metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[Bis(pyridin-2-ylmeth­yl) ether]tri­chlorido­rhodium(III) di­chloro­methane monosolvate: unusual hydrolysis of the methyl­ene bridge in (pyrazolylmeth­yl)pyridine

aDepartment of Chemistry, University of Johannesburg, Auckland Park Kingsway Campus, PO Box 524, Johannesburg, South Africa, and bSchool of Chemistry, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
*Correspondence e-mail: owaga@ukzn.ac.za

(Received 14 June 2011; accepted 11 July 2011; online 16 July 2011)

In the title compound, [RhCl3(C12H12N2O)]·CH2Cl2, the RhIII atom shows a slightly distorted octa­hedral geometry being coordinated by two N atoms and one O atom from the 2,2′-(oxydimethanedi­yl)dipyridine ligand and three Cl atoms. Two Cl atoms adopt a trans arrangement to the two pyridyl N atoms, while the third Cl atom and the O atoms occupy the axial site. The Rh—Cl bonds that are trans to the pyridyl N atoms are slightly longer than the Rh—Cl bond distance trans to the O atom.

Related literature

For hydrogenation of olefins, see: Samec et al. (2006[Samec, J. S. M., Backvall, J. E., Andersson, P. G. & Brandt, P. (2006). Chem. Soc. Rev. 35, 237-248.]); Xu et al. (2009[Xu, H.-J., Lu, X.-Y., Li, Y.-Z., Chen, X.-T. & Xue, Z.-L. (2009). Inorg. Chim. Acta, 362, 4774-4779.]); Chalid et al. (2011[Chalid, M., Broekhuis, A. A. & Heeres, H. J. (2011). J. Mol. Catal. A, 341, 14-21.]); Liu et al. (2011[Liu, H., Liang, S., Wang, W., Jiang, T. & Han, B. (2011). J. Mol. Catal. A, 341, 35-41.]). For multidentate N-containing ligands, see: Dayan & Centikaya (2007[Dayan, O. & Centikaya, B. (2007). J. Mol. Catal. A, 271, 134-141.]); Deng et al. (2005[Deng, H., Yu, Z., Dong, J. & Wu, S. (2005). Organometallics, 24, 4110-4112.]). For pyrazolyl-based transition metal complexes as catalysts, see: Ojwach & Darkwa (2010[Ojwach, S. O. & Darkwa, J. (2010). Inorg. Chim. Acta, 363, 1947-1954.]) and references therein. For structures bearing the 2,2′-(oxydimethanedi­yl)dipyridine ligand, see: Nanty et al. (2000[Nanty, D., Laurent, M., Khan, M. A. & Ashby, M. T. (2000). Acta Cryst. C56, 35-36.]) and references therein.

[Scheme 1]

Experimental

Crystal data
  • [RhCl3(C12H12N2O)]·CH2Cl2

  • Mr = 494.42

  • Monoclinic, P 21 /c

  • a = 9.5360 (18) Å

  • b = 12.527 (2) Å

  • c = 14.340 (3) Å

  • β = 95.071 (4)°

  • V = 1706.3 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.78 mm−1

  • T = 100 K

  • 0.14 × 0.13 × 0.05 mm

Data collection
  • Bruker X8 APEXII 4K KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA]) Tmin = 0.788, Tmax = 0.916

  • 30694 measured reflections

  • 4276 independent reflections

  • 2925 reflections with I > 2σ(I)

  • Rint = 0.102

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.139

  • S = 1.08

  • 4276 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 1.50 e Å−3

  • Δρmin = −1.25 e Å−3

Table 1
Selected bond lengths (Å)

N1—Rh1 2.037 (5)
N2—Rh1 2.031 (5)
O1—Rh1 2.069 (4)
Cl1—Rh1 2.3479 (15)
Cl2—Rh1 2.2941 (15)
Cl3—Rh1 2.3315 (15)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA]); data reduction: SAINT-Plus and XPREP (Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Transition metal catalyzed hydrogenation of olefins constitutes one of the most important reactions in fine chemicals and petroleum industries (Samec et al., 2006, Xu et al., 2009). To date most hydrogenation catalysts reported in literature are based on phosphine ruthenium and rhodium complexes (Chalid et al., 2011, Liu et al., 2011). Recently multidentate nitrogen-containing ligands such as 2,6-bis(imino)pyridine (Dayan & Centikaya, 2007, and 2,6(3,5-dimethylpyrazol-1-yl)pyridine (Deng et al., 2005), have attracted much attention, and have been used as effective catalysts for transfer hydrogenation of ketones. As part of our investigation of pyrazolyl-based transition metal complexes as catalysts for various olefin transformations (Ojwach and Darkwa, 2010 and references therein), we are currently exploring the ability of (pyrazolylmethyl)pyridine ruthenium and rhodium complexes to catalyze olefin hydrogenation reactions. On one such attempt to synthesize the rhodium complex of 2-(3,5-dimethylpyrazol-1-ylmethyl)pyridine, the title compound was obtained. This transformation points to the possible hydrolysis of the 2-(3,5-dimethylpyrazol-1-ylmethyl)pyridine compound promoted by RhCl3.6H2O salt to form the (pyridinylmethyl)ether ligand in the title compound.

In the title compound [RhCl3(C12H12N2O)].CH2Cl2 the asymmetric unit contains one molecule of the RhIII complex and a dichloromethane molecule of solvation (Fig. 1). In the structure, the Rh atom center is in an octahedral environment with two nitrogen atoms from 2,2'-(oxydimethanediyl)dipyridine ligand trans to two chlorine atoms in the equatorial position. The axial positions are occupied by a third chlorine atom and the oxygen atom from 2,2'-(oxydimethanediyl)dipyridine. 2,2'-(oxydimethanediyl)dipyridine acts as an N,O,N' tridentate ligand in which the angles around the the Rh metal center are close to orthogonal (see Table 1). The bond distances for the Cl atoms to the Rh atom are longer for the Cl atoms trans to the pyridyl N atoms of the 2,2'-(oxydimethanediyl)dipyridine ligand (2.3315 (15) and 2.3479 (15) Å) as compared to the distance of the Cl atom trans to the O atom (2.2941 (5) Å). A similar trend is observed in closely related compounds with the same ligand system where metal–ligand bond distance that is trans to the ether ligand was found to be statistically shorter than the distance between the trans ligands to pyridyl N atoms (the trans effect) (Nanty et al., 2000 and references therein). The Rh atom is slightly off the equatorial plane N2Cl2 and is inclined toward the axial Cl atom as the bond angles N–Rh–Cl would suggest (172.82 (13) and 172.89 (14)°). The O–Rh–Cl bond angle is 176.29 (12)° also pointing to a slight inclination of the Rh toward the equatorial Cl atoms.

Related literature top

For hydrogenation of olefins, see: Samec et al. (2006); Xu et al. (2009); Chalid et al. (2011); Liu et al. (2011). For multidentate N-containing ligands, see: Dayan & Centikaya (2007); Deng et al. (2005). For pyrazolyl-based transition metal complexes as catalysts, see: Ojwach & Darkwa (2010) and references therein. For structures bearing the 2,2'-(oxydimethanediyl)dipyridine ligand, see: Nanty et al. (2000) and refereneces therein.

Experimental top

To a solution of RhCl3.6H2O (0.20 g, 0.60 mmol) in MeOH (10 ml) was added a solution of 2-(3,5-dimethylpyazol-1-ylmethyl)pyridine (0.12 g, 0.60 mmol) in MeOH (10 ml) and the resultant orange solution was stirred for 24 h. After the reaction period, the solution was filtered off and solvent removed in vacuo to afford an orange solid. Recrystallization of the crude product from chloroform gave single crystals suitable for X-ray analysis. The crystals were insoluble in most organic solvents. Yield = 0.09 g (40%).

Refinement top

H atoms on C atoms were placed in idealized positions (C–H = 0.95) for aromatic H atoms and (C–H = 0,99) for methylenic H atoms and refined as riding atoms with Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus and XPREP (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are omitted for clarity.
[Bis(pyridin-2-ylmethyl) ether]trichloridorhodium(III) dichloromethane monosolvate top
Crystal data top
[RhCl3(C12H12N2O)]·CH2Cl2F(000) = 976
Mr = 494.42Dx = 1.925 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 31705 reflections
a = 9.5360 (18) Åθ = 2.1–28.6°
b = 12.527 (2) ŵ = 1.78 mm1
c = 14.340 (3) ÅT = 100 K
β = 95.071 (4)°Block, brown
V = 1706.3 (6) Å30.14 × 0.13 × 0.05 mm
Z = 4
Data collection top
Bruker X8 APEXII 4K KappaCCD
diffractometer
2925 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.102
ϕ and ω scansθmax = 28.6°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1212
Tmin = 0.788, Tmax = 0.916k = 1516
30694 measured reflectionsl = 1919
4276 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0602P)2 + 6.0697P]
where P = (Fo2 + 2Fc2)/3
4276 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 1.50 e Å3
0 restraintsΔρmin = 1.25 e Å3
Crystal data top
[RhCl3(C12H12N2O)]·CH2Cl2V = 1706.3 (6) Å3
Mr = 494.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.5360 (18) ŵ = 1.78 mm1
b = 12.527 (2) ÅT = 100 K
c = 14.340 (3) Å0.14 × 0.13 × 0.05 mm
β = 95.071 (4)°
Data collection top
Bruker X8 APEXII 4K KappaCCD
diffractometer
4276 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2925 reflections with I > 2σ(I)
Tmin = 0.788, Tmax = 0.916Rint = 0.102
30694 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.08Δρmax = 1.50 e Å3
4276 reflectionsΔρmin = 1.25 e Å3
199 parameters
Special details top

Experimental. The intensity data was collected on a Bruker X8 Apex 4 K CCD diffractometer using an exposure time of 20 sec/per frame. A total of 3527 frames were collected with a frame width of 0.5° covering upto θ = 28.57° with 99.8% completeness accomplished.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. >>> The Following ALERTS were generated <<< Format: alert-number_ALERT_alert-type_alert-level text 973_ALERT_2_B Large Calcd. Positive Residual Density on Rh1 1.53 e A-3 Difference map does not reveal any missing peaks, R factor is 4.8% 342_ALERT_3_C Low Bond Precision on C—C Bonds (x 1000) Ang.. 9 083_ALERT_2_G SHELXL Second Parameter in WGHT Unusually Large. 6.07 960_ALERT_3_G Number of Intensities with I. LT. - 2*sig(I).. 7 912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 76

Noted.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9453 (6)0.3170 (5)0.5707 (4)0.0220 (12)
C20.9516 (6)0.3990 (5)0.6344 (4)0.0250 (13)
H20.99820.38930.69520.03*
C30.8896 (7)0.4959 (5)0.6095 (4)0.0286 (14)
H30.89360.55380.65250.034*
C40.8218 (7)0.5068 (5)0.5210 (4)0.0284 (14)
H40.77890.57270.50220.034*
C50.8166 (6)0.4224 (5)0.4604 (4)0.0238 (13)
H50.76840.430.39990.029*
C61.0152 (6)0.2118 (5)0.5914 (4)0.0213 (12)
H6A1.11580.21670.57970.026*
H6B1.01010.1940.65830.026*
C70.8409 (6)0.0651 (5)0.5762 (4)0.0240 (13)
H7A0.85950.06720.64520.029*
H7B0.84590.01030.5560.029*
C80.6967 (6)0.1079 (5)0.5489 (4)0.0217 (12)
C90.5837 (6)0.0877 (5)0.6005 (4)0.0248 (13)
H90.59730.050.65810.03*
C100.4508 (7)0.1230 (5)0.5677 (4)0.0285 (14)
H100.3720.110.60230.034*
C110.4352 (6)0.1776 (5)0.4833 (4)0.0284 (14)
H110.34470.20140.45890.034*
C120.5499 (6)0.1970 (5)0.4353 (4)0.0272 (13)
H120.53810.23530.3780.033*
C130.5353 (9)0.4120 (7)0.6578 (7)0.053 (2)
H13A0.61650.38890.70090.064*
H13B0.54670.38120.59530.064*
N10.8778 (5)0.3292 (4)0.4846 (3)0.0179 (10)
N20.6797 (5)0.1632 (4)0.4675 (3)0.0212 (10)
O10.9483 (4)0.1273 (3)0.5336 (3)0.0204 (8)
Cl11.08727 (15)0.21896 (12)0.35869 (10)0.0231 (3)
Cl20.76119 (16)0.27205 (13)0.27541 (10)0.0255 (3)
Cl30.83695 (15)0.02382 (12)0.33886 (9)0.0231 (3)
Cl40.5347 (2)0.55102 (18)0.64998 (18)0.0583 (6)
Cl50.3773 (2)0.36285 (18)0.69904 (14)0.0513 (5)
Rh10.86208 (5)0.19166 (4)0.40861 (3)0.01818 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.020 (3)0.023 (3)0.025 (3)0.002 (2)0.010 (2)0.002 (2)
C20.026 (3)0.028 (4)0.021 (3)0.007 (3)0.006 (2)0.003 (2)
C30.037 (4)0.018 (3)0.032 (3)0.002 (3)0.014 (3)0.004 (2)
C40.030 (3)0.018 (3)0.039 (3)0.003 (2)0.011 (3)0.002 (3)
C50.023 (3)0.025 (3)0.024 (3)0.002 (2)0.006 (2)0.006 (2)
C60.018 (3)0.019 (3)0.026 (3)0.001 (2)0.001 (2)0.001 (2)
C70.025 (3)0.023 (3)0.024 (3)0.002 (2)0.007 (2)0.005 (2)
C80.023 (3)0.018 (3)0.024 (3)0.003 (2)0.005 (2)0.000 (2)
C90.026 (3)0.025 (3)0.024 (3)0.007 (3)0.007 (2)0.002 (2)
C100.023 (3)0.029 (4)0.035 (3)0.006 (3)0.010 (3)0.006 (3)
C110.016 (3)0.029 (4)0.039 (3)0.002 (2)0.001 (2)0.004 (3)
C120.024 (3)0.027 (4)0.029 (3)0.004 (3)0.000 (2)0.005 (3)
C130.042 (5)0.040 (5)0.077 (6)0.013 (4)0.008 (4)0.013 (4)
N10.016 (2)0.016 (3)0.023 (2)0.0009 (18)0.0045 (18)0.0013 (18)
N20.020 (2)0.021 (3)0.023 (2)0.0013 (19)0.0039 (19)0.0011 (19)
O10.018 (2)0.022 (2)0.0219 (19)0.0005 (16)0.0038 (15)0.0005 (16)
Cl10.0195 (7)0.0223 (8)0.0283 (7)0.0014 (5)0.0060 (5)0.0002 (5)
Cl20.0257 (7)0.0280 (8)0.0227 (7)0.0011 (6)0.0018 (5)0.0037 (6)
Cl30.0247 (7)0.0205 (8)0.0244 (6)0.0026 (6)0.0041 (5)0.0008 (5)
Cl40.0419 (12)0.0495 (13)0.0855 (16)0.0110 (9)0.0173 (11)0.0111 (11)
Cl50.0472 (12)0.0535 (13)0.0525 (11)0.0010 (9)0.0010 (9)0.0028 (9)
Rh10.0174 (2)0.0170 (2)0.0204 (2)0.00075 (18)0.00326 (15)0.00144 (18)
Geometric parameters (Å, º) top
C1—N11.349 (7)C8—C91.383 (8)
C1—C21.373 (8)C9—C101.385 (9)
C1—C61.495 (8)C9—H90.95
C2—C31.384 (9)C10—C111.387 (9)
C2—H20.95C10—H100.95
C3—C41.380 (9)C11—C121.365 (8)
C3—H30.95C11—H110.95
C4—C51.367 (9)C12—N21.350 (8)
C4—H40.95C12—H120.95
C5—N11.336 (7)C13—Cl41.745 (9)
C5—H50.95C13—Cl51.777 (9)
C6—O11.456 (7)C13—H13A0.99
C6—H6A0.99C13—H13B0.99
C6—H6B0.99N1—Rh12.037 (5)
C7—O11.462 (7)N2—Rh12.031 (5)
C7—C81.496 (8)O1—Rh12.069 (4)
C7—H7A0.99Cl1—Rh12.3479 (15)
C7—H7B0.99Cl2—Rh12.2941 (15)
C8—N21.355 (7)Cl3—Rh12.3315 (15)
N1—C1—C2120.8 (5)C12—C11—C10120.0 (6)
N1—C1—C6116.8 (5)C12—C11—H11120
C2—C1—C6122.3 (5)C10—C11—H11120
C1—C2—C3119.5 (6)N2—C12—C11121.5 (6)
C1—C2—H2120.2N2—C12—H12119.2
C3—C2—H2120.2C11—C12—H12119.2
C4—C3—C2118.6 (6)Cl4—C13—Cl5111.6 (4)
C4—C3—H3120.7Cl4—C13—H13A109.3
C2—C3—H3120.7Cl5—C13—H13A109.3
C5—C4—C3119.8 (6)Cl4—C13—H13B109.3
C5—C4—H4120.1Cl5—C13—H13B109.3
C3—C4—H4120.1H13A—C13—H13B108
N1—C5—C4121.3 (6)C5—N1—C1119.9 (5)
N1—C5—H5119.3C5—N1—Rh1126.1 (4)
C4—C5—H5119.3C1—N1—Rh1113.5 (4)
O1—C6—C1111.2 (5)C12—N2—C8119.4 (5)
O1—C6—H6A109.4C12—N2—Rh1126.6 (4)
C1—C6—H6A109.4C8—N2—Rh1114.0 (4)
O1—C6—H6B109.4C6—O1—C7116.0 (4)
C1—C6—H6B109.4C6—O1—Rh1109.3 (3)
H6A—C6—H6B108C7—O1—Rh1109.3 (3)
O1—C7—C8111.2 (5)N2—Rh1—N187.23 (19)
O1—C7—H7A109.4N2—Rh1—O181.99 (17)
C8—C7—H7A109.4N1—Rh1—O182.03 (17)
O1—C7—H7B109.4N2—Rh1—Cl296.40 (14)
C8—C7—H7B109.4N1—Rh1—Cl294.57 (13)
H7A—C7—H7B108N2—Rh1—Cl387.75 (14)
N2—C8—C9121.0 (6)O1—Rh1—Cl392.19 (12)
N2—C8—C7116.5 (5)Cl2—Rh1—Cl391.09 (6)
C9—C8—C7122.4 (5)N1—Rh1—Cl190.78 (13)
C8—C9—C10119.5 (6)O1—Rh1—Cl190.98 (11)
C8—C9—H9120.2Cl2—Rh1—Cl190.56 (5)
C10—C9—H9120.2Cl3—Rh1—Cl193.59 (5)
C9—C10—C11118.5 (6)N1—Rh1—Cl3172.82 (13)
C9—C10—H10120.7N2—Rh1—Cl1172.89 (14)
C11—C10—H10120.7O1—Rh1—Cl2176.29 (12)
N1—C1—C2—C30.9 (9)C12—N2—Rh1—N187.7 (5)
C6—C1—C2—C3177.4 (5)C8—N2—Rh1—N189.7 (4)
C1—C2—C3—C40.6 (9)C12—N2—Rh1—O1170.1 (5)
C2—C3—C4—C50.4 (9)C8—N2—Rh1—O17.3 (4)
C3—C4—C5—N11.0 (9)C12—N2—Rh1—Cl26.6 (5)
N1—C1—C6—O125.6 (7)C8—N2—Rh1—Cl2176.1 (4)
C2—C1—C6—O1156.1 (5)C12—N2—Rh1—Cl397.4 (5)
O1—C7—C8—N224.6 (7)C8—N2—Rh1—Cl385.2 (4)
O1—C7—C8—C9158.8 (5)C12—N2—Rh1—Cl1161.6 (9)
N2—C8—C9—C101.2 (9)C8—N2—Rh1—Cl115.8 (15)
C7—C8—C9—C10175.2 (6)C5—N1—Rh1—N284.2 (5)
C8—C9—C10—C110.1 (9)C1—N1—Rh1—N288.5 (4)
C9—C10—C11—C121.1 (9)C5—N1—Rh1—O1166.5 (5)
C10—C11—C12—N20.8 (10)C1—N1—Rh1—O16.2 (4)
C4—C5—N1—C10.7 (8)C5—N1—Rh1—Cl212.0 (5)
C4—C5—N1—Rh1173.0 (4)C1—N1—Rh1—Cl2175.3 (3)
C2—C1—N1—C50.3 (8)C5—N1—Rh1—Cl3129.9 (10)
C6—C1—N1—C5178.1 (5)C1—N1—Rh1—Cl342.8 (13)
C2—C1—N1—Rh1172.9 (4)C5—N1—Rh1—Cl1102.6 (4)
C6—C1—N1—Rh18.7 (6)C1—N1—Rh1—Cl184.7 (4)
C11—C12—N2—C80.6 (9)C6—O1—Rh1—N2107.8 (3)
C11—C12—N2—Rh1176.7 (5)C7—O1—Rh1—N220.1 (4)
C9—C8—N2—C121.6 (9)C6—O1—Rh1—N119.5 (3)
C7—C8—N2—C12175.1 (5)C7—O1—Rh1—N1108.4 (4)
C9—C8—N2—Rh1176.0 (4)C6—O1—Rh1—Cl243 (2)
C7—C8—N2—Rh17.4 (7)C7—O1—Rh1—Cl284.6 (19)
C1—C6—O1—C795.4 (5)C6—O1—Rh1—Cl3164.8 (3)
C1—C6—O1—Rh128.7 (5)C7—O1—Rh1—Cl367.3 (3)
C8—C7—O1—C695.3 (5)C6—O1—Rh1—Cl171.2 (3)
C8—C7—O1—Rh128.7 (5)C7—O1—Rh1—Cl1161.0 (3)

Experimental details

Crystal data
Chemical formula[RhCl3(C12H12N2O)]·CH2Cl2
Mr494.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.5360 (18), 12.527 (2), 14.340 (3)
β (°) 95.071 (4)
V3)1706.3 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.78
Crystal size (mm)0.14 × 0.13 × 0.05
Data collection
DiffractometerBruker X8 APEXII 4K KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.788, 0.916
No. of measured, independent and
observed [I > 2σ(I)] reflections
30694, 4276, 2925
Rint0.102
(sin θ/λ)max1)0.673
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.139, 1.08
No. of reflections4276
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.50, 1.25

Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SAINT-Plus and XPREP (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005) and ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
N1—Rh12.037 (5)Cl1—Rh12.3479 (15)
N2—Rh12.031 (5)Cl2—Rh12.2941 (15)
O1—Rh12.069 (4)Cl3—Rh12.3315 (15)
N2—Rh1—N187.23 (19)N1—Rh1—Cl190.78 (13)
N2—Rh1—O181.99 (17)O1—Rh1—Cl190.98 (11)
N1—Rh1—O182.03 (17)Cl2—Rh1—Cl190.56 (5)
N2—Rh1—Cl296.40 (14)Cl3—Rh1—Cl193.59 (5)
N1—Rh1—Cl294.57 (13)N1—Rh1—Cl3172.82 (13)
N2—Rh1—Cl387.75 (14)N2—Rh1—Cl1172.89 (14)
O1—Rh1—Cl392.19 (12)O1—Rh1—Cl2176.29 (12)
Cl2—Rh1—Cl391.09 (6)
 

Acknowledgements

We thank the NRF and the University of Johannesburg for financial support.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2, SAINT-Plus, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA  Google Scholar
First citationChalid, M., Broekhuis, A. A. & Heeres, H. J. (2011). J. Mol. Catal. A, 341, 14–21.  CrossRef CAS Google Scholar
First citationDayan, O. & Centikaya, B. (2007). J. Mol. Catal. A, 271, 134–141.  CrossRef CAS Google Scholar
First citationDeng, H., Yu, Z., Dong, J. & Wu, S. (2005). Organometallics, 24, 4110–4112.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLiu, H., Liang, S., Wang, W., Jiang, T. & Han, B. (2011). J. Mol. Catal. A, 341, 35–41.  CrossRef CAS Google Scholar
First citationNanty, D., Laurent, M., Khan, M. A. & Ashby, M. T. (2000). Acta Cryst. C56, 35–36.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOjwach, S. O. & Darkwa, J. (2010). Inorg. Chim. Acta, 363, 1947–1954.  Web of Science CrossRef CAS Google Scholar
First citationSamec, J. S. M., Backvall, J. E., Andersson, P. G. & Brandt, P. (2006). Chem. Soc. Rev. 35, 237–248.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, H.-J., Lu, X.-Y., Li, Y.-Z., Chen, X.-T. & Xue, Z.-L. (2009). Inorg. Chim. Acta, 362, 4774–4779.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds