organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-{[(3-methyl-5-oxo-1-phenyl-4,5-di­hydro-1H-pyrazol-4-yl­­idene)(thio­phen-2-yl)meth­yl]amino}-3-phenyl­propionate

aDepartment of Basic Science, Tianjin Agricultural College, Tianjin Jinjing Road No. 22, Tianjin 300384, People's Republic of China
*Correspondence e-mail: zhuhualing2004@126.com

(Received 12 July 2011; accepted 24 July 2011; online 30 July 2011)

In the title compound, C25H23N3O3S, an intra­molecular N—H⋯O inter­action generates an S(6) ring, which stabilizes the enamine–keto form of the compound. This S(6) ring and the pyrazole ring are essentially coplanar, making a dihedral angle of 1.49 (6)°. The bond lengths within the S(6) ring of the mol­ecule lie between classical single- and double-bond lengths, indicating extensive conjugation. The structure exhibits a thienyl-ring flip disorder, with occupancy factors in the ratio 64.7 (3):35.3 (3).

Related literature

The high biological activities of pyrazole derivatives are reported by Li et al. (2004[Li, J., Jiang, L. & An, Y. (2004). Chin. J. Appl. Chem. 21, 150-153.]) and Tan et al.(2009[Tan, C., Pan, L. & Fu, Y. (2009). Mod. Agrochem. 2, 6-12.]). The anti­bacterial and biological activities of amino acid esters are described by Xiong et al. (1993[Xiong, G., Yang, Z. & Guo, A. (1993). Fine Chem. 6, 1-3.]). Structures related to the title compound have been reported by Zhu et al. (2010[Zhu, H., Shi, J., Wei, Z., Dai, R. & Zhang, X. (2010). Acta Cryst. E66, o1352.]) and Zhang et al. (2010[Zhang, X., Huang, M., Du, C. & Han, J. (2010). Acta Cryst. E66, o273.]).

[Scheme 1]

Experimental

Crystal data
  • C25H23N3O3S

  • Mr = 445.52

  • Monoclinic, P 21

  • a = 6.649 (2) Å

  • b = 18.712 (6) Å

  • c = 9.349 (3) Å

  • β = 104.903 (5)°

  • V = 1124.0 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 113 K

  • 0.20 × 0.18 × 0.12 mm

Data collection
  • Rigaku Saturn724 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.966, Tmax = 0.979

  • 11848 measured reflections

  • 2747 independent reflections

  • 2315 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.064

  • S = 0.98

  • 2747 reflections

  • 353 parameters

  • 215 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2401 Friedel pairs

  • Flack parameter: 0.05 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1⋯O1 0.88 1.93 2.668 (2) 141

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Pyrazole derivatives have drawn attentionfrom agricultural chemists for their high biological activity and low toxicity. They are widely used as pesticide, miticide and weed killers, and with the positional changes of the substituent group of pyrazole ring, more and more new pyrazole agricultural chemicals are synthesized and commercialized (Tan et al.,2009), so pyrazole derivatives have become one of the focal points to the creation of new agricultural chemicals. Amino acid esters also possess good antibacterial and biological activity (Xiong et al.,1993).

In the molecule of the title compound (Fig. 1), there is an intramolecular N3—H1···O1 interaction that generates a S(6) ring, and stabilizes the enamine–keto form of the compound. The dihedral angle between this S(6) ring and the pyrazole ring is 1.49 (6)°, indicating that they are essentially coplanar, as seen in Methyl 2-{[(1Z)-(3-methyl-5-oxo-1-phenyl-4,5-dihydro-1H-pyrazol-4- ylidene)(methyl)methyl]amino}-3-phenylpropanoate(1.50 (15)°; Zhu et al., 2010). The bond lengths within this part of the molecular lie between classical single-and double-bond lengths, indicating extensive conjugation. The S(6) ring makes dihedral angles of 54.29 (6)°,82.21 (22)° and 28.53 (6)° with the benzene ring of phenylalanine methyl ester, the thiazole ring and benzene ring bonded to pyrazole ring, respectively.

Atoms N3, C16, C24 and O2 are not coplanar, the torsion angle is 37.17 (22)°, similar to some other 4-acylpyrazolone Schiff Bases (Zhang et al., 2010). The bond lengths in this part of the molecule indicate that only C24—O2 is a classical double bond, other bonds are classical single bonds.

The structure exhibits a thienyl-ring flip disorder with the occupancy factors in the ratio 67/33.

Related literature top

The high biological activities of pyrazole derivatives are reported by Li et al. (2004) and Tan et al.(2009). The antibacterial and biological activities of amino acid esters are described by Xiong et al. (1993). Structures related to the title compound have been reported by Zhu et al. (2010) and Zhang et al. (2010).

Experimental top

The title compound was synthesized by refluxing the mixture of 1-phenyl-3-methyl-4-(2-thenoyl)pyrazolone-5 (HPMTP) (10m mol) and phenylalanine methyl ester(10m mol) in ethanol (100 ml) over a steam bath for about 7 h, then the solution was cooled down to room temperature. After five days, pale yellow blocks were obtained and dried in the air. The product was recrystallized from ethanol which afforded pale yellow crystals suitable for X-ray analysis.

Refinement top

The disorder model of thiazole ring was refined using the tools available in SHELXL97 (Sheldrick, 2008): DFIX for restraining distances, FLAT for constraining the thienyl rings to be planar, SIMU for restraining the same Uij and ISOR for restraining atoms to be approximately isotropic.

All H atoms were geometrically positioned and treated as riding on their parent atoms, with C—H = 0.93 Å for the aromatic, 0.96 Å for the methyl and N—H= 0.88 Å with U\ĩso\~(H)= 1.2 U\~eq\~C(aromatic, N) or, 1.5U\~eq\~C(methyl).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radii.
Methyl 2-{[(3-methyl-5-oxo-1-phenyl-4,5-dihydro-1H-pyrazol- 4-ylidene)(thiophen-2-yl)methyl]-amino}-3-phenylpropionate top
Crystal data top
C25H23N3O3SF(000) = 468
Mr = 445.52Dx = 1.316 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 6.649 (2) ÅCell parameters from 5148 reflections
b = 18.712 (6) Åθ = 2.2–27.9°
c = 9.349 (3) ŵ = 0.18 mm1
β = 104.903 (5)°T = 113 K
V = 1124.0 (7) Å3Block, pale yellow
Z = 20.20 × 0.18 × 0.12 mm
Data collection top
Rigaku Saturn724 CCD
diffractometer
2747 independent reflections
Radiation source: rotating anode2315 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω and ϕ scansθmax = 27.9°, θmin = 2.2°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
h = 88
Tmin = 0.966, Tmax = 0.979k = 2424
11848 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.0327P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
2747 reflectionsΔρmax = 0.15 e Å3
353 parametersΔρmin = 0.20 e Å3
215 restraintsAbsolute structure: Flack (1983), 2401 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (8)
Crystal data top
C25H23N3O3SV = 1124.0 (7) Å3
Mr = 445.52Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.649 (2) ŵ = 0.18 mm1
b = 18.712 (6) ÅT = 113 K
c = 9.349 (3) Å0.20 × 0.18 × 0.12 mm
β = 104.903 (5)°
Data collection top
Rigaku Saturn724 CCD
diffractometer
2747 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
2315 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.979Rint = 0.041
11848 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.064Δρmax = 0.15 e Å3
S = 0.98Δρmin = 0.20 e Å3
2747 reflectionsAbsolute structure: Flack (1983), 2401 Friedel pairs
353 parametersAbsolute structure parameter: 0.05 (8)
215 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O11.1534 (2)0.63768 (7)0.18356 (15)0.0277 (3)
O20.5930 (2)0.61573 (8)0.05979 (16)0.0351 (4)
O30.3142 (2)0.68792 (8)0.10026 (16)0.0306 (4)
N11.3400 (2)0.65769 (9)0.42905 (17)0.0222 (4)
N21.3238 (2)0.70218 (10)0.54712 (17)0.0249 (4)
N30.8186 (3)0.72194 (9)0.11372 (18)0.0247 (4)
H10.89440.68580.09740.028 (6)*
C11.5151 (3)0.61245 (11)0.4456 (2)0.0226 (4)
C21.5855 (3)0.59401 (13)0.3226 (2)0.0314 (5)
H21.51610.61150.22730.038*
C31.7570 (3)0.55012 (14)0.3403 (3)0.0380 (6)
H31.80530.53780.25640.046*
C41.8595 (3)0.52384 (13)0.4775 (3)0.0361 (6)
H41.97650.49330.48790.043*
C51.7900 (3)0.54243 (12)0.5997 (3)0.0317 (5)
H51.85980.52460.69460.038*
C61.6182 (3)0.58712 (11)0.5842 (2)0.0260 (5)
H61.57190.60020.66860.031*
C71.1799 (3)0.66940 (11)0.3045 (2)0.0230 (4)
C81.0560 (3)0.72515 (10)0.3459 (2)0.0209 (4)
C91.1586 (3)0.74221 (11)0.4976 (2)0.0237 (4)
C101.1023 (3)0.79648 (13)0.5971 (2)0.0335 (5)
H10A1.20640.79610.69280.050*
H10B0.96520.78510.61190.050*
H10C1.09830.84390.55210.050*
C110.8795 (3)0.75220 (10)0.2467 (2)0.0209 (4)
C120.7620 (11)0.8131 (3)0.2843 (9)0.0201 (13)0.647 (3)
C130.7922 (16)0.8830 (4)0.2580 (9)0.038 (2)0.647 (3)
C140.6536 (12)0.9317 (5)0.3156 (10)0.0313 (13)0.647 (3)
C150.5342 (14)0.8917 (3)0.3807 (9)0.0291 (14)0.647 (3)
S10.5747 (3)0.80143 (13)0.3760 (3)0.0387 (4)0.647 (3)
C12'0.757 (2)0.8125 (5)0.2850 (18)0.028 (2)0.353 (3)
C13'0.617 (2)0.8021 (10)0.3677 (17)0.036 (3)0.353 (3)
H13A0.57510.75590.39750.043*0.353 (3)
C15'0.621 (2)0.9239 (10)0.3287 (18)0.034 (2)0.353 (3)
C14'0.528 (3)0.8741 (7)0.395 (2)0.037 (2)0.353 (3)
S1'0.7937 (7)0.8971 (2)0.2379 (5)0.0324 (8)0.353 (3)
C160.6425 (3)0.74125 (11)0.0075 (2)0.0231 (4)
H160.55490.77790.02580.028*
C170.7166 (3)0.76982 (11)0.1407 (2)0.0255 (5)
H17A0.80630.73350.17030.031*
H17B0.59400.77750.22540.031*
C180.8361 (3)0.83898 (11)0.1058 (2)0.0270 (5)
C191.0459 (3)0.83866 (14)0.0317 (2)0.0329 (5)
H191.11630.79460.00480.040*
C201.1537 (4)0.90311 (16)0.0032 (3)0.0435 (6)
H201.29740.90270.05350.052*
C211.0520 (5)0.96732 (15)0.0351 (3)0.0496 (7)
H211.12491.01110.01000.060*
C220.8446 (5)0.96765 (14)0.1097 (3)0.0512 (7)
H220.77471.01180.13720.061*
C230.7374 (4)0.90402 (13)0.1449 (2)0.0386 (6)
H230.59430.90490.19660.046*
C240.5168 (3)0.67377 (11)0.0565 (2)0.0246 (5)
C250.1802 (3)0.62806 (13)0.1612 (3)0.0384 (6)
H25A0.21040.61230.25340.058*
H25B0.03430.64290.18140.058*
H25C0.20550.58860.08990.058*
H130.894 (5)0.907 (2)0.219 (4)0.046*0.647 (3)
H140.639 (10)0.9824 (9)0.298 (6)0.046*0.647 (3)
H150.416 (4)0.904 (3)0.416 (4)0.046*0.647 (3)
H15'0.627 (19)0.9752 (12)0.327 (11)0.046*0.353 (3)
H14'0.449 (10)0.892 (4)0.460 (6)0.046*0.353 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0368 (8)0.0247 (8)0.0186 (7)0.0067 (6)0.0015 (6)0.0056 (6)
O20.0449 (9)0.0197 (8)0.0349 (9)0.0023 (8)0.0003 (7)0.0039 (7)
O30.0288 (8)0.0279 (9)0.0349 (8)0.0047 (7)0.0078 (6)0.0087 (7)
N10.0266 (9)0.0233 (9)0.0155 (8)0.0027 (7)0.0033 (7)0.0024 (7)
N20.0287 (9)0.0279 (9)0.0179 (9)0.0009 (8)0.0057 (7)0.0056 (7)
N30.0332 (10)0.0204 (9)0.0174 (8)0.0069 (8)0.0007 (7)0.0025 (7)
C10.0232 (10)0.0190 (10)0.0255 (11)0.0015 (9)0.0061 (8)0.0012 (8)
C20.0318 (12)0.0378 (13)0.0256 (11)0.0017 (10)0.0093 (9)0.0003 (10)
C30.0329 (13)0.0452 (14)0.0379 (13)0.0052 (11)0.0127 (10)0.0081 (11)
C40.0264 (12)0.0326 (13)0.0473 (14)0.0058 (10)0.0061 (11)0.0046 (11)
C50.0279 (12)0.0279 (12)0.0341 (12)0.0020 (10)0.0015 (10)0.0020 (10)
C60.0291 (11)0.0243 (11)0.0232 (10)0.0020 (9)0.0042 (9)0.0010 (9)
C70.0280 (11)0.0183 (10)0.0216 (10)0.0012 (9)0.0041 (9)0.0004 (8)
C80.0230 (10)0.0206 (10)0.0188 (10)0.0010 (9)0.0047 (8)0.0012 (8)
C90.0267 (11)0.0244 (11)0.0194 (10)0.0004 (9)0.0051 (8)0.0025 (8)
C100.0385 (13)0.0410 (13)0.0187 (10)0.0095 (11)0.0032 (9)0.0069 (10)
C110.0264 (11)0.0173 (10)0.0196 (10)0.0025 (8)0.0069 (9)0.0011 (8)
C120.020 (2)0.022 (2)0.016 (2)0.001 (2)0.0006 (19)0.003 (2)
C130.041 (3)0.031 (4)0.045 (3)0.007 (3)0.016 (2)0.000 (3)
C140.034 (3)0.021 (2)0.038 (2)0.006 (2)0.0089 (18)0.0018 (19)
C150.033 (2)0.024 (3)0.035 (2)0.005 (2)0.0174 (19)0.002 (2)
S10.0402 (9)0.0331 (7)0.0529 (8)0.0029 (7)0.0304 (7)0.0005 (6)
C12'0.029 (4)0.025 (4)0.031 (4)0.001 (4)0.009 (4)0.004 (4)
C13'0.036 (4)0.031 (4)0.041 (4)0.011 (4)0.013 (4)0.011 (3)
C15'0.038 (4)0.022 (4)0.043 (4)0.000 (4)0.012 (3)0.007 (3)
C14'0.037 (3)0.037 (4)0.043 (4)0.002 (4)0.018 (3)0.001 (4)
S1'0.0388 (13)0.0156 (12)0.0468 (15)0.0019 (10)0.0183 (11)0.0063 (11)
C160.0286 (11)0.0199 (10)0.0186 (10)0.0026 (9)0.0020 (9)0.0013 (8)
C170.0310 (12)0.0252 (11)0.0169 (10)0.0014 (9)0.0000 (9)0.0017 (8)
C180.0330 (12)0.0277 (12)0.0206 (10)0.0031 (10)0.0073 (9)0.0021 (9)
C190.0322 (13)0.0415 (14)0.0262 (11)0.0043 (11)0.0095 (10)0.0095 (11)
C200.0389 (14)0.0619 (18)0.0340 (13)0.0207 (14)0.0174 (11)0.0165 (13)
C210.078 (2)0.0411 (16)0.0351 (13)0.0313 (15)0.0243 (14)0.0092 (12)
C220.079 (2)0.0269 (13)0.0446 (15)0.0080 (14)0.0107 (15)0.0088 (11)
C230.0482 (14)0.0307 (12)0.0322 (12)0.0045 (11)0.0019 (11)0.0068 (11)
C240.0343 (12)0.0234 (11)0.0156 (10)0.0001 (10)0.0056 (9)0.0001 (8)
C250.0351 (13)0.0377 (14)0.0431 (14)0.0114 (11)0.0112 (11)0.0139 (11)
Geometric parameters (Å, º) top
O1—C71.249 (2)C14—H15'0.85 (5)
O2—C241.202 (2)C15—S11.712 (5)
O3—C241.330 (2)C15—H150.959 (10)
O3—C251.453 (2)C15—H14'1.04 (4)
N1—C71.378 (2)S1—H13A0.8749
N1—N21.409 (2)C12'—C13'1.368 (9)
N1—C11.415 (3)C12'—S1'1.678 (9)
N2—C91.311 (3)C13'—C14'1.518 (10)
N3—C111.331 (2)C13'—H13A0.9699
N3—C161.450 (3)C15'—C14'1.349 (9)
N3—H10.8800C15'—S1'1.674 (9)
C1—C61.384 (3)C15'—H141.15 (3)
C1—C21.392 (3)C15'—H15'0.962 (11)
C2—C31.380 (3)C14'—H151.00 (3)
C2—H20.9500C14'—H14'0.961 (11)
C3—C41.379 (3)S1'—H130.76 (2)
C3—H30.9500C16—C241.519 (3)
C4—C51.382 (3)C16—C171.547 (3)
C4—H40.9500C16—H161.0000
C5—C61.393 (3)C17—C181.510 (3)
C5—H50.9500C17—H17A0.9900
C6—H60.9500C17—H17B0.9900
C7—C81.443 (3)C18—C191.389 (3)
C8—C111.391 (3)C18—C231.386 (3)
C8—C91.442 (3)C19—C201.398 (4)
C9—C101.489 (3)C19—H190.9500
C10—H10A0.9800C20—C211.380 (4)
C10—H10B0.9800C20—H200.9500
C10—H10C0.9800C21—C221.376 (4)
C11—C121.474 (5)C21—H210.9500
C11—C12'1.489 (9)C22—C231.383 (3)
C12—C131.356 (7)C22—H220.9500
C12—S11.698 (5)C23—H230.9500
C13—C141.491 (8)C25—H25A0.9800
C13—H130.963 (10)C25—H25B0.9800
C14—C151.345 (6)C25—H25C0.9800
C14—H140.963 (10)
C24—O3—C25115.95 (17)H15—C15—H14'27 (5)
C7—N1—N2111.72 (15)C12—S1—C1591.5 (4)
C7—N1—C1128.47 (17)C12—S1—H13A106.4
N2—N1—C1119.63 (15)C15—S1—H13A161.0
C9—N2—N1106.65 (15)C13'—C12'—C11121.6 (10)
C11—N3—C16127.91 (17)C13'—C12'—S1'116.7 (10)
C11—N3—H1116.0C11—C12'—S1'121.6 (7)
C16—N3—H1116.0C12'—C13'—C14'108.5 (15)
C6—C1—C2119.8 (2)C12'—C13'—H13A125.1
C6—C1—N1120.16 (18)C14'—C13'—H13A126.3
C2—C1—N1120.00 (18)C14'—C15'—S1'118.6 (15)
C3—C2—C1119.4 (2)C14'—C15'—H14150 (3)
C3—C2—H2120.3S1'—C15'—H1492 (3)
C1—C2—H2120.3C14'—C15'—H15'137 (6)
C4—C3—C2121.3 (2)S1'—C15'—H15'104 (7)
C4—C3—H3119.3H14—C15'—H15'15 (8)
C2—C3—H3119.3C15'—C14'—C13'107.1 (18)
C3—C4—C5119.2 (2)C15'—C14'—H1599 (3)
C3—C4—H4120.4C13'—C14'—H15151 (3)
C5—C4—H4120.4C15'—C14'—H14'116 (6)
C4—C5—C6120.3 (2)C13'—C14'—H14'136 (5)
C4—C5—H5119.9H15—C14'—H14'28 (5)
C6—C5—H5119.9C15'—S1'—C12'89.0 (8)
C1—C6—C5119.9 (2)C15'—S1'—H13144 (3)
C1—C6—H6120.1C12'—S1'—H13119 (3)
C5—C6—H6120.1N3—C16—C24107.42 (16)
O1—C7—N1126.01 (18)N3—C16—C17110.79 (17)
O1—C7—C8129.01 (18)C24—C16—C17108.01 (16)
N1—C7—C8104.97 (16)N3—C16—H16110.2
C11—C8—C9132.86 (18)C24—C16—H16110.2
C11—C8—C7121.75 (18)C17—C16—H16110.2
C9—C8—C7105.39 (16)C18—C17—C16112.39 (16)
N2—C9—C8111.26 (17)C18—C17—H17A109.1
N2—C9—C10119.42 (18)C16—C17—H17A109.1
C8—C9—C10129.32 (18)C18—C17—H17B109.1
C9—C10—H10A109.5C16—C17—H17B109.1
C9—C10—H10B109.5H17A—C17—H17B107.9
H10A—C10—H10B109.5C19—C18—C23118.8 (2)
C9—C10—H10C109.5C19—C18—C17120.6 (2)
H10A—C10—H10C109.5C23—C18—C17120.54 (19)
H10B—C10—H10C109.5C18—C19—C20120.1 (2)
N3—C11—C8118.04 (17)C18—C19—H19119.9
N3—C11—C12119.9 (4)C20—C19—H19119.9
C8—C11—C12122.0 (4)C21—C20—C19120.2 (2)
N3—C11—C12'119.5 (7)C21—C20—H20119.9
C8—C11—C12'122.4 (7)C19—C20—H20119.9
C12—C11—C12'1.4 (7)C22—C21—C20119.7 (2)
C13—C12—C11126.2 (6)C22—C21—H21120.1
C13—C12—S1112.2 (6)C20—C21—H21120.1
C11—C12—S1121.5 (4)C21—C22—C23120.3 (3)
C12—C13—C14112.9 (9)C21—C22—H22119.8
C12—C13—H13132 (3)C23—C22—H22119.8
C14—C13—H13115 (3)C22—C23—C18120.8 (2)
C15—C14—C13108.4 (9)C22—C23—H23119.6
C15—C14—H14125 (3)C18—C23—H23119.6
C13—C14—H14126 (3)O2—C24—O3124.90 (19)
C15—C14—H15'108 (7)O2—C24—C16123.79 (19)
C13—C14—H15'143 (7)O3—C24—C16111.26 (17)
H14—C14—H15'19 (8)O3—C25—H25A109.5
C14—C15—S1115.0 (7)O3—C25—H25B109.5
C14—C15—H15131 (3)H25A—C25—H25B109.5
S1—C15—H15114 (3)O3—C25—H25C109.5
C14—C15—H14'144 (5)H25A—C25—H25C109.5
S1—C15—H14'98 (5)H25B—C25—H25C109.5
C7—N1—N2—C91.1 (2)C12'—C11—C12—S121 (39)
C1—N1—N2—C9174.54 (17)C11—C12—C13—C14177.4 (9)
C7—N1—C1—C6156.68 (19)S1—C12—C13—C140.2 (3)
N2—N1—C1—C628.5 (3)C12—C13—C14—C150.4 (5)
C7—N1—C1—C224.1 (3)C13—C14—C15—S10.5 (6)
N2—N1—C1—C2150.69 (19)C13—C12—S1—C150.1 (2)
C6—C1—C2—C30.5 (3)C11—C12—S1—C15177.3 (7)
N1—C1—C2—C3179.7 (2)C14—C15—S1—C120.4 (4)
C1—C2—C3—C40.3 (4)N3—C11—C12'—C13'99.4 (8)
C2—C3—C4—C50.6 (4)C8—C11—C12'—C13'79.7 (9)
C3—C4—C5—C60.1 (3)C12—C11—C12'—C13'154 (40)
C2—C1—C6—C51.0 (3)N3—C11—C12'—S1'84.4 (11)
N1—C1—C6—C5179.79 (18)C8—C11—C12'—S1'96.5 (11)
C4—C5—C6—C10.7 (3)C12—C11—C12'—S1'22 (38)
N2—N1—C7—O1179.70 (19)C11—C12'—C13'—C14'176.6 (17)
C1—N1—C7—O15.2 (3)S1'—C12'—C13'—C14'0.2 (4)
N2—N1—C7—C80.5 (2)S1'—C15'—C14'—C13'0.8 (10)
C1—N1—C7—C8174.58 (18)C12'—C13'—C14'—C15'0.6 (7)
O1—C7—C8—C110.5 (3)C14'—C15'—S1'—C12'0.6 (7)
N1—C7—C8—C11179.22 (18)C13'—C12'—S1'—C15'0.2 (3)
O1—C7—C8—C9179.6 (2)C11—C12'—S1'—C15'176.2 (16)
N1—C7—C8—C90.1 (2)C11—N3—C16—C24128.0 (2)
N1—N2—C9—C81.1 (2)C11—N3—C16—C17114.3 (2)
N1—N2—C9—C10178.75 (18)N3—C16—C17—C1865.0 (2)
C11—C8—C9—N2179.8 (2)C24—C16—C17—C18177.56 (17)
C7—C8—C9—N20.8 (2)C16—C17—C18—C1982.1 (2)
C11—C8—C9—C100.1 (4)C16—C17—C18—C2396.9 (2)
C7—C8—C9—C10179.0 (2)C23—C18—C19—C200.5 (3)
C16—N3—C11—C8179.25 (18)C17—C18—C19—C20178.42 (19)
C16—N3—C11—C120.0 (4)C18—C19—C20—C210.3 (3)
C16—N3—C11—C12'1.6 (6)C19—C20—C21—C220.9 (4)
C9—C8—C11—N3176.8 (2)C20—C21—C22—C230.7 (4)
C7—C8—C11—N34.4 (3)C21—C22—C23—C180.1 (4)
C9—C8—C11—C123.9 (4)C19—C18—C23—C220.7 (3)
C7—C8—C11—C12174.9 (3)C17—C18—C23—C22178.2 (2)
C9—C8—C11—C12'2.3 (6)C25—O3—C24—O22.4 (3)
C7—C8—C11—C12'176.5 (5)C25—O3—C24—C16175.07 (17)
N3—C11—C12—C1387.5 (5)N3—C16—C24—O237.1 (3)
C8—C11—C12—C1391.7 (5)C17—C16—C24—O282.4 (2)
C12'—C11—C12—C13162 (40)N3—C16—C24—O3145.40 (16)
N3—C11—C12—S195.4 (5)C17—C16—C24—O395.05 (19)
C8—C11—C12—S185.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1···O10.881.932.668 (2)141

Experimental details

Crystal data
Chemical formulaC25H23N3O3S
Mr445.52
Crystal system, space groupMonoclinic, P21
Temperature (K)113
a, b, c (Å)6.649 (2), 18.712 (6), 9.349 (3)
β (°) 104.903 (5)
V3)1124.0 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.20 × 0.18 × 0.12
Data collection
DiffractometerRigaku Saturn724 CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2008)
Tmin, Tmax0.966, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
11848, 2747, 2315
Rint0.041
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.064, 0.98
No. of reflections2747
No. of parameters353
No. of restraints215
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.20
Absolute structureFlack (1983), 2401 Friedel pairs
Absolute structure parameter0.05 (8)

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1···O10.881.932.668 (2)141.0
 

Acknowledgements

The authors are grateful for financial support from the Spark Program, Foundation of Science and Technology Department of China (grant Nos. 09ZHXHNC07900 and 2010 GA610009).

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLi, J., Jiang, L. & An, Y. (2004). Chin. J. Appl. Chem. 21, 150–153.  CAS Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTan, C., Pan, L. & Fu, Y. (2009). Mod. Agrochem. 2, 6–12.  Google Scholar
First citationXiong, G., Yang, Z. & Guo, A. (1993). Fine Chem. 6, 1–3.  Google Scholar
First citationZhang, X., Huang, M., Du, C. & Han, J. (2010). Acta Cryst. E66, o273.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, H., Shi, J., Wei, Z., Dai, R. & Zhang, X. (2010). Acta Cryst. E66, o1352.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds