organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-1-(5-Chloro­thio­phen-2-yl)-3-(2,4,5-trimeth­­oxy­phen­yl)prop-2-en-1-one

aPhysics Department, Manipal Institute of Technology, Manipal University, Manipal 576 104, India, bDepartment of Physics, Mangalore Institute of Technology & Engineering (MITE), Badagamijar, Moodabidri, Karnataka, India, and cSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, India
*Correspondence e-mail: v.upadhyaya@manipal.edu

(Received 13 June 2011; accepted 14 July 2011; online 23 July 2011)

In the title mol­ecule, C16H15ClO4S, the chloro­thio­phene and trimeth­oxy­phenyl rings make a dihedral angle of 31.12 (5)°. The C=C double bond exhibits an E conformation. In the crystal, C—H⋯O inter­actions generate bifurcated bonds, linking the mol­ecules into chains along the b axis.

Related literature

For general background to chalcones, see: Tomazela et al. (2000[Tomazela, D. M., Pupo, M. T., Passador, E. A. P., da Silva, M. F. D. G. F., Vieira, P. C., Fernandes, J. B., Rodrigues, F. E., Oliva, G. & Pirani, J. R. (2000). Phytochemistry, 55, 643-651.]); Uchida et al. (1998[Uchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abdureyim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 315, 135-140.]); Zyss & Chemla (1987[Zyss, J. & Chemla, D. S. (1987). Nonlinear Optical Properties of Organic Molecules and Crystals, Vol. I, edited by D. S. Chemla & J. Zyss, pp. 23-192. Orlando: Academic.]). For related structures, see: Benmekhbi et al. (2009[Benmekhbi, L., Belhouas, R., Bouacida, S., Mosbah, S. & Bencharif, L. (2009). Acta Cryst. E65, o1472-o1473.]).

[Scheme 1]

Experimental

Crystal data
  • C16H15ClO4S

  • Mr = 338.79

  • Monoclinic, P 21 /c

  • a = 18.2795 (12) Å

  • b = 9.0393 (7) Å

  • c = 9.8673 (6) Å

  • β = 99.390 (4)°

  • V = 1608.57 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 296 K

  • 0.20 × 0.18 × 0.18 mm

Data collection
  • Bruker SMART APEX CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker Axs Inc., Madison, Wisconcin, USA.]) Tmin = 0.928, Tmax = 0.935

  • 11590 measured reflections

  • 4590 independent reflections

  • 1621 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.197

  • S = 0.94

  • 4590 reflections

  • 202 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.93 2.71 3.476 (4) 140
C6—H6⋯O1i 0.93 2.68 3.597 (5) 169
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker Axs Inc., Madison, Wisconcin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker Axs Inc., Madison, Wisconcin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Chalcones represent one of the most abundant and ubiquitous group of natural products (Tomazela et al., 2000). Recently, it has been noted that, among many organic compounds reported for their second harmonic generation, chalcone derivatives are known for their excellent blue light transmittance and good crystallizability (Uchida et al., 1998). The title compound is found to be of interest as an organic non-linear optical material (Zyss & Chemla, 1987).

In the title molecule (Fig. 1), the chlorothiophene and trimethoxyphenyl rings are non-planar with a dihedral angle of 31.12 (5)°. The CC double bond exhibits an E conformation. In the crystal structure, C—H···O interaction generates H-bonds from two donors, C3 and C6 to the same acceptor, O1 linking the molecules into chains along the c-axis (Fig 2).

Related literature top

For general background to chalcones, see: Tomazela et al. (2000); Uchida et al. (1998); Zyss & Chemla (1987). For related structures, see: Benmekhbi et al. (2009).

Experimental top

To synthesize the title compound, commercially available Analytical Reagent (AR)-grade chemicals were used. 2-Acetyl-5-chlorothiophene (0.01 mol) and 2,4,5-trimethoxybenzaldehyde (0.01 mol) were dissolved in methanol (60 ml). Sodium hydroxide (5 ml, 20%) was then added drop wise to the solution, and stirred for 2 h. The content of the flask were poured into ice-cold water, and the resulting crude solid was collected by filtration. The compound was dried in a hot-air-oven at 323 K and re-crystallized twice from acetone.

Refinement top

The H atoms were placed at calculated positions in the riding model approximation with C—H = 0.93 and 0.96 Å for aryl and methyl type H-atoms, respectively, and Uiso(H) = 1.2 or 1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP (Farrugia, 1999) view of the title compound, showing 50% probability ellipsoids and the atom numbering scheme.
[Figure 2] Fig. 2. A unit cell packing of the title compound showing intermolecular interactions with dotted lines. H-atoms not involved in hydrogen bonding have been excluded.
(2E)-1-(5-Chlorothiophen-2-yl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one top
Crystal data top
C16H15ClO4SF(000) = 704
Mr = 338.79Dx = 1.399 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4590 reflections
a = 18.2795 (12) Åθ = 2.3–30.5°
b = 9.0393 (7) ŵ = 0.38 mm1
c = 9.8673 (6) ÅT = 296 K
β = 99.390 (4)°Block, yellow
V = 1608.57 (19) Å30.20 × 0.18 × 0.18 mm
Z = 4
Data collection top
Bruker SMART APEX CCD detector
diffractometer
4590 independent reflections
Radiation source: fine-focus sealed tube1621 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
ω scansθmax = 30.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 2626
Tmin = 0.928, Tmax = 0.935k = 1212
11590 measured reflectionsl = 1311
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.197H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0776P)2]
where P = (Fo2 + 2Fc2)/3
4590 reflections(Δ/σ)max = 0.001
202 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C16H15ClO4SV = 1608.57 (19) Å3
Mr = 338.79Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.2795 (12) ŵ = 0.38 mm1
b = 9.0393 (7) ÅT = 296 K
c = 9.8673 (6) Å0.20 × 0.18 × 0.18 mm
β = 99.390 (4)°
Data collection top
Bruker SMART APEX CCD detector
diffractometer
4590 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
1621 reflections with I > 2σ(I)
Tmin = 0.928, Tmax = 0.935Rint = 0.065
11590 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.197H-atom parameters constrained
S = 0.94Δρmax = 0.39 e Å3
4590 reflectionsΔρmin = 0.32 e Å3
202 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.19089 (6)0.43556 (14)0.13180 (12)0.0853 (4)
S11.03627 (5)0.43686 (11)0.18651 (10)0.0602 (3)
O10.88221 (14)0.3967 (3)0.2335 (3)0.0681 (8)
O20.66429 (13)0.1207 (3)0.2390 (3)0.0726 (8)
O30.55841 (13)0.2151 (3)0.1240 (3)0.0709 (8)
O40.66030 (14)0.1426 (3)0.2658 (3)0.0810 (9)
C11.10339 (19)0.3619 (4)0.1052 (4)0.0596 (10)
C21.0792 (2)0.2480 (5)0.0231 (4)0.0704 (12)
H21.10880.19490.02790.085*
C31.00321 (19)0.2181 (4)0.0233 (4)0.0547 (9)
H30.97700.14340.02820.066*
C40.97267 (17)0.3111 (4)0.1075 (3)0.0489 (9)
C50.89668 (19)0.3155 (4)0.1409 (4)0.0553 (10)
C60.84197 (18)0.2173 (4)0.0627 (4)0.0539 (9)
H60.85210.17440.01790.065*
C70.77806 (18)0.1879 (4)0.1045 (4)0.0537 (9)
H70.77000.23640.18390.064*
C80.71877 (17)0.0894 (4)0.0419 (4)0.0474 (9)
C90.71853 (19)0.0245 (4)0.0852 (4)0.0520 (9)
H90.75610.04840.13480.062*
C100.66447 (19)0.0742 (4)0.1407 (4)0.0555 (10)
C110.60855 (18)0.1124 (4)0.0638 (4)0.0535 (10)
C120.60767 (18)0.0500 (4)0.0619 (4)0.0541 (10)
H120.57080.07570.11230.065*
C130.66189 (18)0.0522 (4)0.1149 (4)0.0516 (9)
C140.6146 (2)0.0767 (5)0.3268 (4)0.0876 (15)
H14A0.56460.09370.28210.131*
H14C0.62400.13310.41020.131*
H14B0.62130.02660.34770.131*
C150.5106 (2)0.2793 (4)0.0396 (5)0.0771 (13)
H15C0.53980.32630.03830.116*
H15A0.47920.35150.09160.116*
H15B0.48050.20340.00840.116*
C160.7194 (2)0.1165 (5)0.3418 (4)0.0914 (16)
H16B0.72020.01370.36580.137*
H16C0.71180.17530.42390.137*
H16A0.76570.14300.28660.137*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0596 (6)0.1155 (10)0.0833 (9)0.0246 (6)0.0194 (5)0.0174 (7)
S10.0600 (6)0.0680 (7)0.0544 (7)0.0145 (5)0.0151 (4)0.0090 (5)
O10.0639 (16)0.083 (2)0.0595 (19)0.0111 (14)0.0169 (13)0.0174 (16)
O20.0636 (17)0.089 (2)0.074 (2)0.0108 (14)0.0351 (14)0.0162 (17)
O30.0568 (15)0.0707 (18)0.087 (2)0.0218 (14)0.0168 (14)0.0001 (15)
O40.0796 (19)0.103 (2)0.063 (2)0.0404 (17)0.0187 (15)0.0202 (17)
C10.052 (2)0.070 (3)0.057 (3)0.008 (2)0.0081 (17)0.007 (2)
C20.063 (2)0.079 (3)0.072 (3)0.000 (2)0.019 (2)0.017 (2)
C30.053 (2)0.052 (2)0.059 (3)0.0082 (18)0.0088 (17)0.018 (2)
C40.051 (2)0.054 (2)0.042 (2)0.0120 (17)0.0071 (16)0.0042 (18)
C50.058 (2)0.060 (2)0.047 (3)0.0123 (19)0.0077 (17)0.009 (2)
C60.053 (2)0.064 (2)0.047 (2)0.0090 (18)0.0144 (17)0.0016 (19)
C70.055 (2)0.055 (2)0.052 (2)0.0010 (18)0.0088 (17)0.0050 (19)
C80.0426 (18)0.048 (2)0.052 (2)0.0011 (16)0.0083 (16)0.0051 (18)
C90.050 (2)0.062 (2)0.046 (2)0.0100 (18)0.0128 (16)0.0075 (19)
C100.054 (2)0.060 (2)0.052 (2)0.0082 (19)0.0065 (17)0.004 (2)
C110.0377 (18)0.052 (2)0.070 (3)0.0009 (16)0.0071 (17)0.007 (2)
C120.0421 (19)0.056 (2)0.068 (3)0.0032 (17)0.0200 (17)0.007 (2)
C130.0451 (19)0.055 (2)0.057 (3)0.0070 (18)0.0159 (16)0.002 (2)
C140.073 (3)0.127 (4)0.070 (3)0.002 (3)0.032 (2)0.000 (3)
C150.049 (2)0.065 (3)0.121 (4)0.011 (2)0.024 (2)0.010 (3)
C160.102 (3)0.118 (4)0.062 (3)0.052 (3)0.033 (2)0.021 (3)
Geometric parameters (Å, º) top
Cl1—C11.713 (4)C7—C81.460 (5)
S1—C11.711 (4)C7—H70.9300
S1—C41.719 (3)C8—C91.384 (5)
O1—C51.234 (4)C8—C131.399 (4)
O2—C131.367 (4)C9—C101.377 (5)
O2—C141.411 (4)C9—H90.9300
O3—C111.370 (4)C10—C111.412 (4)
O3—C151.426 (4)C11—C121.365 (5)
O4—C101.372 (4)C12—C131.393 (5)
O4—C161.430 (4)C12—H120.9300
C1—C21.340 (5)C14—H14A0.9600
C2—C31.415 (5)C14—H14C0.9600
C2—H20.9300C14—H14B0.9600
C3—C41.363 (4)C15—H15C0.9600
C3—H30.9300C15—H15A0.9600
C4—C51.480 (4)C15—H15B0.9600
C5—C61.460 (5)C16—H16B0.9600
C6—C71.327 (4)C16—H16C0.9600
C6—H60.9300C16—H16A0.9600
C1—S1—C490.51 (18)O4—C10—C9125.5 (3)
C13—O2—C14119.5 (3)O4—C10—C11115.8 (3)
C11—O3—C15116.9 (3)C9—C10—C11118.7 (4)
C10—O4—C16117.5 (3)C12—C11—O3124.6 (3)
C2—C1—S1113.4 (3)C12—C11—C10120.3 (3)
C2—C1—Cl1126.8 (3)O3—C11—C10115.1 (3)
S1—C1—Cl1119.8 (2)C11—C12—C13120.1 (3)
C1—C2—C3111.9 (3)C11—C12—H12119.9
C1—C2—H2124.0C13—C12—H12119.9
C3—C2—H2124.0O2—C13—C12123.6 (3)
C4—C3—C2112.5 (3)O2—C13—C8115.8 (3)
C4—C3—H3123.7C12—C13—C8120.6 (3)
C2—C3—H3123.7O2—C14—H14A109.5
C3—C4—C5130.2 (3)O2—C14—H14C109.5
C3—C4—S1111.7 (2)H14A—C14—H14C109.5
C5—C4—S1118.1 (3)O2—C14—H14B109.5
O1—C5—C6122.8 (3)H14A—C14—H14B109.5
O1—C5—C4120.2 (3)H14C—C14—H14B109.5
C6—C5—C4116.9 (3)O3—C15—H15C109.5
C7—C6—C5121.3 (3)O3—C15—H15A109.5
C7—C6—H6119.4H15C—C15—H15A109.5
C5—C6—H6119.4O3—C15—H15B109.5
C6—C7—C8128.4 (4)H15C—C15—H15B109.5
C6—C7—H7115.8H15A—C15—H15B109.5
C8—C7—H7115.8O4—C16—H16B109.5
C9—C8—C13118.2 (3)O4—C16—H16C109.5
C9—C8—C7122.3 (3)H16B—C16—H16C109.5
C13—C8—C7119.4 (3)O4—C16—H16A109.5
C10—C9—C8122.1 (3)H16B—C16—H16A109.5
C10—C9—H9119.0H16C—C16—H16A109.5
C8—C9—H9119.0
C4—S1—C1—C20.1 (3)C16—O4—C10—C94.0 (6)
C4—S1—C1—Cl1179.0 (2)C16—O4—C10—C11174.8 (4)
S1—C1—C2—C30.4 (5)C8—C9—C10—O4179.8 (3)
Cl1—C1—C2—C3178.7 (3)C8—C9—C10—C111.4 (5)
C1—C2—C3—C40.5 (5)C15—O3—C11—C1211.5 (5)
C2—C3—C4—C5177.9 (4)C15—O3—C11—C10167.5 (3)
C2—C3—C4—S10.4 (4)O4—C10—C11—C12179.8 (3)
C1—S1—C4—C30.2 (3)C9—C10—C11—C121.3 (5)
C1—S1—C4—C5178.3 (3)O4—C10—C11—O31.1 (5)
C3—C4—C5—O1170.7 (4)C9—C10—C11—O3177.8 (3)
S1—C4—C5—O17.5 (5)O3—C11—C12—C13179.2 (3)
C3—C4—C5—C67.5 (6)C10—C11—C12—C130.2 (5)
S1—C4—C5—C6174.3 (3)C14—O2—C13—C126.9 (5)
O1—C5—C6—C713.6 (6)C14—O2—C13—C8172.4 (3)
C4—C5—C6—C7164.6 (3)C11—C12—C13—O2179.2 (3)
C5—C6—C7—C8177.8 (3)C11—C12—C13—C81.6 (5)
C6—C7—C8—C98.4 (6)C9—C8—C13—O2179.2 (3)
C6—C7—C8—C13168.2 (4)C7—C8—C13—O24.0 (5)
C13—C8—C9—C100.0 (5)C9—C8—C13—C121.5 (5)
C7—C8—C9—C10176.6 (3)C7—C8—C13—C12175.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.932.713.476 (4)140
C6—H6···O1i0.932.683.597 (5)169
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC16H15ClO4S
Mr338.79
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)18.2795 (12), 9.0393 (7), 9.8673 (6)
β (°) 99.390 (4)
V3)1608.57 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.20 × 0.18 × 0.18
Data collection
DiffractometerBruker SMART APEX CCD detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.928, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
11590, 4590, 1621
Rint0.065
(sin θ/λ)max1)0.715
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.197, 0.94
No. of reflections4590
No. of parameters202
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.32

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1999), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.932.713.476 (4)140
C6—H6···O1i0.932.683.597 (5)169
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

ANP is thankful to the Manipal Institute of Technology, Manipal University

References

First citationBenmekhbi, L., Belhouas, R., Bouacida, S., Mosbah, S. & Bencharif, L. (2009). Acta Cryst. E65, o1472–o1473.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker. (1998). SMART, SAINT-Plus and SADABS. Bruker Axs Inc., Madison, Wisconcin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTomazela, D. M., Pupo, M. T., Passador, E. A. P., da Silva, M. F. D. G. F., Vieira, P. C., Fernandes, J. B., Rodrigues, F. E., Oliva, G. & Pirani, J. R. (2000). Phytochemistry, 55, 643–651.  Web of Science CrossRef PubMed CAS Google Scholar
First citationUchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abdureyim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 315, 135–140.  Web of Science CrossRef Google Scholar
First citationZyss, J. & Chemla, D. S. (1987). Nonlinear Optical Properties of Organic Molecules and Crystals, Vol. I, edited by D. S. Chemla & J. Zyss, pp. 23–192. Orlando: Academic.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds