metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1069-m1070

Dimeric (2-cyano­phenolato-κO){2,2′-[ethyl­enebis(nitrilo­methyl­­idyne)]diphenolato-κ4O,N,N′,O′}manganese(III) monohydrate

aLaboratoire d'Électrochimie, d'Ingénierie Moléculaire et de Catalyse Redox (LEIMCR), Faculté des Sciences de l'Ingénieur, Université Farhat Abbas de Sétif 19000, Algeria, bDépartement de Chimie Industrielle, Faculté des Sciences de l'Ingénieur, Université Mentouri Constantine, Campus Chaab Erssas, Constantine, Algeria, and cDépartement de Chimie, Faculté des Sciences Exactes, Université Mentouri Constantine, Route de Ain El Bey, Constantine, Algeria
*Correspondence e-mail: abmousser@yahoo.fr

(Received 6 May 2011; accepted 4 July 2011; online 9 July 2011)

The molecules of the title compound, [Mn(C7H4NO)(C16H14N2O2)]·H2O, form dimers in the solid state across a crystallographic inversion center. The bridging Mn2O2 group is built of phen­oxy groups, and is asymmetric, with an Mn—O distances of 1.9002 (13) and 2.6236 (14) Å. A substantial cavity between the two Mn atoms [Mn⋯Mn = 3.5082 (4) Å] is produced by the formation of the dimer. In the crystal, an extended network of O—H⋯O hydrogen-bonding inter­actions stabil­izes the structure.

Related literature

For related structures, see: Mirkhani et al. (2006[Mirkhani, V., Moghadam, M., Tanjestaminejad, S. & Bahramian, B. (2006). Appl. Catal. A, 311, 43-50.]); Oyaizu et al. (2000[Oyaizu, K., Nakagawa, T. & Tsuchida, E. (2000). Inorg. Chim. Acta, 305, 184-188.]); Zhang et al. (2009[Zhang, X., Wei, P., Li, B., Wu, C. & Hu, B. (2009). Acta Cryst. E65, m707.]). For applications of MnII complexes in catalysis, see: Ourari et al. (2006[Ourari, A., Ouari, K., Moumeni, W., Sibous, L., Bouet, G. & Khan, M. A. (2006). Transition Met. Chem. 31, 169-175.], 2008[Ourari, A., Ouari, K., Khan, M. A. & Bouet, G. (2008). J. Coord. Chem. 61, 3846-3859.]); Srinivasan et al. (1986[Srinivasan, K., Michaud, P. J. & Kochi, K. (1986). J. Am. Chem. Soc. 108, 2309-2320.]); Salomao et al. (2007[Salomao, G. C., Olsen, M. H. N., Drago, V., Fernandes, C., Filho, L. C. & Atunes, O. A. C. (2007). Catal. Commun. 8, 69-72.]); Moutet & Ourari (1997[Moutet, J. C. & Ourari, A. (1997). Electrochim. Acta, 42, 2525-2531.]). For the synthesis, see: Trivedi et al. (1992[Trivedi, B. M., Bhattacharya, P. K., Ganeshpure, P. A. & Satish, S. (1992). J. Mol. Catal. A, 75, 109-115.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C7H4NO)(C16H12N2O2)]·H2O

  • Mr = 457.36

  • Monoclinic, P 21 /c

  • a = 12.8693 (3) Å

  • b = 14.2487 (3) Å

  • c = 11.6357 (3) Å

  • β = 104.297 (1)°

  • V = 2067.57 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.67 mm−1

  • T = 293 K

  • 0.08 × 0.06 × 0.04 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • 8907 measured reflections

  • 4732 independent reflections

  • 3574 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.103

  • S = 1.05

  • 4601 reflections

  • 288 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O2 0.86 (4) 2.24 (5) 2.959 (3) 141 (4)
O1W—H2W⋯O3i 0.96 (4) 1.91 (4) 2.840 (3) 163 (4)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Tetradentate Schiff base complexes of transition metals were involved in a large research activity during the last ten years. The complexes of manganese(III) are currently used in catalysis (Ourari et al., 2006; Ourari et al., 2008; Srinivasan et al., 1986; Salomao et al., 2007) and in electrocatalysis reactions (Moutet, et al., 1997). In the present paper, we describe the synthesis and structural study of the dimeric 2-cyanophenoxy{2,2-[ethylenebis-(nitrilomethylidyne)]diphenolato}-manganese(III) monohydrate. The metal fragment in this complex is similar to those described by Mirkhani et al., 2006; Oyaizu et al., 2000; Zhang et al., 2009), where the manganese(III) is chelated by an imidazole moiety, arylcarboxylate group and azide ion, respectively. In the title compound, the manganese(III) atom is chelated by the Schiff base ligand via two N and two O atoms, and is additionally coordinated by a cyanophenoxy group (Fig. 1), forming a distorted MnN2O3 square pyramidal arrangement (Table 1). The Schiff base lies in the equatorial plane, and the cyanophenoxy group is in the axial coordination site. The manganese(III) atom is diplaced out of the salen N2O2 plane by 0.18Å towards the cyanophenoxy group and confirms that the coordination geometry around the manganese is susceptible to the nature of the axial ligand as described by Oyaizu et al., 2000. In the crystal packing, 2-cyanophenoxy{2,2-[ethylenebis-(nitrilomethylidyne)]diphenolato} -manganese(III) monohydrate forms a solid-state dimer in which the Mn(salen) moiety is linked to its neighbor by two shared cyanophenoxy oxygen atoms. So each manganese(III) achieves a distorted octahedral geometry (Table 1). The Mn—Mn distance is 3.5082 (4)Å. An extended network of O—H···O (Table 2) hydrogen-bonding interactions stabilizes the solid state (Fig. 2). Each dimer is linked to four neighbor dimers via hydrogen water molecule bonds to give layers parallel to (001) plane.

Related literature top

For related structures, see: Mirkhani et al. (2006); Oyaizu et al. (2000); Zhang et al. (2009). For applications of MnII complexes in catalysis, see: Ourari et al. (2006, 2008); Srinivasan et al. (1986); Salomao et al. (2007); Moutet & Ourari (1997). For the synthesis, see: Trivedi et al. (1992).

Experimental top

Reagent grade 2-hydroxybenzaldehyde (Aldrich), 1,2-diaminoethane (Fluka) and manganese(II) acetate tetrahydrate (Fluka) were obtained commercially. All the solvents used were of reagent grade. The symmetrical Schiff base was prepared in one step synthesis according to the method described by Trivedi et al., 1992. The ligand was obtained by refluxing a mixture of 2 mmol of 2-hydroxybenzaldehyde and 1 mmol of 1,2-diaminoethane in 25 ml of ethanol for 30 min. A methanolic solution (15 ml) of Mn(Ac)2, 4H2O (1 mmol) was added dropwise to the resulting yellow solution containing the ligand. The reaction mixture was stirred continuously for 24 hours under air atmosphere and the mixture was filtered. The filtrate was concentrated to ca. 20 ml under reduced pressure, kept for several weeks at ambient temperature. The brown crystals were collected by filtration and were washed thoroughly with a minimum amount of methanol and dried in air. Yield: (78%).

Refinement top

H atoms were positined geometrically, using a riding model with C—H = 0.96 Å (Uiso(H) = 1.5) (including free rotation about C—C and C—N bond) for methyl groups and with C—H = 0.93 and 0.97 Å (1.2 for aromatic and methylene groups) times Ueq(C). Hydrogen atoms bonded to the water oxygen were freely refined.

The difference between 4732 independent reflections and 4601 reflections used in the refinement is 131 reflections. These are omitted, in refinement, as bad reflections.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 35% probability displacement ellipsoids for non-H atoms. Symmetry codes: i = 1-x, 1-y, 2-z; ii = 0.5+x, 0.5-y, 1+z.
[Figure 2] Fig. 2. The packing of the title compound, viewed down the c axis, showing one layer of molecules connected by O—H···O hydrogen bonds (dashed lines). The phenyl rings and H atoms out of the clusters have been omitted for clarity.
(2-Cyanophenolato-κO){2,2'- [ethylenebis(nitrilomethylidyne)]diphenolato- κ4O,N,N',O'}manganese(III) monohydrate top
Crystal data top
[Mn(C7H4NO)(C16H14N2O2)]·H2OF(000) = 944
Mr = 457.36Dx = 1.469 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3574 reflections
a = 12.8693 (3) Åθ = 1.0–27.5°
b = 14.2487 (3) ŵ = 0.67 mm1
c = 11.6357 (3) ÅT = 293 K
β = 104.297 (1)°Prism, brown
V = 2067.57 (8) Å30.08 × 0.06 × 0.04 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3574 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 27.5°, θmin = 3.1°
Detector resolution: 8.192 pixels mm-1h = 1616
ω scansk = 1818
8907 measured reflectionsl = 1515
4732 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0533P)2 + 0.4975P]
where P = (Fo2 + 2Fc2)/3
4601 reflections(Δ/σ)max = 0.003
288 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Mn(C7H4NO)(C16H14N2O2)]·H2OV = 2067.57 (8) Å3
Mr = 457.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.8693 (3) ŵ = 0.67 mm1
b = 14.2487 (3) ÅT = 293 K
c = 11.6357 (3) Å0.08 × 0.06 × 0.04 mm
β = 104.297 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3574 reflections with I > 2σ(I)
8907 measured reflectionsRint = 0.024
4732 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.36 e Å3
4601 reflectionsΔρmin = 0.42 e Å3
288 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.99092 (2)0.43893 (2)0.62805 (2)0.02983 (10)
O10.90494 (10)0.43871 (10)0.46974 (11)0.0357 (3)
O21.08666 (10)0.34558 (9)0.60129 (11)0.0350 (3)
O30.89791 (11)0.35388 (11)0.70612 (13)0.0448 (4)
N10.91679 (14)0.55496 (11)0.66080 (14)0.0354 (4)
N21.08619 (13)0.46912 (11)0.78489 (13)0.0339 (3)
N30.7505 (2)0.48210 (18)0.8743 (2)0.0767 (7)
C10.79945 (15)0.45831 (14)0.44352 (17)0.0337 (4)
C20.73190 (17)0.41319 (16)0.34833 (19)0.0435 (5)
H20.75960.36940.30460.052*
C30.62331 (18)0.43313 (17)0.3182 (2)0.0525 (6)
H30.57860.40190.25470.063*
C40.58015 (18)0.49842 (19)0.3805 (2)0.0568 (6)
H40.50680.51020.35990.068*
C50.64539 (18)0.54566 (17)0.4724 (2)0.0483 (5)
H50.61660.59160.51220.058*
C60.75579 (16)0.52575 (14)0.50774 (18)0.0373 (4)
C70.82058 (17)0.57678 (15)0.60655 (18)0.0397 (5)
H70.79040.62940.63290.048*
C80.97976 (19)0.60968 (15)0.76127 (19)0.0445 (5)
H8A0.93300.64820.79540.053*
H8B1.03020.65020.73560.053*
C91.03842 (19)0.53916 (16)0.85072 (18)0.0426 (5)
H9A1.09410.57000.91030.051*
H9B0.98910.50890.89000.051*
C101.17722 (17)0.43171 (15)0.83253 (17)0.0387 (4)
H101.21380.45380.90670.046*
C111.22743 (15)0.35839 (14)0.78078 (17)0.0362 (4)
C121.32795 (17)0.32527 (17)0.84575 (19)0.0465 (5)
H121.35990.35300.91820.056*
C131.38001 (18)0.25341 (17)0.8053 (2)0.0488 (5)
H131.44650.23270.84920.059*
C141.33099 (18)0.21203 (16)0.6970 (2)0.0460 (5)
H141.36480.16230.66920.055*
C151.23384 (17)0.24326 (14)0.63047 (19)0.0405 (5)
H151.20330.21480.55810.049*
C161.17987 (15)0.31754 (13)0.66996 (16)0.0328 (4)
C170.80118 (16)0.31955 (14)0.66939 (17)0.0365 (4)
C180.7748 (2)0.25034 (16)0.5805 (2)0.0474 (5)
H180.82740.22830.54510.057*
C190.6724 (2)0.21485 (19)0.5453 (2)0.0584 (6)
H190.65700.16950.48600.070*
C200.5921 (2)0.2451 (2)0.5959 (2)0.0607 (7)
H200.52350.22000.57150.073*
C210.61415 (18)0.31221 (18)0.6821 (2)0.0517 (6)
H210.56030.33290.71660.062*
C220.71671 (17)0.34976 (15)0.71865 (18)0.0404 (5)
C230.7380 (2)0.42338 (17)0.8061 (2)0.0514 (6)
O1W0.9967 (2)0.18475 (15)0.44789 (18)0.0744 (6)
H2W0.962 (3)0.185 (3)0.366 (3)0.110 (13)*
H1W1.004 (4)0.244 (3)0.461 (4)0.125 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.03033 (16)0.03349 (17)0.02616 (15)0.00335 (11)0.00787 (11)0.00182 (11)
O10.0314 (7)0.0465 (8)0.0293 (6)0.0064 (6)0.0079 (5)0.0036 (6)
O20.0332 (7)0.0383 (7)0.0326 (7)0.0049 (6)0.0061 (5)0.0033 (5)
O30.0369 (7)0.0539 (9)0.0434 (8)0.0077 (7)0.0098 (6)0.0072 (7)
N10.0408 (9)0.0361 (9)0.0321 (8)0.0045 (7)0.0142 (7)0.0014 (7)
N20.0382 (9)0.0366 (8)0.0276 (8)0.0009 (7)0.0095 (6)0.0017 (6)
N30.110 (2)0.0640 (15)0.0607 (14)0.0043 (14)0.0301 (14)0.0113 (12)
C10.0298 (9)0.0394 (10)0.0326 (9)0.0020 (8)0.0091 (7)0.0074 (8)
C20.0399 (11)0.0444 (11)0.0442 (12)0.0010 (9)0.0069 (9)0.0002 (9)
C30.0380 (12)0.0519 (14)0.0613 (14)0.0043 (10)0.0004 (10)0.0004 (11)
C40.0311 (11)0.0618 (15)0.0754 (17)0.0032 (11)0.0092 (11)0.0041 (13)
C50.0368 (11)0.0511 (13)0.0599 (14)0.0107 (9)0.0176 (10)0.0056 (11)
C60.0353 (10)0.0387 (10)0.0403 (10)0.0041 (8)0.0136 (8)0.0076 (8)
C70.0429 (11)0.0402 (11)0.0406 (11)0.0090 (9)0.0194 (9)0.0016 (9)
C80.0521 (13)0.0398 (11)0.0413 (11)0.0067 (10)0.0107 (9)0.0108 (9)
C90.0515 (12)0.0445 (11)0.0325 (10)0.0013 (9)0.0120 (9)0.0093 (8)
C100.0403 (11)0.0452 (11)0.0273 (9)0.0031 (9)0.0022 (8)0.0021 (8)
C110.0341 (10)0.0403 (10)0.0336 (10)0.0007 (8)0.0074 (8)0.0046 (8)
C120.0400 (11)0.0555 (13)0.0399 (11)0.0009 (10)0.0022 (9)0.0040 (10)
C130.0331 (11)0.0582 (14)0.0526 (13)0.0081 (10)0.0058 (9)0.0122 (11)
C140.0373 (11)0.0460 (12)0.0578 (13)0.0090 (9)0.0180 (10)0.0080 (10)
C150.0379 (11)0.0413 (11)0.0435 (11)0.0037 (9)0.0122 (9)0.0005 (9)
C160.0299 (9)0.0347 (10)0.0351 (9)0.0001 (7)0.0106 (7)0.0053 (8)
C170.0385 (10)0.0373 (10)0.0343 (10)0.0023 (8)0.0099 (8)0.0085 (8)
C180.0549 (14)0.0459 (12)0.0447 (12)0.0022 (10)0.0188 (10)0.0012 (10)
C190.0704 (17)0.0579 (15)0.0442 (13)0.0176 (13)0.0089 (12)0.0077 (11)
C200.0450 (14)0.0773 (18)0.0549 (14)0.0177 (12)0.0029 (11)0.0073 (13)
C210.0392 (12)0.0618 (15)0.0560 (14)0.0011 (11)0.0150 (10)0.0109 (11)
C220.0429 (11)0.0412 (11)0.0393 (10)0.0008 (9)0.0144 (9)0.0056 (9)
C230.0620 (15)0.0505 (13)0.0463 (13)0.0017 (11)0.0223 (11)0.0034 (11)
O1W0.1058 (17)0.0567 (12)0.0507 (11)0.0004 (11)0.0002 (11)0.0084 (9)
Geometric parameters (Å, º) top
Mn1—O21.8903 (13)C8—H8B0.9700
Mn1—O11.9002 (13)C9—H9A0.9700
Mn1—N21.9782 (16)C9—H9B0.9700
Mn1—N11.9921 (16)C10—C111.436 (3)
Mn1—O32.0649 (14)C10—H100.9300
Mn1—O1i2.6236 (14)C11—C121.409 (3)
O1—C11.345 (2)C11—C161.409 (3)
O2—C161.328 (2)C12—C131.369 (3)
O3—C171.307 (2)C12—H120.9300
N1—C71.282 (3)C13—C141.394 (3)
N1—C81.471 (3)C13—H130.9300
N2—C101.282 (3)C14—C151.372 (3)
N2—C91.481 (3)C14—H140.9300
N3—C231.137 (3)C15—C161.404 (3)
C1—C21.386 (3)C15—H150.9300
C1—C61.416 (3)C17—C181.408 (3)
C2—C31.384 (3)C17—C221.415 (3)
C2—H20.9300C18—C191.377 (4)
C3—C41.378 (4)C18—H180.9300
C3—H30.9300C19—C201.379 (4)
C4—C51.363 (4)C19—H190.9300
C4—H40.9300C20—C211.364 (4)
C5—C61.407 (3)C20—H200.9300
C5—H50.9300C21—C221.390 (3)
C6—C71.440 (3)C21—H210.9300
C7—H70.9300C22—C231.440 (3)
C8—C91.508 (3)O1W—H2W0.95 (4)
C8—H8A0.9700O1W—H1W0.85 (4)
O2—Mn1—O194.96 (6)N2—C9—H9A110.3
O2—Mn1—N291.39 (6)C8—C9—H9A110.3
O1—Mn1—N2167.03 (7)N2—C9—H9B110.3
O2—Mn1—N1167.92 (7)C8—C9—H9B110.3
O1—Mn1—N189.72 (6)H9A—C9—H9B108.6
N2—Mn1—N181.95 (7)N2—C10—C11125.37 (18)
O2—Mn1—O397.57 (6)N2—C10—H10117.3
O1—Mn1—O399.41 (6)C11—C10—H10117.3
N2—Mn1—O390.94 (6)C12—C11—C16119.10 (19)
N1—Mn1—O392.63 (6)C12—C11—C10117.85 (18)
C1—O1—Mn1122.21 (11)C16—C11—C10123.04 (18)
C16—O2—Mn1129.88 (12)C13—C12—C11121.9 (2)
C17—O3—Mn1133.20 (13)C13—C12—H12119.0
C7—N1—C8122.58 (17)C11—C12—H12119.0
C7—N1—Mn1123.87 (14)C12—C13—C14118.5 (2)
C8—N1—Mn1113.34 (13)C12—C13—H13120.8
C10—N2—C9120.55 (16)C14—C13—H13120.8
C10—N2—Mn1126.90 (14)C15—C14—C13121.3 (2)
C9—N2—Mn1112.45 (13)C15—C14—H14119.4
O1—C1—C2118.93 (18)C13—C14—H14119.4
O1—C1—C6122.07 (17)C14—C15—C16121.0 (2)
C2—C1—C6118.97 (18)C14—C15—H15119.5
C3—C2—C1120.1 (2)C16—C15—H15119.5
C3—C2—H2119.9O2—C16—C15118.44 (18)
C1—C2—H2119.9O2—C16—C11123.35 (17)
C4—C3—C2121.2 (2)C15—C16—C11118.21 (18)
C4—C3—H3119.4O3—C17—C18122.64 (19)
C2—C3—H3119.4O3—C17—C22121.23 (19)
C5—C4—C3119.7 (2)C18—C17—C22116.13 (19)
C5—C4—H4120.1C19—C18—C17121.0 (2)
C3—C4—H4120.1C19—C18—H18119.5
C4—C5—C6120.8 (2)C17—C18—H18119.5
C4—C5—H5119.6C18—C19—C20121.4 (2)
C6—C5—H5119.6C18—C19—H19119.3
C5—C6—C1119.1 (2)C20—C19—H19119.3
C5—C6—C7118.39 (19)C21—C20—C19119.5 (2)
C1—C6—C7122.49 (18)C21—C20—H20120.3
N1—C7—C6124.71 (19)C19—C20—H20120.3
N1—C7—H7117.6C20—C21—C22120.3 (2)
C6—C7—H7117.6C20—C21—H21119.9
N1—C8—C9106.19 (17)C22—C21—H21119.9
N1—C8—H8A110.5C21—C22—C17121.7 (2)
C9—C8—H8A110.5C21—C22—C23119.8 (2)
N1—C8—H8B110.5C17—C22—C23118.5 (2)
C9—C8—H8B110.5N3—C23—C22177.3 (3)
H8A—C8—H8B108.7H2W—O1W—H1W100 (4)
N2—C9—C8107.04 (16)
O2—Mn1—O1—C1149.32 (14)C8—N1—C7—C6179.83 (19)
N2—Mn1—O1—C191.7 (3)Mn1—N1—C7—C65.8 (3)
N1—Mn1—O1—C141.83 (15)C5—C6—C7—N1167.2 (2)
O3—Mn1—O1—C150.79 (15)C1—C6—C7—N114.3 (3)
O1—Mn1—O2—C16169.06 (15)C7—N1—C8—C9138.9 (2)
N2—Mn1—O2—C160.38 (16)Mn1—N1—C8—C936.0 (2)
N1—Mn1—O2—C1656.6 (4)C10—N2—C9—C8145.0 (2)
O3—Mn1—O2—C1690.75 (16)Mn1—N2—C9—C838.2 (2)
O2—Mn1—O3—C17106.03 (19)N1—C8—C9—N246.5 (2)
O1—Mn1—O3—C179.7 (2)C9—N2—C10—C11175.19 (19)
N2—Mn1—O3—C17162.44 (19)Mn1—N2—C10—C111.0 (3)
N1—Mn1—O3—C1780.46 (19)N2—C10—C11—C12179.9 (2)
O2—Mn1—N1—C7140.7 (3)N2—C10—C11—C161.1 (3)
O1—Mn1—N1—C727.74 (16)C16—C11—C12—C131.2 (3)
N2—Mn1—N1—C7162.23 (17)C10—C11—C12—C13177.7 (2)
O3—Mn1—N1—C771.66 (17)C11—C12—C13—C140.4 (3)
O2—Mn1—N1—C844.5 (4)C12—C13—C14—C151.3 (3)
O1—Mn1—N1—C8157.44 (14)C13—C14—C15—C160.6 (3)
N2—Mn1—N1—C812.58 (14)Mn1—O2—C16—C15177.54 (13)
O3—Mn1—N1—C8103.15 (14)Mn1—O2—C16—C112.3 (3)
O2—Mn1—N2—C101.26 (17)C14—C15—C16—O2179.23 (18)
O1—Mn1—N2—C10118.1 (3)C14—C15—C16—C110.9 (3)
N1—Mn1—N2—C10168.63 (18)C12—C11—C16—O2178.37 (18)
O3—Mn1—N2—C1098.85 (18)C10—C11—C16—O22.8 (3)
O2—Mn1—N2—C9175.21 (14)C12—C11—C16—C151.8 (3)
O1—Mn1—N2—C965.4 (3)C10—C11—C16—C15177.01 (18)
N1—Mn1—N2—C914.90 (13)Mn1—O3—C17—C1869.0 (3)
O3—Mn1—N2—C977.62 (14)Mn1—O3—C17—C22111.8 (2)
Mn1—O1—C1—C2146.56 (15)O3—C17—C18—C19179.1 (2)
Mn1—O1—C1—C635.5 (2)C22—C17—C18—C190.2 (3)
O1—C1—C2—C3179.0 (2)C17—C18—C19—C200.4 (4)
C6—C1—C2—C31.0 (3)C18—C19—C20—C210.5 (4)
C1—C2—C3—C40.8 (4)C19—C20—C21—C220.0 (4)
C2—C3—C4—C51.1 (4)C20—C21—C22—C170.7 (4)
C3—C4—C5—C62.7 (4)C20—C21—C22—C23177.4 (2)
C4—C5—C6—C12.4 (3)O3—C17—C22—C21178.5 (2)
C4—C5—C6—C7179.1 (2)C18—C17—C22—C210.8 (3)
O1—C1—C6—C5177.34 (18)O3—C17—C22—C233.4 (3)
C2—C1—C6—C50.6 (3)C18—C17—C22—C23177.28 (19)
O1—C1—C6—C71.1 (3)C21—C22—C23—N316 (6)
C2—C1—C6—C7179.04 (19)C17—C22—C23—N3162 (6)
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O20.86 (4)2.24 (5)2.959 (3)141 (4)
O1W—H2W···O3ii0.96 (4)1.91 (4)2.840 (3)163 (4)
Symmetry code: (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Mn(C7H4NO)(C16H14N2O2)]·H2O
Mr457.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.8693 (3), 14.2487 (3), 11.6357 (3)
β (°) 104.297 (1)
V3)2067.57 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.67
Crystal size (mm)0.08 × 0.06 × 0.04
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8907, 4732, 3574
Rint0.024
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.103, 1.05
No. of reflections4601
No. of parameters288
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.42

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Selected bond lengths (Å) top
Mn1—O21.8903 (13)Mn1—N11.9921 (16)
Mn1—O11.9002 (13)Mn1—O32.0649 (14)
Mn1—N21.9782 (16)Mn1—O1i2.6236 (14)
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O20.86 (4)2.24 (5)2.959 (3)141 (4)
O1W—H2W···O3ii0.96 (4)1.91 (4)2.840 (3)163 (4)
Symmetry code: (ii) x, y+1/2, z1/2.
 

Acknowledgements

The authors thank the Algerian Ministère de l'Enseignement Supérieur et de la Recherche Scientifique for financial support and Professor L. Ouahab (University of Rennes-1, France) for helpful discussions.

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationMirkhani, V., Moghadam, M., Tanjestaminejad, S. & Bahramian, B. (2006). Appl. Catal. A, 311, 43–50.  CrossRef CAS Google Scholar
First citationMoutet, J. C. & Ourari, A. (1997). Electrochim. Acta, 42, 2525–2531.  CrossRef CAS Web of Science Google Scholar
First citationOurari, A., Ouari, K., Khan, M. A. & Bouet, G. (2008). J. Coord. Chem. 61, 3846–3859.  Web of Science CrossRef CAS Google Scholar
First citationOurari, A., Ouari, K., Moumeni, W., Sibous, L., Bouet, G. & Khan, M. A. (2006). Transition Met. Chem. 31, 169–175.  Web of Science CrossRef CAS Google Scholar
First citationOyaizu, K., Nakagawa, T. & Tsuchida, E. (2000). Inorg. Chim. Acta, 305, 184–188.  Web of Science CSD CrossRef CAS Google Scholar
First citationSalomao, G. C., Olsen, M. H. N., Drago, V., Fernandes, C., Filho, L. C. & Atunes, O. A. C. (2007). Catal. Commun. 8, 69–72.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrinivasan, K., Michaud, P. J. & Kochi, K. (1986). J. Am. Chem. Soc. 108, 2309–2320.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationTrivedi, B. M., Bhattacharya, P. K., Ganeshpure, P. A. & Satish, S. (1992). J. Mol. Catal. A, 75, 109–115.  CrossRef CAS Web of Science Google Scholar
First citationZhang, X., Wei, P., Li, B., Wu, C. & Hu, B. (2009). Acta Cryst. E65, m707.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1069-m1070
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds