metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido{N,N-di­methyl-N′-[1-(2-pyrid­yl)ethyl­­idene]ethane-1,2-di­amine-κ3N,N′,N′′}zinc

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: khaledi@siswa.um.edu.my

(Received 26 June 2011; accepted 29 June 2011; online 6 July 2011)

The asymmetric unit of the title compound, [ZnCl2(C11H17N3)], contains two independent penta­coordinate ZnII complex mol­ecules. In each mol­ecule, the metal atom is coordinated by an N,N′,N′′-tridenate Schiff base and two Cl atoms in a distorted square-pyramidal geometry. The two mol­ecules differ little in their geometry, but more in their inter­molecular inter­actions. In the crystal, adjacent mol­ecules are connected via C—H⋯Cl inter­actions into a three-dimensional supra­molecular structure. The network is supplemented by ππ inter­actions formed between the aromatic rings of pairs of the symmetry-related mol­ecules [centroid–centroid distances = 3.6255 (10) and 3.7073 (10) Å]. The crystal lattice contains void spaces with a size of 52 Å3.

Related literature

For the isotypic Mn(II) complex, see: Ikmal Hisham et al. (2011[Ikmal Hisham, N. A., Suleiman Gwaram, N., Khaledi, H. & Mohd Ali, H. (2011). Acta Cryst. E67, m229.]). For the crystal structures of similar ZnCl2 complexes, see: Gourbatsis et al. (1999[Gourbatsis, S., Perlepes, S. P., Butler, I. S. & Hadjiliadis, N. (1999). Polyhedron, 18, 2369-2375.]); Sun (2005[Sun, Y.-X. (2005). Acta Cryst. E61, m373-m374.]). For a description of the geometry of five-coordinate metal complexes, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., Rijn, V. J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnCl2(C11H17N3)]

  • Mr = 327.55

  • Monoclinic, P 21 /c

  • a = 17.4849 (8) Å

  • b = 9.8161 (4) Å

  • c = 20.4264 (7) Å

  • β = 124.578 (3)°

  • V = 2886.6 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.05 mm−1

  • T = 100 K

  • 0.27 × 0.23 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.607, Tmax = 0.748

  • 20477 measured reflections

  • 6294 independent reflections

  • 5510 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.052

  • S = 1.04

  • 6294 reflections

  • 313 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cl2i 0.95 2.79 3.6690 (17) 155
C8—H8A⋯Cl1ii 0.99 2.63 3.5668 (16) 158
C8—H8B⋯Cl2iii 0.99 2.73 3.6564 (16) 156
C11—H11A⋯Cl2iii 0.98 2.77 3.6573 (17) 151
C15—H15⋯Cl2iv 0.95 2.74 3.6347 (17) 157
C18—H18B⋯Cl1iv 0.98 2.75 3.7227 (17) 175
C19—H19B⋯Cl4v 0.99 2.82 3.8089 (16) 174
Symmetry codes: (i) -x, -y+1, -z; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x+1, -y+1, -z+1; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem, 1, 189-191.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The crystal structure of the title ZnII complex is isomorphous with that of the MnII analogue (Ikmal Hisham et al., 2011). The asymmetric unit consists of two geometrically slightly different molecules; the weighted r.m.s. fit for the superposition of the non-H atoms in both molecules (after inversion) being 0.078 Å. The metal centers are five-coordinate in distorted square-pyramidal geometries, the apical positions being occupied by a chlorine atom. The Addison τ values (Addison et al., 1984) for Zn1 and Zn2 molecules are 0.103 and 0.168, respectively. The Zn—Cl and Zn—N bond lengths are comparable to those reported for similar complexes (Gourbatsis et al., 1999, Sun, 2005). In the crystal, the molecules are linked through C—H···Cl interactions (Table 1) into a three-dimensional polymeric structure and this is consolidated by ππ interactions formed between pairs of molecules [Cg1···Cg1i = 3.6255 (10) Å; Cg2···Cg2ii = 3.7073 (10) Å, where Cg1 and Cg2, are the centroids of the rings N1/C1—C5 and N4/C12—C16, for i: -x, -y + 1, -z; ii: -x + 1, -y + 1, -z + 1]. The lattice contains void spaces with the size of 52 Å3 within which there is no evidence for included solvent.

Related literature top

For the isotypic Mn(II) complex, see: Ikmal Hisham et al. (2011). For the crystal structures of similar ZnCl2 complexes, see: Gourbatsis et al. (1999); Sun (2005). For a description of the geometry of five-coordinate metal complexes, see: Addison et al. (1984).

Experimental top

A mixture of 2-acetylpyridine (0.20 g, 1.65 mmol) and N,N-dimethylethyldiamine (0.15 g, 1.65 mmol) in ethanol (20 ml) was refluxed for 2 hr followed by addition of a solution of zinc(II) chloride (0.225 g, 1.65 mmol) in the minimum amount of water. The resulting solution was refluxed for 30 min, and then set aside at room temperature. The colorless crystals of the title compound were obtained in a few days.

Refinement top

Hydrogen atoms were placed at calculated positions and refined as riding atoms with C—H distances of 0.95 (aryl), 0.98 (methyl) and 0.99 (methylene) Å, and Uiso(H) set to 1.2 (1.5 for methyl) Ueq(carrier atoms). The most disagreeable reflections with delta(F2)/ e.s.d. >10 were omitted (6 reflections).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
Dichlorido{N,N-dimethyl-N'-[1-(2- pyridyl)ethylidene]ethane-1,2-diamine- κ3N,N',N''}zinc top
Crystal data top
[ZnCl2(C11H17N3)]F(000) = 1344
Mr = 327.55Dx = 1.507 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9925 reflections
a = 17.4849 (8) Åθ = 2.4–30.6°
b = 9.8161 (4) ŵ = 2.05 mm1
c = 20.4264 (7) ÅT = 100 K
β = 124.578 (3)°Block, colorless
V = 2886.6 (2) Å30.27 × 0.23 × 0.15 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
6294 independent reflections
Radiation source: fine-focus sealed tube5510 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 27.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2221
Tmin = 0.607, Tmax = 0.748k = 1212
20477 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.052H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0226P)2 + 0.9433P]
where P = (Fo2 + 2Fc2)/3
6294 reflections(Δ/σ)max = 0.002
313 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
[ZnCl2(C11H17N3)]V = 2886.6 (2) Å3
Mr = 327.55Z = 8
Monoclinic, P21/cMo Kα radiation
a = 17.4849 (8) ŵ = 2.05 mm1
b = 9.8161 (4) ÅT = 100 K
c = 20.4264 (7) Å0.27 × 0.23 × 0.15 mm
β = 124.578 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
6294 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5510 reflections with I > 2σ(I)
Tmin = 0.607, Tmax = 0.748Rint = 0.022
20477 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.052H-atom parameters constrained
S = 1.04Δρmax = 0.36 e Å3
6294 reflectionsΔρmin = 0.28 e Å3
313 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.097383 (12)0.523307 (18)0.248455 (10)0.01180 (5)
Cl10.22099 (3)0.66993 (4)0.31121 (2)0.01561 (8)
Cl20.14396 (3)0.31088 (4)0.23943 (2)0.01519 (8)
N10.03628 (9)0.60104 (13)0.12863 (8)0.0139 (3)
N20.04898 (9)0.51386 (13)0.19110 (8)0.0141 (3)
N30.08663 (9)0.49253 (13)0.34845 (8)0.0141 (3)
C10.08312 (12)0.65350 (16)0.10080 (10)0.0181 (3)
H10.14870.66200.13580.022*
C20.03935 (13)0.69606 (17)0.02250 (10)0.0225 (4)
H20.07450.73170.00410.027*
C30.05605 (13)0.68571 (18)0.02813 (10)0.0238 (4)
H30.08760.71400.08200.029*
C40.10510 (12)0.63350 (17)0.00065 (10)0.0202 (3)
H40.17090.62680.03300.024*
C50.05711 (11)0.59111 (16)0.07919 (9)0.0156 (3)
C60.10354 (11)0.53702 (15)0.11671 (10)0.0153 (3)
C70.20671 (12)0.51654 (19)0.06620 (11)0.0247 (4)
H7A0.22720.48680.09970.037*
H7B0.22290.44690.02590.037*
H7C0.23750.60250.04000.037*
C80.08002 (11)0.46662 (16)0.24024 (10)0.0161 (3)
H8A0.12920.39680.21130.019*
H8B0.10560.54360.25340.019*
C90.00363 (11)0.40623 (16)0.31586 (9)0.0167 (3)
H9A0.01070.39620.35600.020*
H9B0.01660.31450.30430.020*
C100.16872 (11)0.42164 (17)0.41521 (9)0.0196 (3)
H10A0.22420.47740.43490.029*
H10B0.17620.33360.39690.029*
H10C0.16010.40690.45810.029*
C110.07513 (12)0.62345 (17)0.37716 (10)0.0186 (3)
H11A0.02390.67450.33240.028*
H11B0.13260.67650.40150.028*
H11C0.06130.60650.41670.028*
Zn20.381351 (12)0.529056 (18)0.644032 (11)0.01293 (5)
Cl30.34646 (3)0.30943 (4)0.59819 (2)0.01758 (8)
Cl40.27052 (3)0.69499 (4)0.58273 (2)0.01882 (9)
N40.45804 (9)0.59876 (13)0.59532 (8)0.0145 (3)
N50.52234 (9)0.51339 (13)0.73866 (8)0.0130 (3)
N60.37431 (9)0.51154 (13)0.74869 (8)0.0163 (3)
C120.42130 (12)0.64614 (16)0.52195 (10)0.0182 (3)
H120.35580.65650.48720.022*
C130.47570 (12)0.68075 (17)0.49470 (10)0.0205 (4)
H130.44770.71330.44200.025*
C140.57101 (12)0.66722 (16)0.54521 (10)0.0198 (4)
H140.60950.69060.52790.024*
C150.60962 (11)0.61874 (16)0.62199 (10)0.0161 (3)
H150.67500.60850.65800.019*
C160.55100 (11)0.58562 (15)0.64499 (9)0.0130 (3)
C170.58544 (11)0.53679 (15)0.72681 (9)0.0129 (3)
C180.68712 (11)0.52205 (17)0.78736 (10)0.0181 (3)
H18A0.71520.61240.80590.027*
H18B0.71530.47530.76360.027*
H18C0.69780.46880.83240.027*
C190.54256 (11)0.46863 (16)0.81533 (9)0.0157 (3)
H19A0.56780.54530.85360.019*
H19B0.58910.39430.83740.019*
C200.45215 (11)0.41849 (16)0.80131 (10)0.0172 (3)
H20A0.43770.32670.77700.021*
H20B0.45950.41100.85290.021*
C210.38747 (13)0.64417 (17)0.78738 (11)0.0234 (4)
H21A0.33490.70380.75160.035*
H21B0.44510.68610.79970.035*
H21C0.39120.63090.83670.035*
C220.28596 (12)0.4513 (2)0.72779 (11)0.0263 (4)
H22A0.28780.43760.77620.039*
H22B0.27660.36340.70150.039*
H22C0.23460.51270.69180.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01005 (10)0.01180 (9)0.01230 (9)0.00035 (7)0.00560 (8)0.00060 (7)
Cl10.01217 (18)0.01420 (18)0.01770 (19)0.00150 (14)0.00683 (16)0.00033 (14)
Cl20.01386 (19)0.01249 (18)0.01870 (19)0.00000 (14)0.00892 (16)0.00121 (14)
N10.0130 (7)0.0136 (7)0.0141 (6)0.0031 (5)0.0071 (6)0.0012 (5)
N20.0132 (7)0.0117 (6)0.0175 (7)0.0005 (5)0.0088 (6)0.0004 (5)
N30.0128 (7)0.0131 (6)0.0142 (7)0.0005 (5)0.0064 (6)0.0003 (5)
C10.0182 (9)0.0167 (8)0.0211 (8)0.0044 (7)0.0122 (7)0.0029 (6)
C20.0274 (10)0.0221 (9)0.0227 (9)0.0062 (7)0.0170 (8)0.0067 (7)
C30.0294 (10)0.0232 (9)0.0151 (8)0.0067 (7)0.0105 (8)0.0033 (7)
C40.0188 (9)0.0201 (9)0.0158 (8)0.0025 (7)0.0062 (7)0.0008 (7)
C50.0161 (8)0.0121 (8)0.0153 (8)0.0018 (6)0.0068 (7)0.0023 (6)
C60.0137 (8)0.0114 (7)0.0179 (8)0.0003 (6)0.0072 (7)0.0017 (6)
C70.0150 (9)0.0282 (10)0.0222 (9)0.0020 (7)0.0055 (8)0.0009 (7)
C80.0147 (8)0.0158 (8)0.0198 (8)0.0029 (6)0.0109 (7)0.0009 (6)
C90.0182 (9)0.0144 (8)0.0197 (8)0.0015 (6)0.0120 (7)0.0009 (6)
C100.0179 (9)0.0203 (9)0.0166 (8)0.0038 (7)0.0074 (7)0.0048 (7)
C110.0186 (9)0.0178 (8)0.0189 (8)0.0017 (7)0.0103 (7)0.0035 (7)
Zn20.01031 (10)0.01210 (9)0.01425 (9)0.00008 (7)0.00570 (8)0.00033 (7)
Cl30.0177 (2)0.01292 (18)0.01780 (19)0.00023 (15)0.00746 (17)0.00134 (14)
Cl40.0140 (2)0.01604 (19)0.02074 (19)0.00305 (15)0.00643 (17)0.00000 (15)
N40.0132 (7)0.0133 (7)0.0142 (7)0.0006 (5)0.0062 (6)0.0007 (5)
N50.0126 (7)0.0121 (6)0.0138 (6)0.0007 (5)0.0071 (6)0.0003 (5)
N60.0143 (7)0.0154 (7)0.0205 (7)0.0009 (5)0.0107 (6)0.0018 (5)
C120.0157 (8)0.0182 (8)0.0147 (8)0.0000 (7)0.0051 (7)0.0007 (6)
C130.0264 (10)0.0181 (8)0.0165 (8)0.0003 (7)0.0118 (8)0.0021 (6)
C140.0253 (9)0.0179 (8)0.0221 (9)0.0022 (7)0.0168 (8)0.0005 (7)
C150.0144 (8)0.0151 (8)0.0190 (8)0.0005 (6)0.0096 (7)0.0011 (6)
C160.0127 (8)0.0102 (7)0.0138 (7)0.0012 (6)0.0062 (7)0.0009 (6)
C170.0117 (8)0.0097 (7)0.0142 (8)0.0005 (6)0.0055 (7)0.0021 (6)
C180.0124 (8)0.0215 (9)0.0184 (8)0.0004 (7)0.0075 (7)0.0017 (7)
C190.0169 (8)0.0165 (8)0.0145 (8)0.0020 (6)0.0093 (7)0.0027 (6)
C200.0196 (9)0.0155 (8)0.0177 (8)0.0008 (7)0.0113 (7)0.0017 (6)
C210.0255 (10)0.0216 (9)0.0248 (9)0.0036 (7)0.0152 (8)0.0044 (7)
C220.0199 (10)0.0327 (10)0.0310 (10)0.0051 (8)0.0173 (9)0.0013 (8)
Geometric parameters (Å, º) top
Zn1—N22.1278 (13)Zn2—N52.1044 (13)
Zn1—N32.1758 (13)Zn2—N42.1842 (13)
Zn1—N12.1785 (13)Zn2—N62.2166 (13)
Zn1—Cl22.2837 (4)Zn2—Cl42.2852 (4)
Zn1—Cl12.2893 (4)Zn2—Cl32.2910 (4)
N1—C11.337 (2)N4—C121.335 (2)
N1—C51.351 (2)N4—C161.348 (2)
N2—C61.275 (2)N5—C171.2775 (19)
N2—C81.4612 (19)N5—C191.4635 (19)
N3—C111.473 (2)N6—C211.472 (2)
N3—C91.473 (2)N6—C221.473 (2)
N3—C101.477 (2)N6—C201.477 (2)
C1—C21.389 (2)C12—C131.390 (2)
C1—H10.9500C12—H120.9500
C2—C31.380 (3)C13—C141.381 (2)
C2—H20.9500C13—H130.9500
C3—C41.384 (2)C14—C151.393 (2)
C3—H30.9500C14—H140.9500
C4—C51.387 (2)C15—C161.387 (2)
C4—H40.9500C15—H150.9500
C5—C61.495 (2)C16—C171.498 (2)
C6—C71.499 (2)C17—C181.488 (2)
C7—H7A0.9800C18—H18A0.9800
C7—H7B0.9800C18—H18B0.9800
C7—H7C0.9800C18—H18C0.9800
C8—C91.521 (2)C19—C201.520 (2)
C8—H8A0.9900C19—H19A0.9900
C8—H8B0.9900C19—H19B0.9900
C9—H9A0.9900C20—H20A0.9900
C9—H9B0.9900C20—H20B0.9900
C10—H10A0.9800C21—H21A0.9800
C10—H10B0.9800C21—H21B0.9800
C10—H10C0.9800C21—H21C0.9800
C11—H11A0.9800C22—H22A0.9800
C11—H11B0.9800C22—H22B0.9800
C11—H11C0.9800C22—H22C0.9800
N2—Zn1—N378.06 (5)N5—Zn2—N474.89 (5)
N2—Zn1—N174.15 (5)N5—Zn2—N677.63 (5)
N3—Zn1—N1148.73 (5)N4—Zn2—N6148.01 (5)
N2—Zn1—Cl2106.76 (4)N5—Zn2—Cl4137.94 (4)
N3—Zn1—Cl2100.01 (4)N4—Zn2—Cl494.36 (4)
N1—Zn1—Cl2101.48 (3)N6—Zn2—Cl495.15 (4)
N2—Zn1—Cl1142.56 (4)N5—Zn2—Cl3102.01 (4)
N3—Zn1—Cl196.82 (4)N4—Zn2—Cl3101.45 (4)
N1—Zn1—Cl196.55 (4)N6—Zn2—Cl399.99 (4)
Cl2—Zn1—Cl1110.650 (15)Cl4—Zn2—Cl3120.032 (16)
C1—N1—C5118.83 (14)C12—N4—C16119.00 (13)
C1—N1—Zn1125.76 (11)C12—N4—Zn2126.29 (11)
C5—N1—Zn1115.39 (10)C16—N4—Zn2114.65 (10)
C6—N2—C8123.84 (14)C17—N5—C19123.13 (14)
C6—N2—Zn1120.07 (11)C17—N5—Zn2120.03 (11)
C8—N2—Zn1115.79 (10)C19—N5—Zn2116.78 (10)
C11—N3—C9111.07 (12)C21—N6—C22109.24 (13)
C11—N3—C10108.91 (12)C21—N6—C20110.95 (13)
C9—N3—C10109.76 (12)C22—N6—C20110.13 (13)
C11—N3—Zn1110.89 (9)C21—N6—Zn2111.83 (10)
C9—N3—Zn1104.09 (9)C22—N6—Zn2112.01 (11)
C10—N3—Zn1112.07 (10)C20—N6—Zn2102.55 (9)
N1—C1—C2122.36 (16)N4—C12—C13122.15 (16)
N1—C1—H1118.8N4—C12—H12118.9
C2—C1—H1118.8C13—C12—H12118.9
C3—C2—C1118.86 (16)C14—C13—C12119.16 (15)
C3—C2—H2120.6C14—C13—H13120.4
C1—C2—H2120.6C12—C13—H13120.4
C2—C3—C4119.06 (16)C13—C14—C15118.84 (15)
C2—C3—H3120.5C13—C14—H14120.6
C4—C3—H3120.5C15—C14—H14120.6
C3—C4—C5119.25 (16)C16—C15—C14118.83 (15)
C3—C4—H4120.4C16—C15—H15120.6
C5—C4—H4120.4C14—C15—H15120.6
N1—C5—C4121.63 (15)N4—C16—C15122.01 (14)
N1—C5—C6114.84 (13)N4—C16—C17114.84 (13)
C4—C5—C6123.48 (15)C15—C16—C17123.13 (14)
N2—C6—C5114.69 (14)N5—C17—C18125.30 (14)
N2—C6—C7126.21 (15)N5—C17—C16115.18 (14)
C5—C6—C7119.10 (14)C18—C17—C16119.51 (13)
C6—C7—H7A109.5C17—C18—H18A109.5
C6—C7—H7B109.5C17—C18—H18B109.5
H7A—C7—H7B109.5H18A—C18—H18B109.5
C6—C7—H7C109.5C17—C18—H18C109.5
H7A—C7—H7C109.5H18A—C18—H18C109.5
H7B—C7—H7C109.5H18B—C18—H18C109.5
N2—C8—C9107.67 (12)N5—C19—C20107.57 (13)
N2—C8—H8A110.2N5—C19—H19A110.2
C9—C8—H8A110.2C20—C19—H19A110.2
N2—C8—H8B110.2N5—C19—H19B110.2
C9—C8—H8B110.2C20—C19—H19B110.2
H8A—C8—H8B108.5H19A—C19—H19B108.5
N3—C9—C8111.57 (13)N6—C20—C19111.55 (13)
N3—C9—H9A109.3N6—C20—H20A109.3
C8—C9—H9A109.3C19—C20—H20A109.3
N3—C9—H9B109.3N6—C20—H20B109.3
C8—C9—H9B109.3C19—C20—H20B109.3
H9A—C9—H9B108.0H20A—C20—H20B108.0
N3—C10—H10A109.5N6—C21—H21A109.5
N3—C10—H10B109.5N6—C21—H21B109.5
H10A—C10—H10B109.5H21A—C21—H21B109.5
N3—C10—H10C109.5N6—C21—H21C109.5
H10A—C10—H10C109.5H21A—C21—H21C109.5
H10B—C10—H10C109.5H21B—C21—H21C109.5
N3—C11—H11A109.5N6—C22—H22A109.5
N3—C11—H11B109.5N6—C22—H22B109.5
H11A—C11—H11B109.5H22A—C22—H22B109.5
N3—C11—H11C109.5N6—C22—H22C109.5
H11A—C11—H11C109.5H22A—C22—H22C109.5
H11B—C11—H11C109.5H22B—C22—H22C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Cl2i0.952.793.6690 (17)155
C8—H8A···Cl1ii0.992.633.5668 (16)158
C8—H8B···Cl2iii0.992.733.6564 (16)156
C11—H11A···Cl2iii0.982.773.6573 (17)151
C15—H15···Cl2iv0.952.743.6347 (17)157
C18—H18B···Cl1iv0.982.753.7227 (17)175
C19—H19B···Cl4v0.992.823.8089 (16)174
Symmetry codes: (i) x, y+1, z; (ii) x, y1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x+1, y+1, z+1; (v) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[ZnCl2(C11H17N3)]
Mr327.55
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)17.4849 (8), 9.8161 (4), 20.4264 (7)
β (°) 124.578 (3)
V3)2886.6 (2)
Z8
Radiation typeMo Kα
µ (mm1)2.05
Crystal size (mm)0.27 × 0.23 × 0.15
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.607, 0.748
No. of measured, independent and
observed [I > 2σ(I)] reflections
20477, 6294, 5510
Rint0.022
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.052, 1.04
No. of reflections6294
No. of parameters313
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.28

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), X-SEED (Barbour, 2001), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Cl2i0.952.793.6690 (17)155
C8—H8A···Cl1ii0.992.633.5668 (16)158
C8—H8B···Cl2iii0.992.733.6564 (16)156
C11—H11A···Cl2iii0.982.773.6573 (17)151
C15—H15···Cl2iv0.952.743.6347 (17)157
C18—H18B···Cl1iv0.982.753.7227 (17)175
C19—H19B···Cl4v0.992.823.8089 (16)174
Symmetry codes: (i) x, y+1, z; (ii) x, y1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x+1, y+1, z+1; (v) x+1, y1/2, z+3/2.
 

Acknowledgements

The authors thank the University of Malaya for funding this study (UMRG grant No. RG024/09BIO).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., Rijn, V. J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem, 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGourbatsis, S., Perlepes, S. P., Butler, I. S. & Hadjiliadis, N. (1999). Polyhedron, 18, 2369–2375.  Web of Science CSD CrossRef CAS Google Scholar
First citationIkmal Hisham, N. A., Suleiman Gwaram, N., Khaledi, H. & Mohd Ali, H. (2011). Acta Cryst. E67, m229.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y.-X. (2005). Acta Cryst. E61, m373–m374.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds