organic compounds
Dimethyl 3,5-diethyl-1H-pyrrole-2,4-dicarboxylate
aSchool of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
*Correspondence e-mail: zpou2011@126.com
The title pyrrole derivative, C12H17NO4, consists of a pyrrole ring with two diagonally attached methoxycarbonyl groups and two diagonally attached ethyl groups. The two carbonyl groups are approximately in the same plane as the pyrrole ring, making dihedral angles of 3.50 (19) and 6.70 (19)°. In the crystal, adjacent molecules are assembled into dimers in a head-to-head mode by pairs of intermolecular N—H⋯O hydrogen bonds.
Related literature
For applications of polysubstituted pyrroles, see: Brockmann & Tour (1995); Guilard et al. (2001); Trofimov et al. (2004). For related structures, see: Takaya et al. (2001). For background to complexes of pyrrole derivatives, see: Fan et al. (2008); Ou et al. (2009); Paixão et al. (2003); Yamamoto et al. (1986).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2004); cell SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536811028352/pk2335sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811028352/pk2335Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811028352/pk2335Isup3.cml
The title compound was synthesized from methyl 3-oxopentanoate by a Knorr-type reaction according to the method reported by Ou et al. (2009). Single crystals were grown from ethyl alcohol by slow evaporation.
All the non-hydrogen atoms were refined anisotropically by full-matrix least-squares calculations on F2. All the H atoms expect H1n were placed in calculated positions with C—H distances of 0.93 and 0.96 /%A, and were refined using a riding model with Uiso(H) = 1.2Ueq(C). H1n was found in a difference map, and included using a riding model with a bond length restrained to 0.84 (1) Å and Uiso(H) = 1.2Ueq(N).
Data collection: APEX2 (Bruker, 2004); cell
SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. | |
Fig. 2. The two-dimensional supramolecular configuration, viewed down the a axis. |
C12H17NO4 | F(000) = 512 |
Mr = 239.27 | Dx = 1.230 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3745 reflections |
a = 4.4697 (7) Å | θ = 2.8–27.4° |
b = 14.616 (2) Å | µ = 0.09 mm−1 |
c = 19.784 (3) Å | T = 298 K |
β = 90.467 (2)° | Block, colorless |
V = 1292.4 (4) Å3 | 0.20 × 0.15 × 0.10 mm |
Z = 4 |
Bruker APEXII CCD area-detector diffractometer | 2285 independent reflections |
Radiation source: fine-focus sealed tube | 1977 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
ϕ and ω scans | θmax = 25.0°, θmin = 1.7° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | h = −5→5 |
Tmin = 0.982, Tmax = 0.991 | k = −15→17 |
6296 measured reflections | l = −23→21 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
wR(F2) = 0.118 | w = 1/[σ2(Fo2) + (0.0619P)2 + 0.1775P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
2285 reflections | Δρmax = 0.15 e Å−3 |
155 parameters | Δρmin = −0.16 e Å−3 |
1 restraint | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.110 (8) |
C12H17NO4 | V = 1292.4 (4) Å3 |
Mr = 239.27 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 4.4697 (7) Å | µ = 0.09 mm−1 |
b = 14.616 (2) Å | T = 298 K |
c = 19.784 (3) Å | 0.20 × 0.15 × 0.10 mm |
β = 90.467 (2)° |
Bruker APEXII CCD area-detector diffractometer | 2285 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 1977 reflections with I > 2σ(I) |
Tmin = 0.982, Tmax = 0.991 | Rint = 0.037 |
6296 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 1 restraint |
wR(F2) = 0.118 | H-atom parameters constrained |
S = 1.08 | Δρmax = 0.15 e Å−3 |
2285 reflections | Δρmin = −0.16 e Å−3 |
155 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 1.0716 (4) | −0.06793 (13) | 0.67868 (10) | 0.0771 (5) | |
H1A | 1.1839 | −0.0662 | 0.7202 | 0.116* | |
H1B | 1.2038 | −0.0808 | 0.6419 | 0.116* | |
H1C | 0.9220 | −0.1149 | 0.6812 | 0.116* | |
C2 | 0.7645 (3) | 0.02789 (10) | 0.61180 (6) | 0.0485 (4) | |
C3 | 0.6201 (3) | 0.11655 (9) | 0.60495 (6) | 0.0429 (3) | |
C4 | 0.6275 (3) | 0.19623 (9) | 0.64214 (6) | 0.0428 (3) | |
C5 | 0.4354 (3) | 0.25896 (9) | 0.60761 (6) | 0.0440 (3) | |
C6 | 0.3161 (3) | 0.21461 (9) | 0.55064 (6) | 0.0422 (3) | |
C7 | 0.1103 (3) | 0.24441 (10) | 0.49502 (7) | 0.0504 (4) | |
H7A | −0.0305 | 0.2888 | 0.5126 | 0.060* | |
H7B | −0.0030 | 0.1920 | 0.4789 | 0.060* | |
C8 | 0.2772 (4) | 0.28646 (14) | 0.43641 (8) | 0.0753 (5) | |
H8A | 0.1370 | 0.3043 | 0.4018 | 0.113* | |
H8B | 0.4146 | 0.2425 | 0.4184 | 0.113* | |
H8C | 0.3857 | 0.3393 | 0.4519 | 0.113* | |
C9 | 0.3744 (3) | 0.35270 (11) | 0.62967 (7) | 0.0548 (4) | |
C10 | 0.1230 (6) | 0.49089 (14) | 0.60468 (13) | 0.1063 (8) | |
H10A | 0.0056 | 0.5182 | 0.5692 | 0.159* | |
H10B | 0.2992 | 0.5270 | 0.6126 | 0.159* | |
H10C | 0.0071 | 0.4882 | 0.6453 | 0.159* | |
C11 | 0.8015 (3) | 0.21297 (11) | 0.70625 (7) | 0.0530 (4) | |
H11A | 0.8638 | 0.2765 | 0.7077 | 0.064* | |
H11B | 0.9803 | 0.1754 | 0.7062 | 0.064* | |
C12 | 0.6215 (4) | 0.19160 (16) | 0.76897 (8) | 0.0802 (6) | |
H12A | 0.7415 | 0.2033 | 0.8085 | 0.120* | |
H12B | 0.5628 | 0.1284 | 0.7683 | 0.120* | |
H12C | 0.4463 | 0.2296 | 0.7698 | 0.120* | |
N1 | 0.4307 (2) | 0.12986 (7) | 0.55029 (5) | 0.0439 (3) | |
H1N | 0.3918 | 0.0897 | 0.5207 | 0.053* | |
O1 | 0.2088 (3) | 0.39946 (8) | 0.58509 (7) | 0.0858 (4) | |
O2 | 0.4557 (3) | 0.38626 (9) | 0.68180 (7) | 0.0867 (4) | |
O3 | 0.9285 (3) | 0.01959 (7) | 0.66768 (5) | 0.0619 (3) | |
O4 | 0.7364 (3) | −0.03336 (7) | 0.57103 (5) | 0.0725 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0872 (12) | 0.0737 (11) | 0.0700 (11) | 0.0164 (9) | −0.0229 (9) | 0.0148 (9) |
C2 | 0.0557 (8) | 0.0537 (8) | 0.0361 (7) | −0.0007 (6) | −0.0071 (6) | 0.0027 (6) |
C3 | 0.0452 (7) | 0.0510 (8) | 0.0324 (6) | −0.0027 (6) | −0.0039 (5) | 0.0028 (5) |
C4 | 0.0428 (7) | 0.0518 (7) | 0.0337 (6) | −0.0065 (5) | 0.0008 (5) | −0.0004 (5) |
C5 | 0.0448 (7) | 0.0501 (7) | 0.0370 (7) | −0.0040 (6) | 0.0018 (5) | −0.0018 (5) |
C6 | 0.0426 (7) | 0.0485 (7) | 0.0356 (7) | −0.0011 (5) | 0.0022 (5) | 0.0011 (5) |
C7 | 0.0499 (7) | 0.0581 (8) | 0.0430 (7) | 0.0065 (6) | −0.0060 (6) | −0.0012 (6) |
C8 | 0.0784 (11) | 0.0967 (13) | 0.0507 (9) | 0.0129 (10) | −0.0038 (8) | 0.0251 (9) |
C9 | 0.0604 (9) | 0.0543 (8) | 0.0497 (8) | −0.0030 (7) | 0.0003 (7) | −0.0054 (7) |
C10 | 0.144 (2) | 0.0585 (11) | 0.1155 (18) | 0.0297 (12) | −0.0188 (16) | −0.0147 (12) |
C11 | 0.0521 (8) | 0.0635 (9) | 0.0432 (8) | −0.0057 (7) | −0.0091 (6) | −0.0072 (6) |
C12 | 0.0775 (12) | 0.1278 (17) | 0.0351 (8) | −0.0093 (11) | −0.0089 (7) | −0.0013 (9) |
N1 | 0.0515 (7) | 0.0469 (6) | 0.0332 (6) | −0.0012 (5) | −0.0062 (5) | −0.0037 (4) |
O1 | 0.1210 (11) | 0.0572 (7) | 0.0788 (8) | 0.0254 (7) | −0.0276 (8) | −0.0122 (6) |
O2 | 0.1163 (11) | 0.0700 (8) | 0.0733 (8) | 0.0097 (7) | −0.0253 (7) | −0.0288 (6) |
O3 | 0.0770 (7) | 0.0614 (7) | 0.0468 (6) | 0.0075 (5) | −0.0213 (5) | 0.0043 (5) |
O4 | 0.1030 (9) | 0.0579 (7) | 0.0560 (7) | 0.0185 (6) | −0.0278 (6) | −0.0112 (5) |
C1—O3 | 1.446 (2) | C7—H7B | 0.9700 |
C1—H1A | 0.9600 | C8—H8A | 0.9600 |
C1—H1B | 0.9600 | C8—H8B | 0.9600 |
C1—H1C | 0.9600 | C8—H8C | 0.9600 |
C2—O4 | 1.2109 (17) | C9—O2 | 1.1959 (18) |
C2—O3 | 1.3270 (16) | C9—O1 | 1.335 (2) |
C2—C3 | 1.453 (2) | C10—O1 | 1.444 (2) |
C3—C4 | 1.3779 (19) | C10—H10A | 0.9600 |
C3—N1 | 1.3816 (16) | C10—H10B | 0.9600 |
C4—C5 | 1.4266 (19) | C10—H10C | 0.9600 |
C4—C11 | 1.5024 (18) | C11—C12 | 1.517 (2) |
C5—C6 | 1.4017 (17) | C11—H11A | 0.9700 |
C5—C9 | 1.464 (2) | C11—H11B | 0.9700 |
C6—N1 | 1.3404 (17) | C12—H12A | 0.9600 |
C6—C7 | 1.4935 (18) | C12—H12B | 0.9600 |
C7—C8 | 1.514 (2) | C12—H12C | 0.9600 |
C7—H7A | 0.9700 | N1—H1N | 0.8457 |
O3—C1—H1A | 109.5 | C7—C8—H8C | 109.5 |
O3—C1—H1B | 109.5 | H8A—C8—H8C | 109.5 |
H1A—C1—H1B | 109.5 | H8B—C8—H8C | 109.5 |
O3—C1—H1C | 109.5 | O2—C9—O1 | 121.51 (15) |
H1A—C1—H1C | 109.5 | O2—C9—C5 | 125.79 (15) |
H1B—C1—H1C | 109.5 | O1—C9—C5 | 112.69 (13) |
O4—C2—O3 | 122.75 (13) | O1—C10—H10A | 109.5 |
O4—C2—C3 | 123.61 (12) | O1—C10—H10B | 109.5 |
O3—C2—C3 | 113.64 (12) | H10A—C10—H10B | 109.5 |
C4—C3—N1 | 108.11 (12) | O1—C10—H10C | 109.5 |
C4—C3—C2 | 134.03 (12) | H10A—C10—H10C | 109.5 |
N1—C3—C2 | 117.86 (11) | H10B—C10—H10C | 109.5 |
C3—C4—C5 | 106.00 (11) | C4—C11—C12 | 112.50 (12) |
C3—C4—C11 | 126.77 (13) | C4—C11—H11A | 109.1 |
C5—C4—C11 | 127.23 (12) | C12—C11—H11A | 109.1 |
C6—C5—C4 | 108.15 (12) | C4—C11—H11B | 109.1 |
C6—C5—C9 | 127.00 (13) | C12—C11—H11B | 109.1 |
C4—C5—C9 | 124.85 (12) | H11A—C11—H11B | 107.8 |
N1—C6—C5 | 106.78 (11) | C11—C12—H12A | 109.5 |
N1—C6—C7 | 119.92 (12) | C11—C12—H12B | 109.5 |
C5—C6—C7 | 133.28 (13) | H12A—C12—H12B | 109.5 |
C6—C7—C8 | 112.23 (12) | C11—C12—H12C | 109.5 |
C6—C7—H7A | 109.2 | H12A—C12—H12C | 109.5 |
C8—C7—H7A | 109.2 | H12B—C12—H12C | 109.5 |
C6—C7—H7B | 109.2 | C6—N1—C3 | 110.97 (11) |
C8—C7—H7B | 109.2 | C6—N1—H1N | 124.6 |
H7A—C7—H7B | 107.9 | C3—N1—H1N | 124.4 |
C7—C8—H8A | 109.5 | C9—O1—C10 | 116.33 (15) |
C7—C8—H8B | 109.5 | C2—O3—C1 | 116.55 (12) |
H8A—C8—H8B | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O4i | 0.85 | 2.07 | 2.8773 (15) | 160 |
Symmetry code: (i) −x+1, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C12H17NO4 |
Mr | 239.27 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 298 |
a, b, c (Å) | 4.4697 (7), 14.616 (2), 19.784 (3) |
β (°) | 90.467 (2) |
V (Å3) | 1292.4 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.20 × 0.15 × 0.10 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2003) |
Tmin, Tmax | 0.982, 0.991 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6296, 2285, 1977 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.118, 1.08 |
No. of reflections | 2285 |
No. of parameters | 155 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.15, −0.16 |
Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O4i | 0.85 | 2.07 | 2.8773 (15) | 159.5 |
Symmetry code: (i) −x+1, −y, −z+1. |
Acknowledgements
This work was supported by the Natural Science Foundation of China (No. 21001054) and the Natural Science Fund for Colleges and Universities in Jiangsu Province (No. 10KJB150003)
References
Brockmann, T. W. & Tour, J. M. (1995). J. Am. Chem. Soc. 117, 4437–4447. CrossRef CAS Web of Science Google Scholar
Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Fan, H., Peng, J. N., Hamann, M. T. & Hu, J. F. (2008). Chem. Rev. 108, 264–287. Web of Science CrossRef PubMed CAS Google Scholar
Guilard, R., Gross, C. P., Bolze, F., Jerome, F., Ou, Z. P., Shao, J. G., Fischer, J., Weiss, R. & Kadish, K. M. (2001). Inorg. Chem. 40, 4845–4855. Web of Science CSD CrossRef PubMed CAS Google Scholar
Ou, Z. P., Zhu, W. H., Zhou, F., Zhao, X. F. & Ji, X. L. (2009). Fine Chem. 26, 609–612. CAS Google Scholar
Paixão, J. A., Ramos Silva, M., Matos Beja, A., Sobral, A. J. F. N., Lopes, S. H. & Rocha Gonsalves, A. M. d'A. (2003). Acta Cryst. E59, o94–o96. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Takaya, H., Kojima, S. & Murahashi, S. I. (2001). Org. Lett. 3, 421–424. Web of Science CSD CrossRef PubMed CAS Google Scholar
Trofimov, B. A., Sobenina, L. N., Demenev, A. P. & Mikhaleva, A. (2004). Chem. Rev. 104, 2481–2506. Web of Science CrossRef PubMed CAS Google Scholar
Yamamoto, N., Machida, K., Taga, T. & Ogoshi, H. (1986). Acta Cryst. C42, 1573–1576. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Polysubstituted pyrroles have been paid much attention because of their wide application in the preparation of porphyrin (Trofimov et al., 2004), corrole (Guilard et al., 2001), and as monomers for polymer chemistry (Brockmann & Tour, 1995). In particular, 2-(alkoxycarbonyl)pyrrole derivatives have attracted intense interest in the design and synthesis of functional materials (Fan et al., 2008). The title compound was synthesized as a precursor to corrole compounds.
As shown in Fig. 1, the compound has a five-membered pyrrole ring as skeleton and four substituents. Two diagonally related methoxycarbonyl groups and two diagonally related ethyl substituents are attached to the pyrrole ring. Pairs of intermolecular N1—H1n···O4i (symmetry code i: -x + 1, -y, -z + 1) hydrogen bonds assemble adjacent molecules in a head-to-head manner, as shown in Fig. 2. All bond distances are in the normal range for this type of compound, as reported by Yamamoto et al. (1986).