organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Chloro­phen­yl)naphtho­[1,8-de][1,3,2]di­aza­borinane

aUniversity of KwaZulu-Natal, School of Chemistry, Private Bag XO1, Scottsville, Pietermaritzburg 3209, South Africa
*Correspondence e-mail: akermanm@ukzn.ac.za

(Received 17 June 2011; accepted 28 June 2011; online 2 July 2011)

The title compound, C16H12BClN2, is one in a series of diaza­borinanes, derived from 1,8-diaminona­phthalene, featuring substitution at the 1, 2 and 3 positions in the nitro­gen-boron heterocycle. The structure deviates from planarity, the torsion angle subtended by the p-chloro­phenyl ring relative to the nitro­gen–boron heterocycle being −44-.3(3)°. The mol­ecules form infinite chains with strong inter­actions between the vacant pz orbital of the B atom and the π-system of an adjacent mol­ecule. The distance between the B atom and the 10-atom centroid of an adjacent naphthalene ring is 3.381 (4) Å. One N-H H atom is weakly hydrogen bonded to the Cl atom of an adjacent mol­ecule. This combination of inter­molecular inter­actions leads to the formation of an infinite two-dimensional network perpendic­ular to the c axis.

Related literature

For the synthesis of related compounds, see: Letsinger & Hamilton (1958[Letsinger, R. L. & Hamilton, S. B. (1958). J. Am. Chem. Soc. 80, 5412-5413.]); Pailer & Fenzl (1961[Pailer, M. & Fenzl, W. (1961). Monatsh. Chem. 92, 1294-1299.]); Kaupp et al. (2003[Kaupp, G., Naimi-Jamal, M. R. & Stepanenko, V. (2003). Chem. Eur. J. 9, 4156-4160.]); Slabber 2011[Slabber, C. A. (2011). MSc thesis, University of KwaZulu Natal, South Africa.]. For single-crystal X-ray structures and lumin­escence studies of related compounds, see: Weber, et al. (2009[Weber, L., Werner, V., Fox, M. A., Marder, R. T., Schwedler, S., Brockhinke, A., Stammler, H.-G. & Neumann, B. (2009). Dalton Trans. pp. 1339-1351.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12BClN2

  • Mr = 278.54

  • Monoclinic, P 21

  • a = 4.7165 (2) Å

  • b = 10.2815 (4) Å

  • c = 13.5711 (6) Å

  • β = 96.555 (4)°

  • V = 653.79 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 296 K

  • 0.50 × 0.15 × 0.07 mm

Data collection
  • Oxford Diffraction Xcalibur 2 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.896, Tmax = 0.981

  • 4902 measured reflections

  • 2286 independent reflections

  • 2011 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.098

  • S = 1.00

  • 2286 reflections

  • 189 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 924 Friedel pairs

  • Flack parameter: 0.05 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯Cli 0.78 (2) 2.93 (2) 3.666 (2) 158 (2)
Symmetry code: (i) [-x-1, y+{\script{1\over 2}}, -z+1].

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The structure of the title compound is nominally planar with a slight rotation of the p-chlorophenyl ring relative to the naphthalene rings and boron-nitrogen heterocycle. The N1—B—C11—C12 torsion angle is -4.3 (3)° (refer to Figure 1 for the atom numbering scheme). The orientation of the heterocycle relative to the diazaborolyl groups is critical, since as the rings approach co-planarity there is more effective overlap of the π-systems of the boron atom and the carbon atom to which it is attached. The bond lengths N1—B and N2—B are approximately equal, measuring 1.416 (3) and 1.405 (3) Å, respectively, while the B—C11 bond length is 1.568 (4) Å. The Cl—C14 bond length is 1.736 (2) Å. The N1—B—N2 bond angle is 115.6 (2)°, the N1—B—C11 and N2—B—C11 bond angles are equal, both measuring 122.2 (2)°. These bond length and angles are comparable to those of previously reported diazaborolyl systems (Weber et al., 2009).

Examination of the title compound showed that there is a short contact between the boron atom and the naphthalene rings of an adjacent molecule. The distance from the boron atom to the 10-atom naphthalene centroid is 3.381 (4) Å. These B-π interaction link the molecules, forming infinite, one-dimensional chains. Adjacent one dimensional chains are then weakly hydrogen-bonded together by a N-H hydrogen atom and the chlorine atom of the adjacent molecule. These hydrogen bonds are likely to be very weak as they are only nominally shorter than the sum of the van der Waals radii (0.022 Å shorter) (Table 1). The combination of intermolecular interactions results in the formation of infinite, two-dimensional sheets (Figure 2). The two-dimensional sheet runs perpendicular to the c axis.

Related literature top

For the synthesis of related compounds, see: Letsinger & Hamilton (1958); Pailer & Fenzl (1961); Kaupp et al. (2003); Slabber 2011. For single-crystal X-ray structures and luminescence studies of related compounds, see: Weber, et al. (2009).

Experimental top

To a solution of 1,8-diaminonaphthalene in toluene (4.11 mmol in 50 ml, 0.82M) (Letsinger & Hamilton, 1958; Slabber, 2011) was added the 3-chlorophenylboronic acid (4.11 mmol) in one portion. The round-bottomed flask was equipped with a Dean and Stark trap, and the solution was stirred and heated to reflux for 3 h. The solvent was removed in vacuo and column chromatography of the crude solid using silica gel as the stationary phase and eluting with CH2Cl2 yielded pale green crystalline material upon evaporation of the eluent with a yield of 66%. Recrystallization of the material from dichloromethane yielded crystals suitable for single-crystal X-ray diffraction analysis were grown.

Refinement top

The positions of all hydrogen atoms were calculated using the standard riding model of SHELXL97. with C—H(aromatic) distances of 0.93 Å and Uiso = 1.2 Ueq. The only exception is the NH hydrogen atoms which were located in the difference Fourier map and allowed to refine isotropically.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis CCD (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: WinGX (Farrugia, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of 2-(4-chlorophenyl)-naphtho[1,8-de][1,3,2]diazaborinane (50% probability surfaces). Hydrogen atoms have been rendered as spheres of arbitrary radius.
[Figure 2] Fig. 2. Two-dimensional network of the title compound perpendicular to the c axis. The network is supported by B···π interactions and hydrogen bonds between the terminal chlorine atom and the N-H hydrogen, as indicated.
2-(4-Chlorophenyl)naphtho[1,8-de][1,3,2]diazaborinane top
Crystal data top
C16H12BClN2F(000) = 288
Mr = 278.54Dx = 1.415 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2982 reflections
a = 4.7165 (2) Åθ = 3.6–32.0°
b = 10.2815 (4) ŵ = 0.28 mm1
c = 13.5711 (6) ÅT = 296 K
β = 96.555 (4)°Plate, colourless
V = 653.79 (5) Å30.50 × 0.15 × 0.07 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur 2 CCD
diffractometer
2286 independent reflections
Radiation source: fine-focus sealed tube2011 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 8.4190 pixels mm-1θmax = 26.1°, θmin = 3.6°
ω scansh = 55
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1211
Tmin = 0.896, Tmax = 0.981l = 1616
4902 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0669P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2286 reflectionsΔρmax = 0.15 e Å3
189 parametersΔρmin = 0.25 e Å3
1 restraintAbsolute structure: Flack (1983), 924 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (7)
Crystal data top
C16H12BClN2V = 653.79 (5) Å3
Mr = 278.54Z = 2
Monoclinic, P21Mo Kα radiation
a = 4.7165 (2) ŵ = 0.28 mm1
b = 10.2815 (4) ÅT = 296 K
c = 13.5711 (6) Å0.50 × 0.15 × 0.07 mm
β = 96.555 (4)°
Data collection top
Oxford Diffraction Xcalibur 2 CCD
diffractometer
2286 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2011 reflections with I > 2σ(I)
Tmin = 0.896, Tmax = 0.981Rint = 0.027
4902 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098Δρmax = 0.15 e Å3
S = 1.00Δρmin = 0.25 e Å3
2286 reflectionsAbsolute structure: Flack (1983), 924 Friedel pairs
189 parametersAbsolute structure parameter: 0.05 (7)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl1.03675 (12)0.41269 (9)0.42497 (4)0.0546 (2)
N10.1813 (4)0.7869 (2)0.15026 (15)0.0391 (4)
H10.257 (5)0.732 (3)0.1114 (18)0.048 (8)*
N20.1196 (4)0.9013 (2)0.30427 (13)0.0398 (4)
H20.134 (5)0.911 (3)0.3607 (17)0.047 (7)*
C10.0738 (5)0.9863 (2)0.26954 (16)0.0362 (5)
C20.2031 (5)1.0847 (2)0.32771 (18)0.0462 (6)
H2A0.16241.09520.39270.055*
C30.3950 (6)1.1682 (2)0.28863 (19)0.0498 (6)
H30.47821.23540.32780.060*
C40.4629 (5)1.1536 (2)0.19447 (19)0.0479 (6)
H40.59381.20970.17060.057*
C50.3366 (5)1.0540 (2)0.13264 (16)0.0387 (5)
C60.4036 (5)1.0340 (2)0.03481 (17)0.0447 (5)
H60.53461.08790.00870.054*
C70.2761 (5)0.9356 (3)0.02132 (16)0.0489 (6)
H70.32190.92380.08560.059*
C80.0804 (5)0.8527 (2)0.01465 (17)0.0463 (6)
H80.00390.78670.02540.056*
C90.0105 (4)0.8681 (2)0.11029 (16)0.0359 (5)
C100.1391 (4)0.9690 (2)0.17085 (16)0.0350 (5)
C110.4634 (5)0.7024 (2)0.29241 (16)0.0358 (5)
C120.6037 (5)0.6040 (2)0.23650 (17)0.0440 (6)
H110.57710.59720.16980.053*
C130.7810 (5)0.5156 (2)0.27541 (17)0.0455 (6)
H120.87250.45100.23570.055*
C140.8199 (4)0.5247 (2)0.37392 (17)0.0389 (5)
C150.6900 (5)0.6218 (3)0.43220 (17)0.0471 (6)
H140.72050.62870.49850.057*
C160.5137 (5)0.7092 (3)0.39146 (17)0.0485 (6)
H150.42600.77460.43140.058*
B0.2545 (5)0.7993 (3)0.24819 (18)0.0346 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0573 (3)0.0516 (3)0.0563 (3)0.0125 (3)0.0131 (2)0.0070 (3)
N10.0428 (10)0.0405 (11)0.0344 (10)0.0057 (9)0.0062 (8)0.0030 (9)
N20.0443 (9)0.0446 (11)0.0319 (9)0.0039 (9)0.0107 (7)0.0019 (11)
C10.0350 (10)0.0339 (12)0.0398 (11)0.0027 (9)0.0046 (9)0.0023 (9)
C20.0519 (14)0.0451 (14)0.0420 (13)0.0015 (11)0.0071 (11)0.0053 (11)
C30.0554 (15)0.0415 (15)0.0511 (16)0.0086 (11)0.0005 (12)0.0048 (11)
C40.0506 (14)0.0385 (14)0.0547 (15)0.0025 (11)0.0065 (11)0.0089 (11)
C50.0360 (11)0.0359 (12)0.0437 (12)0.0038 (9)0.0019 (9)0.0091 (10)
C60.0490 (13)0.0469 (13)0.0395 (13)0.0008 (11)0.0109 (10)0.0118 (11)
C70.0551 (13)0.0576 (18)0.0356 (11)0.0042 (11)0.0123 (10)0.0064 (11)
C80.0534 (14)0.0521 (14)0.0342 (12)0.0029 (11)0.0087 (10)0.0059 (11)
C90.0336 (10)0.0392 (12)0.0353 (11)0.0029 (8)0.0053 (8)0.0033 (9)
C100.0343 (10)0.0342 (11)0.0361 (11)0.0072 (9)0.0020 (9)0.0033 (9)
C110.0354 (11)0.0367 (12)0.0354 (11)0.0040 (9)0.0051 (8)0.0037 (9)
C120.0521 (14)0.0473 (15)0.0337 (12)0.0039 (11)0.0094 (11)0.0010 (10)
C130.0524 (13)0.0437 (14)0.0397 (13)0.0071 (11)0.0023 (10)0.0035 (10)
C140.0354 (11)0.0378 (12)0.0435 (13)0.0018 (9)0.0047 (9)0.0058 (10)
C150.0564 (14)0.0538 (15)0.0325 (12)0.0100 (12)0.0108 (10)0.0030 (11)
C160.0550 (15)0.0512 (15)0.0399 (13)0.0140 (12)0.0074 (11)0.0092 (12)
B0.0319 (11)0.0361 (13)0.0358 (12)0.0030 (10)0.0037 (9)0.0049 (10)
Geometric parameters (Å, º) top
Cl—C141.736 (2)C6—H60.9300
N1—C91.386 (3)C7—C81.386 (3)
N1—B1.416 (3)C7—H70.9300
N1—H10.82 (3)C8—C91.384 (3)
N2—C11.384 (3)C8—H80.9300
N2—B1.405 (3)C9—C101.416 (3)
N2—H20.78 (2)C11—C121.387 (3)
C1—C21.382 (3)C11—C161.393 (3)
C1—C101.419 (3)C11—B1.568 (3)
C2—C31.396 (3)C12—C131.380 (3)
C2—H2A0.9300C12—H110.9300
C3—C41.361 (3)C13—C141.373 (3)
C3—H30.9300C13—H120.9300
C4—C51.411 (3)C14—C151.373 (3)
C4—H40.9300C15—C161.382 (3)
C5—C61.414 (3)C15—H140.9300
C5—C101.418 (3)C16—H150.9300
C6—C71.364 (3)
C9—N1—B123.6 (2)C7—C8—H8120.0
C9—N1—H1114.6 (17)C8—C9—N1122.3 (2)
B—N1—H1121.7 (17)C8—C9—C10119.74 (19)
C1—N2—B124.20 (18)N1—C9—C10117.99 (18)
C1—N2—H2113 (2)C9—C10—C5119.67 (19)
B—N2—H2123 (2)C9—C10—C1120.99 (19)
C2—C1—N2122.2 (2)C5—C10—C1119.3 (2)
C2—C1—C10120.1 (2)C12—C11—C16116.2 (2)
N2—C1—C10117.69 (19)C12—C11—B122.39 (18)
C1—C2—C3119.8 (2)C16—C11—B121.4 (2)
C1—C2—H2A120.1C13—C12—C11122.9 (2)
C3—C2—H2A120.1C13—C12—H11118.5
C4—C3—C2121.4 (2)C11—C12—H11118.5
C4—C3—H3119.3C14—C13—C12118.8 (2)
C2—C3—H3119.3C14—C13—H12120.6
C3—C4—C5120.7 (2)C12—C13—H12120.6
C3—C4—H4119.7C13—C14—C15120.7 (2)
C5—C4—H4119.7C13—C14—Cl119.54 (18)
C4—C5—C6122.6 (2)C15—C14—Cl119.78 (18)
C4—C5—C10118.7 (2)C14—C15—C16119.4 (2)
C6—C5—C10118.7 (2)C14—C15—H14120.3
C7—C6—C5120.1 (2)C16—C15—H14120.3
C7—C6—H6120.0C15—C16—C11122.0 (2)
C5—C6—H6120.0C15—C16—H15119.0
C6—C7—C8121.9 (2)C11—C16—H15119.0
C6—C7—H7119.1N2—B—N1115.57 (19)
C8—C7—H7119.1N2—B—C11122.17 (18)
C9—C8—C7120.0 (2)N1—B—C11122.22 (19)
C9—C8—H8120.0
B—N2—C1—C2179.4 (2)C6—C5—C10—C1178.8 (2)
B—N2—C1—C100.1 (3)C2—C1—C10—C9179.5 (2)
N2—C1—C2—C3179.5 (2)N2—C1—C10—C90.1 (3)
C10—C1—C2—C31.0 (3)C2—C1—C10—C50.4 (3)
C1—C2—C3—C41.3 (4)N2—C1—C10—C5179.92 (19)
C2—C3—C4—C51.1 (4)C16—C11—C12—C130.9 (4)
C3—C4—C5—C6179.1 (2)B—C11—C12—C13177.9 (2)
C3—C4—C5—C100.5 (3)C11—C12—C13—C140.3 (4)
C4—C5—C6—C7179.6 (2)C12—C13—C14—C151.5 (4)
C10—C5—C6—C70.9 (3)C12—C13—C14—Cl178.80 (19)
C5—C6—C7—C80.2 (4)C13—C14—C15—C161.4 (4)
C6—C7—C8—C90.4 (4)Cl—C14—C15—C16178.9 (2)
C7—C8—C9—N1179.2 (2)C14—C15—C16—C110.2 (4)
C7—C8—C9—C100.2 (3)C12—C11—C16—C150.9 (4)
B—N1—C9—C8179.2 (2)B—C11—C16—C15177.8 (2)
B—N1—C9—C100.2 (3)C1—N2—B—N10.2 (3)
C8—C9—C10—C50.5 (3)C1—N2—B—C11177.6 (2)
N1—C9—C10—C5179.96 (18)C9—N1—B—N20.2 (3)
C8—C9—C10—C1179.3 (2)C9—N1—B—C11177.60 (19)
N1—C9—C10—C10.1 (3)C12—C11—B—N2178.0 (2)
C4—C5—C10—C9179.77 (19)C16—C11—B—N23.3 (3)
C6—C5—C10—C91.1 (3)C12—C11—B—N14.3 (3)
C4—C5—C10—C10.1 (3)C16—C11—B—N1174.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···Cli0.78 (2)2.93 (2)3.666 (2)158 (2)
Symmetry code: (i) x1, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC16H12BClN2
Mr278.54
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)4.7165 (2), 10.2815 (4), 13.5711 (6)
β (°) 96.555 (4)
V3)653.79 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.50 × 0.15 × 0.07
Data collection
DiffractometerOxford Diffraction Xcalibur 2 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.896, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
4902, 2286, 2011
Rint0.027
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.098, 1.00
No. of reflections2286
No. of parameters189
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.25
Absolute structureFlack (1983), 924 Friedel pairs
Absolute structure parameter0.05 (7)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···Cli0.78 (2)2.93 (2)3.666 (2)158 (2)
Symmetry code: (i) x1, y+1/2, z+1.
 

Acknowledgements

We would like to thank the University of KwaZulu-Natal and the National Research Foundation for their support and funding.

References

First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKaupp, G., Naimi-Jamal, M. R. & Stepanenko, V. (2003). Chem. Eur. J. 9, 4156–4160.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLetsinger, R. L. & Hamilton, S. B. (1958). J. Am. Chem. Soc. 80, 5412–5413.  CrossRef Web of Science Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPailer, M. & Fenzl, W. (1961). Monatsh. Chem. 92, 1294–1299.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSlabber, C. A. (2011). MSc thesis, University of KwaZulu Natal, South Africa.  Google Scholar
First citationWeber, L., Werner, V., Fox, M. A., Marder, R. T., Schwedler, S., Brockhinke, A., Stammler, H.-G. & Neumann, B. (2009). Dalton Trans. pp. 1339–1351.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds