organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,7-Di­bromo-3-tri­fluoro­methyl-3,4-di­hydro­acridin-1(2H)-one

aDepartment of Chemistry, Boswell Science Complex, Tennessee State University, Nashville, 3500 John A Merritt Blvd, Nashville, TN 37209, USA
*Correspondence e-mail: tsiddiqu@tnstate.edu

(Received 29 June 2011; accepted 8 July 2011; online 16 July 2011)

In the title compound, C14H8Br2F3NO, the mol­ecule is disordered across an approximate non-crystallographic mirror plane, which is in the plane of the fused ring system [The tetrahedral C atom bearing the trifluormethyl substituent is disordered with site occupancy factors of 0.80 (2) and 0.20 (2)]. In the crystal, a one-dimensional stacking of mol­ecules involves inter­actions between the pyridine ring and symmetry-related Br and O atoms of adjacent mol­ecules. The stacking distance between the mean planes of adjacent mol­ecules is 3.395 (4) Å.

Related literature

For the anti­cancer activity of the title compound, see: Fadeyi et al. (2008[Fadeyi, O. O., Adamson, S. T., Myles, E. L. & Okoro, C. O. (2008). Bioorg. Med. Chem. Lett. 18, 4172-4176.]). For fluorinated acridones, see: Fadeyi et al. (2008[Fadeyi, O. O., Adamson, S. T., Myles, E. L. & Okoro, C. O. (2008). Bioorg. Med. Chem. Lett. 18, 4172-4176.]); Mayur et al. (2009[Mayur, Y. C., Zaheeruddin, P., Godefridus, J., Lemos, C., Kathmann, I., Rajendra, P. & Velivela, V. S. (2009). Amsterdam Neth. Archiv Pharm. (Weinheim, Germany), 342, 640-650.]); Svyatkina et al. (1988[Svyatkina, L. I., Dmitrieva, L. L. & Kurov, G. N. (1988). Zh. Obshch. Khim. 58, 2357-60.]). For a related structure, see: Martinez et al. (1995[Martinez, R., Espinosa-Perez, G. & Brito-Arias, M. J. (1995). J. Chem. Crystallogr. 25, 201-203.]).

[Scheme 1]

Experimental

Crystal data
  • C14H8Br2F3NO

  • Mr = 423.03

  • Triclinic, [P \overline 1]

  • a = 5.3303 (10) Å

  • b = 10.926 (2) Å

  • c = 12.354 (2) Å

  • α = 83.349 (6)°

  • β = 85.741 (6)°

  • γ = 85.051 (6)°

  • V = 710.5 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.74 mm−1

  • T = 293 K

  • 0.21 × 0.13 × 0.06 mm

Data collection
  • Rigaku XtaLAB mini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 1999[Rigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.]; Pflugrath, 1999[Pflugrath, J. W. (1999). Acta Cryst. D55, 1718-1725.]) Tmin = 0.379, Tmax = 0.725

  • 4444 measured reflections

  • 3153 independent reflections

  • 2188 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.134

  • S = 0.97

  • 3153 reflections

  • 217 parameters

  • 34 restraints

  • H-atom parameters constrained

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.67 e Å−3

Data collection: CrystalClear (Rigaku, 1999[Rigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.]; Pflugrath, 1999[Pflugrath, J. W. (1999). Acta Cryst. D55, 1718-1725.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) as included in WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); software used to prepare material for publication: WinGX and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The compound, 5,7-dibromo-3-trifluoromethyl-3,4-dihydroacridin-1(2H)-one exhibited anticancer activity in several cell lines (Fadeyi et al., 2008). The molecule is disordered across an approximate non-crystallographic mirror plane, which is in the plane of the fused ring system. A one dimensional stacking of molecules involves interactions between the pyridine ring and symmetry related Br (via 1+x, y, z) and O (via (1-x, y, z) on adjacent molecules. The stacking distance between the mean planes of adjacent molecules is 3.395 (4) Å. The molecule is disordered in the crystal with site occupancy factors of 0.796 (6) and 0.204 (6) for the major and minor components, respectively.

Related literature top

For the anticancer activity of the title compound, see: Fadeyi et al. (2008). For fluorinated acridone, see: Fadeyi et al. (2008); Mayur et al. (2009); Svyatkina et al. (1988). For a related structure, see: Martinez et al. (1995).

Experimental top

To a mixture of 3,5-dibromo-2-aminobenzaldehyde (1.0 mmol) and 5-trifluoromethyl-cyclohexanedione (1.0 mmol) was added 1 mL of 1N HCl. The reaction mixture was stirred at 60–75°C for 30 minutes. After this period the reaction mixture was neutralized with 1 mL of 1N NaOH. The solid was filtered and washed with water (3 × 6 mL) and air dried. Colorless single crystals suitable for X-ray diffraction studies were harvested after recrystallization from aqueous ethanol. M.p. = 140–143°C. IR (nujol): 2925, 1600, 1465, 964 and 787 cm-1. 1HNMR (CDCl3): δ 2.4–2.49 (dd, 2H), 2.88–2.93 (dd, 2H), 3.22 (m, 1H), 8.32 (d, 1H), 8.91 (s, 1H).

Refinement top

H atoms (except those of the minor disorder component) were found in difference Fourier maps and subsequently placed in idealized positions with constrained distances of 0.97 Å (R2CH2), 0.98 Å (R3CH), 0.93 Å (Csp2H), and with Uiso(H) values set to 1.2Ueq of the attached atom.

To ensure satisfactory refinement of the disordered parts of the structure, a combination of constraints and restraints were needed. The constraints (SHELXL97 command EADP) were used to make the displacement parameters of closely proximate disordered atoms equal. The restraints (SHELXL97 commands SAME, SIMU & DELU) were used to ensure similar geometries and displacement parameters of closely proximate, chemically identical groups.

Computing details top

Data collection: CrystalClear (Rigaku, 1999; Pflugrath, 1999); cell refinement: CrystalClear (Rigaku, 1999; Pflugrath, 1999); data reduction: CrystalClear (Rigaku, 1999; Pflugrath, 1999); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) as included in WinGX (Farrugia, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (50% probability) of 5,7-dibromo-3-(trifluoromethyl)-3,4-dihydroacridin-1(2H)-one. In the interest of clarity, only the major component of disorder is shown.
5,7-Dibromo-3-trifluoromethyl-3,4-dihydroacridin-1(2H)-one top
Crystal data top
C14H8Br2F3NOZ = 2
Mr = 423.03F(000) = 408
Triclinic, P1Dx = 1.977 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.3303 (10) ÅCell parameters from 3749 reflections
b = 10.926 (2) Åθ = 3.3–27.6°
c = 12.354 (2) ŵ = 5.74 mm1
α = 83.349 (6)°T = 293 K
β = 85.741 (6)°Prism, colorless
γ = 85.051 (6)°0.21 × 0.13 × 0.06 mm
V = 710.5 (2) Å3
Data collection top
Rigaku XtaLAB mini
diffractometer
2188 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ω scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 1999; Pflugrath, 1999)
h = 36
Tmin = 0.379, Tmax = 0.725k = 1414
4444 measured reflectionsl = 1515
3153 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0643P)2]
where P = (Fo2 + 2Fc2)/3
3153 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.80 e Å3
34 restraintsΔρmin = 0.67 e Å3
Crystal data top
C14H8Br2F3NOγ = 85.051 (6)°
Mr = 423.03V = 710.5 (2) Å3
Triclinic, P1Z = 2
a = 5.3303 (10) ÅMo Kα radiation
b = 10.926 (2) ŵ = 5.74 mm1
c = 12.354 (2) ÅT = 293 K
α = 83.349 (6)°0.21 × 0.13 × 0.06 mm
β = 85.741 (6)°
Data collection top
Rigaku XtaLAB mini
diffractometer
3153 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 1999; Pflugrath, 1999)
2188 reflections with I > 2σ(I)
Tmin = 0.379, Tmax = 0.725Rint = 0.050
4444 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05534 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 0.97Δρmax = 0.80 e Å3
3153 reflectionsΔρmin = 0.67 e Å3
217 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.08381 (9)0.38272 (5)0.91649 (4)0.05150 (19)
Br20.25701 (14)0.07810 (5)0.58890 (5)0.0731 (2)
N10.3349 (7)0.5389 (3)0.8099 (3)0.0420 (9)
O11.0453 (7)0.6599 (4)0.5769 (3)0.0583 (10)
C10.8841 (9)0.6822 (5)0.6495 (4)0.0455 (11)
C20.875 (2)0.7995 (11)0.7024 (11)0.051 (3)0.796 (6)
H2A0.76350.86210.66420.061*0.796 (6)
H2B1.04230.82920.69690.061*0.796 (6)
C30.7812 (11)0.7788 (5)0.8223 (5)0.0418 (14)0.796 (6)
H30.89770.71680.86020.05*0.796 (6)
C110.770 (2)0.8972 (8)0.8778 (9)0.056 (2)0.796 (6)
F10.6920 (9)0.8785 (4)0.9826 (3)0.0747 (14)0.796 (6)
F21.0046 (8)0.9352 (4)0.8774 (4)0.0779 (15)0.796 (6)
F30.6313 (10)0.9893 (4)0.8297 (4)0.0829 (18)0.796 (6)
C40.519 (3)0.7294 (10)0.8318 (9)0.048 (3)0.796 (6)
H4A0.46670.71030.90840.058*0.796 (6)
H4B0.39870.79330.80070.058*0.796 (6)
C2'0.897 (9)0.779 (5)0.718 (5)0.051 (3)0.204 (6)
H2'10.96430.84960.67390.061*0.204 (6)
H2'21.01230.75040.77410.061*0.204 (6)
C3'0.641 (4)0.8190 (18)0.7713 (17)0.044 (5)*0.204 (6)
H3'0.52040.83980.71480.053*0.204 (6)
C11'0.661 (4)0.933 (2)0.831 (2)0.058 (7)*0.204 (6)
F1'0.442 (3)0.9642 (17)0.8836 (14)0.084 (6)*0.204 (6)
F2'0.828 (6)0.897 (3)0.910 (2)0.095 (12)*0.204 (6)
F3'0.754 (4)1.0247 (17)0.7699 (17)0.093 (7)*0.204 (6)
C4'0.546 (13)0.714 (4)0.853 (5)0.048 (3)0.204 (6)
H4'10.38750.73860.89110.058*0.204 (6)
H4'20.66920.68380.90590.058*0.204 (6)
C4A0.5120 (8)0.6143 (4)0.7741 (4)0.0421 (11)
C50.1374 (9)0.3514 (4)0.7950 (4)0.0426 (10)
C60.1224 (9)0.2471 (4)0.7460 (4)0.0489 (12)
H60.00230.19210.77180.059*
C70.2894 (10)0.2233 (4)0.6562 (4)0.0506 (12)
C80.4680 (10)0.3008 (4)0.6163 (4)0.0498 (12)
H80.57530.28320.55630.06*
C8A0.4892 (9)0.4080 (4)0.6668 (3)0.0410 (10)
C90.6745 (9)0.4917 (4)0.6312 (4)0.0436 (11)
H90.78690.47720.57190.052*
C9A0.6878 (9)0.5944 (4)0.6845 (3)0.0410 (10)
C10A0.3249 (8)0.4357 (4)0.7576 (4)0.0408 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0544 (3)0.0519 (3)0.0473 (3)0.0081 (2)0.0128 (2)0.0092 (2)
Br20.1173 (6)0.0430 (3)0.0626 (4)0.0170 (3)0.0078 (3)0.0210 (3)
N10.042 (2)0.043 (2)0.042 (2)0.0072 (18)0.0037 (17)0.0121 (17)
O10.058 (2)0.060 (2)0.056 (2)0.0144 (18)0.0230 (18)0.0146 (18)
C10.043 (2)0.044 (3)0.048 (3)0.002 (2)0.002 (2)0.005 (2)
C20.053 (4)0.047 (5)0.053 (5)0.008 (3)0.011 (4)0.011 (4)
C30.048 (3)0.034 (3)0.044 (3)0.009 (3)0.007 (3)0.010 (2)
C110.057 (5)0.044 (4)0.069 (5)0.007 (3)0.007 (5)0.018 (4)
F10.104 (3)0.064 (3)0.061 (2)0.014 (2)0.013 (2)0.035 (2)
F20.070 (3)0.073 (3)0.099 (3)0.021 (2)0.009 (2)0.046 (3)
F30.107 (4)0.046 (3)0.097 (4)0.017 (3)0.016 (3)0.026 (3)
C40.042 (4)0.060 (4)0.049 (6)0.009 (4)0.005 (4)0.026 (4)
C2'0.053 (4)0.047 (5)0.053 (5)0.008 (3)0.011 (4)0.011 (4)
C4'0.042 (4)0.060 (4)0.049 (6)0.009 (4)0.005 (4)0.026 (4)
C4A0.042 (2)0.042 (3)0.043 (2)0.003 (2)0.001 (2)0.013 (2)
C50.046 (2)0.045 (3)0.037 (2)0.002 (2)0.0009 (19)0.008 (2)
C60.058 (3)0.042 (3)0.046 (3)0.009 (2)0.002 (2)0.001 (2)
C70.072 (3)0.034 (3)0.047 (3)0.002 (2)0.000 (2)0.011 (2)
C80.061 (3)0.046 (3)0.042 (3)0.001 (2)0.006 (2)0.011 (2)
C8A0.050 (3)0.042 (3)0.032 (2)0.003 (2)0.0028 (19)0.0085 (19)
C90.048 (3)0.044 (3)0.036 (2)0.002 (2)0.011 (2)0.007 (2)
C9A0.045 (2)0.040 (3)0.038 (2)0.002 (2)0.001 (2)0.009 (2)
C10A0.045 (3)0.038 (2)0.038 (2)0.000 (2)0.001 (2)0.0072 (19)
Geometric parameters (Å, º) top
Br1—C51.884 (4)C2'—H2'20.97
Br2—C71.901 (5)C3'—C4'1.54 (2)
N1—C4A1.325 (6)C3'—C11'1.538 (19)
N1—C10A1.369 (5)C3'—H3'0.98
O1—C11.226 (5)C11'—F3'1.29 (2)
C1—C2'1.43 (5)C11'—F1'1.33 (2)
C1—C9A1.487 (7)C11'—F2'1.37 (2)
C1—C21.499 (13)C4'—C4A1.57 (6)
C2—C31.526 (11)C4'—H4'10.97
C2—H2A0.97C4'—H4'20.97
C2—H2B0.97C4A—C9A1.420 (6)
C3—C111.527 (9)C5—C61.361 (6)
C3—C41.535 (13)C5—C10A1.433 (6)
C3—H30.98C6—C71.403 (6)
C11—F31.307 (12)C6—H60.93
C11—F11.327 (11)C7—C81.356 (7)
C11—F21.353 (11)C8—C8A1.406 (6)
C4—C4A1.519 (13)C8—H80.93
C4—H4A0.97C8A—C91.415 (7)
C4—H4B0.97C8A—C10A1.416 (6)
C2'—C3'1.52 (2)C9—C9A1.375 (6)
C2'—H2'10.97C9—H90.93
C4A—N1—C10A117.5 (4)F3'—C11'—F1'113 (2)
O1—C1—C2'123.2 (16)F3'—C11'—F2'106 (2)
O1—C1—C9A120.2 (5)F1'—C11'—F2'106 (2)
C2'—C1—C9A115.7 (16)F3'—C11'—C3'113.6 (19)
O1—C1—C2121.1 (5)F1'—C11'—C3'110.7 (17)
C9A—C1—C2118.6 (5)F2'—C11'—C3'106 (2)
C1—C2—C3111.0 (8)C3'—C4'—C4A101 (3)
C1—C2—H2A109.4C3'—C4'—H4'1111.6
C3—C2—H2A109.4C4A—C4'—H4'1111.6
C1—C2—H2B109.4C3'—C4'—H4'2111.6
C3—C2—H2B109.4C4A—C4'—H4'2111.6
H2A—C2—H2B108H4'1—C4'—H4'2109.4
C2—C3—C11112.0 (7)N1—C4A—C9A123.6 (4)
C2—C3—C4109.8 (8)N1—C4A—C4116.9 (5)
C11—C3—C4109.5 (6)C9A—C4A—C4119.5 (5)
C2—C3—H3108.5N1—C4A—C4'113.6 (13)
C11—C3—H3108.5C9A—C4A—C4'121.7 (16)
C4—C3—H3108.5C6—C5—C10A120.9 (4)
F3—C11—F1109.6 (7)C6—C5—Br1119.7 (4)
F3—C11—F2106.5 (7)C10A—C5—Br1119.4 (3)
F1—C11—F2104.9 (10)C5—C6—C7119.6 (5)
F3—C11—C3113.9 (9)C5—C6—H6120.2
F1—C11—C3111.9 (6)C7—C6—H6120.2
F2—C11—C3109.5 (6)C8—C7—C6122.1 (4)
C4A—C4—C3112.7 (8)C8—C7—Br2119.9 (4)
C4A—C4—H4A109.1C6—C7—Br2118.0 (4)
C3—C4—H4A109.1C7—C8—C8A119.2 (4)
C4A—C4—H4B109.1C7—C8—H8120.4
C3—C4—H4B109.1C8A—C8—H8120.4
H4A—C4—H4B107.8C8—C8A—C9122.4 (4)
C1—C2'—C3'113 (4)C8—C8A—C10A120.6 (4)
C1—C2'—H2'1109C9—C8A—C10A117.0 (4)
C3'—C2'—H2'1109C9A—C9—C8A119.8 (4)
C1—C2'—H2'2109C9A—C9—H9120.1
C3'—C2'—H2'2109C8A—C9—H9120.1
H2'1—C2'—H2'2107.8C9—C9A—C4A118.7 (4)
C2'—C3'—C4'110 (2)C9—C9A—C1120.6 (4)
C2'—C3'—C11'110 (2)C4A—C9A—C1120.7 (4)
C4'—C3'—C11'109 (2)N1—C10A—C8A123.4 (4)
C2'—C3'—H3'108.9N1—C10A—C5119.0 (4)
C4'—C3'—H3'108.9C8A—C10A—C5117.6 (4)
C11'—C3'—H3'108.9
O1—C1—C2—C3147.1 (7)C10A—C5—C6—C71.3 (7)
C2'—C1—C2—C343 (9)Br1—C5—C6—C7179.3 (4)
C9A—C1—C2—C334.9 (12)C5—C6—C7—C80.3 (8)
C1—C2—C3—C11179.8 (8)C5—C6—C7—Br2178.9 (4)
C1—C2—C3—C458.0 (11)C6—C7—C8—C8A0.6 (8)
C2—C3—C11—F356.1 (10)Br2—C7—C8—C8A179.8 (4)
C4—C3—C11—F365.8 (9)C7—C8—C8A—C9178.6 (5)
C2—C3—C11—F1178.9 (10)C7—C8—C8A—C10A0.6 (7)
C4—C3—C11—F159.1 (11)C8—C8A—C9—C9A179.3 (4)
C2—C3—C11—F263.0 (11)C10A—C8A—C9—C9A0.2 (7)
C4—C3—C11—F2175.0 (8)C8A—C9—C9A—C4A0.5 (7)
C2—C3—C4—C4A54.2 (10)C8A—C9—C9A—C1178.9 (4)
C11—C3—C4—C4A177.5 (7)N1—C4A—C9A—C90.2 (7)
O1—C1—C2'—C3'159 (2)C4—C4A—C9A—C9178.2 (7)
C9A—C1—C2'—C3'32 (5)C4'—C4A—C9A—C9168 (3)
C2—C1—C2'—C3'76 (10)N1—C4A—C9A—C1179.1 (4)
C1—C2'—C3'—C4'66 (5)C4—C4A—C9A—C12.5 (9)
C1—C2'—C3'—C11'173 (3)C4'—C4A—C9A—C112 (3)
C2'—C3'—C11'—F3'55 (4)O1—C1—C9A—C94.2 (7)
C4'—C3'—C11'—F3'176 (3)C2'—C1—C9A—C9174 (3)
C2'—C3'—C11'—F1'176 (3)C2—C1—C9A—C9173.8 (7)
C4'—C3'—C11'—F1'55 (4)O1—C1—C9A—C4A175.2 (4)
C2'—C3'—C11'—F2'61 (4)C2'—C1—C9A—C4A6 (3)
C4'—C3'—C11'—F2'60 (4)C2—C1—C9A—C4A6.8 (9)
C2'—C3'—C4'—C4A64 (5)C4A—N1—C10A—C8A1.5 (7)
C11'—C3'—C4'—C4A174 (3)C4A—N1—C10A—C5179.4 (4)
C10A—N1—C4A—C9A0.7 (7)C8—C8A—C10A—N1179.6 (4)
C10A—N1—C4A—C4179.2 (7)C9—C8A—C10A—N11.2 (7)
C10A—N1—C4A—C4'168 (3)C8—C8A—C10A—C50.4 (7)
C3—C4—C4A—N1154.8 (6)C9—C8A—C10A—C5179.6 (4)
C3—C4—C4A—C9A26.7 (11)C6—C5—C10A—N1179.4 (4)
C3—C4—C4A—C4'77 (10)Br1—C5—C10A—N11.5 (6)
C3'—C4'—C4A—N1152 (2)C6—C5—C10A—C8A1.4 (7)
C3'—C4'—C4A—C9A40 (5)Br1—C5—C10A—C8A179.3 (3)
C3'—C4'—C4A—C443 (7)

Experimental details

Crystal data
Chemical formulaC14H8Br2F3NO
Mr423.03
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.3303 (10), 10.926 (2), 12.354 (2)
α, β, γ (°)83.349 (6), 85.741 (6), 85.051 (6)
V3)710.5 (2)
Z2
Radiation typeMo Kα
µ (mm1)5.74
Crystal size (mm)0.21 × 0.13 × 0.06
Data collection
DiffractometerRigaku XtaLAB mini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 1999; Pflugrath, 1999)
Tmin, Tmax0.379, 0.725
No. of measured, independent and
observed [I > 2σ(I)] reflections
4444, 3153, 2188
Rint0.050
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.134, 0.97
No. of reflections3153
No. of parameters217
No. of restraints34
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.80, 0.67

Computer programs: CrystalClear (Rigaku, 1999; Pflugrath, 1999), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) as included in WinGX (Farrugia, 1999), WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

 

Acknowledgements

COO and TAS acknowledge the US Department of Education Title III Grant, Tennessee State University, for the purchase of the diffractometer.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFadeyi, O. O., Adamson, S. T., Myles, E. L. & Okoro, C. O. (2008). Bioorg. Med. Chem. Lett. 18, 4172–4176.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMartinez, R., Espinosa-Perez, G. & Brito-Arias, M. J. (1995). J. Chem. Crystallogr. 25, 201–203.  CAS Google Scholar
First citationMayur, Y. C., Zaheeruddin, P., Godefridus, J., Lemos, C., Kathmann, I., Rajendra, P. & Velivela, V. S. (2009). Amsterdam Neth. Archiv Pharm. (Weinheim, Germany), 342, 640–650.  Google Scholar
First citationPflugrath, J. W. (1999). Acta Cryst. D55, 1718–1725.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSvyatkina, L. I., Dmitrieva, L. L. & Kurov, G. N. (1988). Zh. Obshch. Khim. 58, 2357–60.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds