metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Dipotassium disulfanilamidate trihydrate

aDepartment of Biomedical Sciences, Kulliyah of Science, IIUM Kuantan, 25200 Kuantan, Malaysia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: khaledi@siswa.um.edu.my

(Received 3 July 2011; accepted 5 July 2011; online 9 July 2011)

The asymmetric unit of the title compound, 2K+·2C6H7N2O2S·3H2O, consists of two potassium cations located on mirror planes, one sulfanilamidate anion in a general position and one and a half mol­ecules of water, one of which is also located on a mirror plane. One potassium cation is seven-coordinated by six sulfonyl O atoms and one water mol­ecule, whereas the other is surrounded by six water O atoms and two sulfonyl O atoms. In the crystal structure, the components are connected into polymeric sheets in the bc plane. The two-dimensional structure is consolidated by N—H⋯O, O—H⋯O, O—H⋯N and C—H⋯π inter­actions. The layers are further linked into a three-dimensional network via N—H⋯O, N—H⋯N and O—H⋯N hydrogen bonds.

Related literature

For the structures of similar potassium salts, see: Gowda et al. (2011[Gowda, B. T., Foro, S. & Shakuntala, K. (2011). Acta Cryst. E67, m1015.]) and references cited therein; Moers et al. (2001[Moers, O., Blaschette, A. & Jones, P. G. (2001). Z. Anorg. Allg. Chem. 627, 95-102.]). For the structure of sodium sulfanilamide monohydrate, see: Moreno & Alleaume (1968[Moreno, J. & Alleaume, M. (1968). C. R. Acad. Sci. Ser. C, 267, 64-66.]).

[Scheme 1]

Experimental

Crystal data
  • 2K+·2C6H7N2O2S·3H2O

  • Mr = 474.64

  • Orthorhombic, C m c 21

  • a = 23.8174 (4) Å

  • b = 10.9141 (2) Å

  • c = 7.4645 (1) Å

  • V = 1940.36 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.75 mm−1

  • T = 100 K

  • 0.33 × 0.27 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.791, Tmax = 0.929

  • 8594 measured reflections

  • 2157 independent reflections

  • 2149 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.015

  • wR(F2) = 0.042

  • S = 1.11

  • 2157 reflections

  • 145 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 985 Friedel pairs

  • Flack parameter: 0.04 (3)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.88 (1) 2.17 (1) 2.9854 (15) 154 (2)
N2—H2A⋯N1ii 0.90 (1) 2.13 (1) 3.0109 (16) 166 (1)
N2—H2B⋯O3iii 0.91 (1) 2.12 (1) 3.0183 (15) 171 (1)
O3—H3A⋯N2iv 0.85 (2) 1.99 (2) 2.8366 (15) 172 (2)
O3—H3B⋯O2v 0.83 (2) 1.95 (2) 2.7561 (13) 164 (2)
O4—H4⋯N1vi 0.79 (1) 2.05 (1) 2.8291 (14) 175 (2)
C2—H2⋯Cg1i 0.95 2.98 3.5872 (14) 123
C5—H5⋯Cg1ii 0.95 2.66 3.4531 (14) 141
Symmetry codes: (i) [x, -y+1, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) [-x+1, -y, z-{\script{1\over 2}}]; (vi) x, y, z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title potassium salt (Fig. 1) was obtained through the deprotonation of sulfanilamide by KOH. The structure contains two types of potassium cation, one of which, K1, is hepta-coordinated by six sulfonyl O atoms and one water molecule while the other one, K2, is octa-coordinated by six water O atoms and two sulfonyl O atoms. Both potassium atoms and one water oxygen atom, O4, are placed on a mirror plane.

The bond distance of S—N [1.5410 (12) Å] implies its double bond character and is slightly shorter than the observed values (~ 1.58 Å) in similar potassium salts (Gowda et al., 2011; Moers et al., 2001), but comparable with the bond length reported for sodium sulfanilamide (Moreno & Alleaume, 1968). The S1—O1 and S1—O2 distances of 1.4686 (9) and 1.4705 (9) Å attest to delocalization of the negative charge over the O—S—O fragment. These values are similar to the corresponding values in sodium sulfanilamide (1.45–1.46 Å).

In the crystal, coordination polymeric layers are formed in the bc plane (Fig. 2). The two dimensional structure is supplemented by N—H···O, O—H···O, O—H···N and C—H···π interactions (Table 1). The layers are further linked into a three dimensional network via N—H···O, N—H···N and O—H···N hydrogen bonds (Fig. 3)

Related literature top

For the structures of similar potassium salts, see: Gowda et al. (2011) and references cited therein; Moers et al. (2001). For the structure of sodium sulfanilamide monohydrate, see: Moreno & Alleaume (1968).

Experimental top

Sulfanilamide (2 g) in ethanol (30 ml) was mixed with an equimolar amount of KOH in 90% ethanol (10 ml). The solution was then refluxed for 2 hr and left to cool down at room temperature. The colorless crystals of the the potassium salt were obtained within a day.

Refinement top

The C-bound H atoms were placed at calculated positions and were treated as riding on their parent C atoms with C—H = 0.95 Å. The N– and O-bound H atoms were located in a difference Fourier map, and refined with distance restraints of O—H = 0.84 (2) Å and N—H = 0.91 (2) Å. For all H atoms, Uiso(H) was set to 1.2(1.5 for hydroxyl)Ueq(carrier atom). An absolute structure was established using anomalous dispersion effects; 985 Friedel pairs were not merged.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of the title compound at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. Symmetry code: i = -x + 1, y, z; ii = x, -y + 1, z + 1/2; iii = -x + 1, -y + 1, z + 1/2; iv = x, -y, z + 1/2; v = -x + 1, -y, z + 1/2; vi = x, y, z - 1; vii = -x + 1, -y, z - 1/2.
[Figure 2] Fig. 2. Packing view looking down the crystallographic α axis showing the two dimensional coordination polymer netwrok.
[Figure 3] Fig. 3. Packing view looking down the crystallographic c axis. H-bonds are shown as red dashed lines.
Dipotassium disulfanilamidate trihydrate top
Crystal data top
2K+·2C6H7N2O2S·3H2OF(000) = 984
Mr = 474.64Dx = 1.625 Mg m3
Orthorhombic, Cmc21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2c -2Cell parameters from 9001 reflections
a = 23.8174 (4) Åθ = 2.7–30.5°
b = 10.9141 (2) ŵ = 0.75 mm1
c = 7.4645 (1) ÅT = 100 K
V = 1940.36 (5) Å3Blade, colorless
Z = 40.33 × 0.27 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
2157 independent reflections
Radiation source: fine-focus sealed tube2149 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ϕ and ω scansθmax = 27.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3030
Tmin = 0.791, Tmax = 0.929k = 1313
8594 measured reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.015H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.042 w = 1/[σ2(Fo2) + (0.0201P)2 + 1.0371P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
2157 reflectionsΔρmax = 0.26 e Å3
145 parametersΔρmin = 0.23 e Å3
7 restraintsAbsolute structure: Flack (1983), 985 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (3)
Crystal data top
2K+·2C6H7N2O2S·3H2OV = 1940.36 (5) Å3
Mr = 474.64Z = 4
Orthorhombic, Cmc21Mo Kα radiation
a = 23.8174 (4) ŵ = 0.75 mm1
b = 10.9141 (2) ÅT = 100 K
c = 7.4645 (1) Å0.33 × 0.27 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
2157 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2149 reflections with I > 2σ(I)
Tmin = 0.791, Tmax = 0.929Rint = 0.015
8594 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.015H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.042Δρmax = 0.26 e Å3
S = 1.11Δρmin = 0.23 e Å3
2157 reflectionsAbsolute structure: Flack (1983), 985 Friedel pairs
145 parametersAbsolute structure parameter: 0.04 (3)
7 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.50000.39021 (4)0.59975 (5)0.01535 (8)
K20.50000.05477 (3)0.26065 (6)0.01442 (8)
S10.404982 (11)0.35192 (2)0.25404 (4)0.01158 (7)
O10.42926 (4)0.47094 (8)0.30427 (12)0.01535 (19)
O20.42708 (4)0.25122 (8)0.36386 (12)0.01634 (19)
N10.41122 (4)0.31915 (11)0.05418 (15)0.0147 (2)
H10.4057 (7)0.3869 (13)0.007 (2)0.018*
N20.15806 (5)0.38097 (11)0.38621 (15)0.0148 (2)
H2A0.1423 (6)0.3121 (13)0.430 (2)0.018*
H2B0.1402 (6)0.4057 (14)0.285 (2)0.018*
C10.33256 (5)0.36379 (11)0.30816 (17)0.0124 (2)
C20.30175 (5)0.46150 (10)0.23864 (18)0.0138 (2)
H20.32020.52430.17320.017*
C30.24417 (5)0.46705 (10)0.26498 (19)0.0134 (2)
H30.22340.53420.21830.016*
C40.21636 (5)0.37450 (11)0.35982 (16)0.0126 (2)
C50.24773 (5)0.27905 (12)0.43346 (18)0.0144 (2)
H50.22950.21750.50230.017*
C60.30546 (5)0.27342 (11)0.40674 (17)0.0138 (2)
H60.32650.20750.45610.017*
O30.58605 (4)0.04452 (9)0.07181 (13)0.0173 (2)
H3A0.6103 (6)0.0020 (18)0.023 (3)0.026*
H3B0.5880 (8)0.1110 (15)0.019 (3)0.026*
O40.50000.18900 (13)0.8893 (2)0.0207 (3)
H40.4747 (6)0.2267 (16)0.929 (3)0.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.01301 (16)0.01830 (18)0.01474 (17)0.0000.0000.00331 (15)
K20.01360 (16)0.01577 (17)0.01391 (16)0.0000.0000.00172 (17)
S10.01032 (12)0.01235 (13)0.01206 (13)0.00085 (9)0.00042 (13)0.00013 (13)
O10.0144 (4)0.0149 (4)0.0168 (5)0.0035 (3)0.0009 (3)0.0022 (3)
O20.0134 (4)0.0169 (4)0.0188 (5)0.0009 (3)0.0002 (4)0.0048 (4)
N10.0158 (5)0.0161 (5)0.0123 (5)0.0002 (4)0.0024 (4)0.0005 (4)
N20.0118 (5)0.0178 (5)0.0148 (5)0.0007 (4)0.0004 (4)0.0019 (4)
C10.0113 (6)0.0142 (5)0.0118 (5)0.0010 (5)0.0009 (4)0.0027 (4)
C20.0163 (5)0.0129 (5)0.0120 (6)0.0015 (4)0.0019 (5)0.0017 (5)
C30.0157 (5)0.0123 (5)0.0121 (5)0.0017 (4)0.0004 (5)0.0008 (5)
C40.0121 (6)0.0156 (6)0.0102 (6)0.0001 (5)0.0009 (4)0.0028 (5)
C50.0161 (6)0.0136 (5)0.0136 (5)0.0019 (5)0.0017 (5)0.0016 (5)
C60.0139 (6)0.0134 (5)0.0142 (6)0.0010 (4)0.0007 (5)0.0016 (5)
O30.0177 (4)0.0155 (4)0.0187 (5)0.0009 (3)0.0033 (4)0.0010 (4)
O40.0135 (7)0.0205 (7)0.0280 (8)0.0000.0000.0097 (6)
Geometric parameters (Å, º) top
K1—O1i2.7325 (9)N1—H10.878 (14)
K1—O1ii2.7325 (9)N2—C41.4044 (16)
K1—O2iii2.9014 (10)N2—H2A0.903 (13)
K1—O22.9014 (10)N2—H2B0.906 (14)
K1—O12.9121 (10)C1—C61.3895 (17)
K1—O1iii2.9121 (10)C1—C21.3947 (17)
K1—O43.0810 (16)C2—C31.3868 (17)
K2—O32.7133 (10)C2—H20.9500
K2—O3iii2.7133 (10)C3—C41.4000 (17)
K2—O4iv2.8285 (15)C3—H30.9500
K2—O2iii2.8648 (10)C4—C51.3948 (18)
K2—O22.8648 (10)C5—C61.3908 (17)
K2—O3v3.0996 (10)C5—H50.9500
K2—O3vi3.0996 (10)C6—H60.9500
K2—O4vii3.1355 (17)O3—K2iv3.0996 (10)
S1—O21.4686 (9)O3—H3A0.852 (15)
S1—O11.4705 (9)O3—H3B0.828 (15)
S1—N11.5413 (12)O4—K2vi2.8284 (15)
S1—C11.7763 (13)O4—K2ix3.1355 (17)
O1—K1viii2.7324 (9)O4—H40.787 (13)
O1i—K1—O1ii76.15 (4)O3vi—K2—O4vii132.79 (2)
O1i—K1—O2iii105.06 (3)O2—S1—O1112.21 (6)
O1ii—K1—O2iii176.54 (3)O2—S1—N1109.40 (6)
O1i—K1—O2176.54 (3)O1—S1—N1114.44 (6)
O1ii—K1—O2105.06 (3)O2—S1—C1106.00 (6)
O2iii—K1—O273.54 (4)O1—S1—C1105.03 (6)
O1i—K1—O1127.75 (2)N1—S1—C1109.31 (6)
O1ii—K1—O184.18 (2)S1—O1—K1viii126.15 (5)
O2iii—K1—O192.57 (3)S1—O1—K198.82 (4)
O2—K1—O149.62 (3)K1viii—O1—K1103.54 (3)
O1i—K1—O1iii84.18 (2)S1—O2—K2128.84 (5)
O1ii—K1—O1iii127.75 (2)S1—O2—K199.32 (5)
O2iii—K1—O1iii49.62 (3)K2—O2—K1101.04 (3)
O2—K1—O1iii92.58 (3)S1—N1—H1106.9 (11)
O1—K1—O1iii70.71 (4)C4—N2—H2A114.8 (10)
O1i—K1—O490.20 (3)C4—N2—H2B111.3 (10)
O1ii—K1—O490.20 (3)H2A—N2—H2B110.9 (15)
O2iii—K1—O493.04 (3)C6—C1—C2119.69 (11)
O2—K1—O493.04 (3)C6—C1—S1121.31 (10)
O1—K1—O4138.32 (2)C2—C1—S1118.83 (10)
O1iii—K1—O4138.32 (2)C3—C2—C1120.07 (11)
O3—K2—O3iii98.12 (4)C3—C2—H2120.0
O3—K2—O4iv78.50 (3)C1—C2—H2120.0
O3iii—K2—O4iv78.50 (3)C2—C3—C4120.53 (11)
O3—K2—O2iii88.89 (3)C2—C3—H3119.7
O3iii—K2—O2iii153.71 (3)C4—C3—H3119.7
O4iv—K2—O2iii127.79 (3)C5—C4—C3119.00 (11)
O3—K2—O2153.71 (3)C5—C4—N2120.79 (11)
O3iii—K2—O288.89 (3)C3—C4—N2120.15 (11)
O4iv—K2—O2127.78 (3)C6—C5—C4120.40 (12)
O2iii—K2—O274.64 (4)C6—C5—H5119.8
O3—K2—O3v82.84 (3)C4—C5—H5119.8
O3iii—K2—O3v150.97 (2)C1—C6—C5120.25 (11)
O4iv—K2—O3v73.24 (3)C1—C6—H6119.9
O2iii—K2—O3v54.88 (3)C5—C6—H6119.9
O2—K2—O3v103.08 (3)K2—O3—K2iv84.51 (3)
O3—K2—O3vi150.97 (2)K2—O3—H3A119.9 (14)
O3iii—K2—O3vi82.84 (3)K2iv—O3—H3A98.5 (13)
O4iv—K2—O3vi73.24 (3)K2—O3—H3B129.9 (13)
O2iii—K2—O3vi103.08 (3)K2iv—O3—H3B69.3 (13)
O2—K2—O3vi54.87 (3)H3A—O3—H3B106 (2)
O3v—K2—O3vi82.79 (4)K2vi—O4—K1115.62 (5)
O3—K2—O4vii74.17 (3)K2vi—O4—K2ix81.99 (4)
O3iii—K2—O4vii74.17 (3)K1—O4—K2ix162.39 (5)
O4iv—K2—O4vii137.70 (5)K2vi—O4—H4128.2 (13)
O2iii—K2—O4vii83.57 (3)K1—O4—H483.7 (15)
O2—K2—O4vii83.57 (3)K2ix—O4—H485.1 (16)
O3v—K2—O4vii132.79 (2)
Symmetry codes: (i) x+1, y+1, z+1/2; (ii) x, y+1, z+1/2; (iii) x+1, y, z; (iv) x+1, y, z1/2; (v) x, y, z+1/2; (vi) x+1, y, z+1/2; (vii) x, y, z1; (viii) x+1, y+1, z1/2; (ix) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1x0.88 (1)2.17 (1)2.9854 (15)154 (2)
N2—H2A···N1xi0.90 (1)2.13 (1)3.0109 (16)166 (1)
N2—H2B···O3xii0.91 (1)2.12 (1)3.0183 (15)171 (1)
O3—H3A···N2xiii0.85 (2)1.99 (2)2.8366 (15)172 (2)
O3—H3B···O2iv0.83 (2)1.95 (2)2.7561 (13)164 (2)
O4—H4···N1ix0.79 (1)2.05 (1)2.8291 (14)175 (2)
C2—H2···Cg1x0.952.983.5872 (14)123
C5—H5···Cg1xi0.952.663.4531 (14)141
Symmetry codes: (iv) x+1, y, z1/2; (ix) x, y, z+1; (x) x, y+1, z1/2; (xi) x+1/2, y+1/2, z+1/2; (xii) x1/2, y+1/2, z; (xiii) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula2K+·2C6H7N2O2S·3H2O
Mr474.64
Crystal system, space groupOrthorhombic, Cmc21
Temperature (K)100
a, b, c (Å)23.8174 (4), 10.9141 (2), 7.4645 (1)
V3)1940.36 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.75
Crystal size (mm)0.33 × 0.27 × 0.10
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.791, 0.929
No. of measured, independent and
observed [I > 2σ(I)] reflections
8594, 2157, 2149
Rint0.015
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.015, 0.042, 1.11
No. of reflections2157
No. of parameters145
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.23
Absolute structureFlack (1983), 985 Friedel pairs
Absolute structure parameter0.04 (3)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), X-SEED (Barbour, 2001), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.878 (14)2.171 (14)2.9854 (15)154.1 (15)
N2—H2A···N1ii0.903 (13)2.129 (14)3.0109 (16)165.5 (14)
N2—H2B···O3iii0.906 (14)2.121 (14)3.0183 (15)170.5 (14)
O3—H3A···N2iv0.852 (15)1.991 (16)2.8366 (15)171.9 (18)
O3—H3B···O2v0.828 (15)1.951 (15)2.7561 (13)163.8 (18)
O4—H4···N1vi0.787 (13)2.045 (14)2.8291 (14)175 (2)
C2—H2···Cg1i0.952.983.5872 (14)123
C5—H5···Cg1ii0.952.663.4531 (14)141
Symmetry codes: (i) x, y+1, z1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z; (iv) x+1/2, y+1/2, z1/2; (v) x+1, y, z1/2; (vi) x, y, z+1.
 

Acknowledgements

IIUM is acknowledged for funding this study (Endowment fund A No: EDW A10–150-0697).

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Shakuntala, K. (2011). Acta Cryst. E67, m1015.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMoers, O., Blaschette, A. & Jones, P. G. (2001). Z. Anorg. Allg. Chem. 627, 95–102.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoreno, J. & Alleaume, M. (1968). C. R. Acad. Sci. Ser. C, 267, 64–66.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds