)0.8938 (3)0.88444 (14)0.0451 (4)
H7A0.20591.06940.91490.054*
H7B0.18870.88880.81000.054*
C80.08089 (9)0.8704 (2)0.88086 (11)0.0311 (3)
Cl10.44739 (3)0.06175 (9)1.15206 (5)0.0707 (2)
N10.03034 (8)0.6471 (2)0.87394 (9)0.0347 (3)
N20.06056 (8)0.7269 (2)0.86416 (10)0.0393 (3)
N30.06566 (8)0.9885 (2)0.86545 (10)0.0404 (3)
N40.02296 (8)1.0797 (2)0.87674 (9)0.0346 (3)
H10.0343 (11)1.2592 (6)0.8810 (12)0.048 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0327 (7)0.0365 (7)0.0624 (10)0.0041 (6)0.0001 (6)0.0060 (7)
C20.0506 (9)0.0497 (9)0.0504 (10)0.0101 (7)0.0130 (7)0.0055 (7)
C30.0416 (8)0.0477 (9)0.0531 (10)0.0127 (7)0.0176 (7)0.0025 (7)
C40.0330 (6)0.0302 (7)0.0494 (9)0.0047 (6)0.0090 (6)0.0018 (6)
C50.0424 (8)0.0469 (9)0.0548 (10)0.0032 (7)0.0198 (7)0.0019 (7)
C60.0354 (7)0.0486 (9)0.0741 (12)0.0022 (7)0.0194 (8)0.0124 (8)
C70.0401 (7)0.0327 (7)0.0615 (10)0.0044 (6)0.0119 (7)0.0091 (7)
C80.0390 (6)0.0224 (6)0.0306 (7)0.0005 (5)0.0068 (5)0.0001 (5)
Cl10.0512 (3)0.0538 (3)0.0907 (4)0.0194 (2)0.0094 (2)0.0025 (2)
N10.0390 (6)0.0229 (5)0.0424 (7)0.0012 (5)0.0115 (5)0.0019 (4)
N20.0390 (6)0.0329 (6)0.0473 (7)0.0002 (5)0.0140 (5)0.0006 (5)
N30.0429 (6)0.0337 (6)0.0465 (7)0.0059 (5)0.0153 (5)0.0025 (5)
N40.0461 (6)0.0209 (5)0.0366 (7)0.0024 (5)0.0107 (5)0.0003 (4)
Geometric parameters (Å, º) top
C1—C61.372 (2)C6—H60.9300
C1—C21.375 (2)C7—C81.4906 (19)
C1—Cl11.7423 (16)C7—H7A0.9700
C2—C31.385 (2)C7—H7B0.9700
C2—H20.9300C8—N11.3169 (17)
C3—C41.381 (2)C8—N41.3284 (17)
C3—H30.9300N1—N21.3622 (16)
C4—C51.386 (2)N2—N31.2927 (17)
C4—C71.5117 (19)N3—N41.3449 (17)
C5—C61.383 (2)N4—H10.8998 (11)
C5—H50.9300
C6—C1—C2120.83 (14)C5—C6—H6120.3
C6—C1—Cl1120.30 (12)C8—C7—C4115.34 (12)
C2—C1—Cl1118.87 (14)C8—C7—H7A108.4
C1—C2—C3119.32 (16)C4—C7—H7A108.4
C1—C2—H2120.3C8—C7—H7B108.4
C3—C2—H2120.3C4—C7—H7B108.4
C4—C3—C2121.06 (13)H7A—C7—H7B107.5
C4—C3—H3119.5N1—C8—N4107.77 (11)
C2—C3—H3119.5N1—C8—C7127.54 (12)
C3—C4—C5118.32 (14)N4—C8—C7124.55 (12)
C3—C4—C7121.43 (13)C8—N1—N2106.44 (10)
C5—C4—C7120.20 (14)N3—N2—N1110.23 (11)
C6—C5—C4121.15 (16)N2—N3—N4106.11 (11)
C6—C5—H5119.4C8—N4—N3109.45 (11)
C4—C5—H5119.4C8—N4—H1131.0 (11)
C1—C6—C5119.31 (14)N3—N4—H1119.5 (10)
C1—C6—H6120.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H1···N1i0.90 (1)1.92 (1)2.8013 (15)168 (2)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC8H7ClN4
Mr194.63
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)14.654 (3), 4.9321 (10), 12.688 (3)
β (°) 105.63 (3)
V3)883.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.40 × 0.38 × 0.15
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.860, 0.944
No. of measured, independent and
observed [I > 2σ(I)] reflections
8039, 2015, 1546
Rint0.025
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.094, 1.08
No. of reflections2015
No. of parameters122
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.33

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H1···N1i0.8998 (11)1.915 (4)2.8013 (15)167.8 (15)
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The authors thank Heilongjiang University for supporting this work.

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S. I. (2004). Angew. Chem. Int. Ed., 43, 2334–2375.  Web of Science CrossRef CAS Google Scholar
First citationLuo, J., Zhang, X.-R., Cui, L.-L., Dai, W.-Q. & Liu, B.-S. (2006). Acta Cryst. C62, m614–m616.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands,Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev., 37, 84–100.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds