metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­(4-carb­­oxy­pyridine-2,6-di­carboxyl­ato-κ3O2,N,O6)(1,10-phenanthroline-κ2N,N′)nickel(II)

aCenter of Applied Solid State Chemistry Research, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
*Correspondence e-mail: linjianli@nbu.edu.cn

(Received 13 June 2011; accepted 1 July 2011; online 9 July 2011)

The title compound, [Ni(C8H3NO6)(C12H8N2)(H2O)], contains an NiII ion, a 1,10-phenanthroline (phen) ligand, a 4-carb­oxy­pyridine-2,6-dicarboxyl­ate (Hptc2−) anion and a coordinated water mol­ecule. The NiII atom exhibits a distorted octa­hedral N3O3 environment. O—H⋯O hydrogen bonding between coordinated water and carboxyl­ate O atoms, as well as ππ stacking inter­actions [inter­planar distances between phen rings = 3.293 (2) Å] lead to a supermolecular assembly.

Related literature

For the synthesis of pyridine-2,4,6-tricarb­oxy­lic acid, see: Syper et al. (1980[Syper, L., Kloc, K. & Mlochowski, J. (1980). Tetrahedron, 36, 123-129.]). For related structures, see: Ma et al. (2002[Ma, C.-B., Fan, C., Chen, C.-N. & Liu, Q.-T. (2002). Acta Cryst. C58, m553-m555.]); Ramadevi et al. (2006[Ramadevi, P., Kumaresan, S. & Sharma, N. (2006). Acta Cryst. E62, m2957-m2959.]); Harrison et al. (2006[Harrison, W. T. A., Ramadevi, P. & Kumaresan, S. (2006). Acta Cryst. E62, m513-m515.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C8H3NO6)(C12H8N2)(H2O)]

  • Mr = 466.04

  • Monoclinic, P 21 /c

  • a = 6.8387 (14) Å

  • b = 13.421 (3) Å

  • c = 19.676 (4) Å

  • β = 91.87 (3)°

  • V = 1805.0 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.13 mm−1

  • T = 293 K

  • 0.24 × 0.22 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.763, Tmax = 0.893

  • 17250 measured reflections

  • 4058 independent reflections

  • 2573 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.142

  • S = 1.19

  • 4058 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 1.34 e Å−3

  • Δρmin = −1.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O2i 0.85 1.70 2.550 (5) 178
O7—H7A⋯O5ii 0.85 1.87 2.702 (5) 167
O7—H7B⋯O5iii 0.85 2.00 2.783 (5) 152
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x, -y+2, -z+1; (iii) x+1, y, z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The asymmetric unit of the title compound contains a NiII ion, a 1,10-phenanthroline ligand, a 4-carboxypyridine-2,6-dicarboxylate (Hptc2-) anion and a coordinated molecule of water. The Hptc2- anion adopts a η3µ1 coordination mode and chelates the NiII atom through the pyridine N atom and two neighboring carboxylate O atoms. The NiII atoms is six-coordinated by two N atoms from phen, one nitrogen from Hptc2-, two oxygen atoms from Hptc2- and one oxygen from coordinated water, in a octahedral N3O3 environment. The ππ stacking interactions between the parallel phen rings with the interplanar distance of 3.293 (2)Å interlink the [Ni(Hptc)(phen)(H2O)] units to form one-dimensional chains, which further grow into three-dimensional supramolecular construction by hydrogen bonding O—H···O interactions between coordinated water molecules and carboxylate groups.

Related literature top

For the synthesis of pyridine-2,4,6-tricarboxylic acid, see: Syper et al. (1980). For related structures, see: Ma et al. (2002); Ramadevi et al. (2006); Harrison et al. (2006).

Experimental top

The ligand (H3ptc) was synthesized by oxidization of pyridine-2,4,6-trimethyl with potassium permanganate as reported in the literature (Syper et al., 1980). A solution of Ni(ClO4)2.6H2O (0.0731 g, 0.2 mmol), H3ptc (0.0425 g, 0.2 mmol), phen (0.0396 g, 0.2 mmol) in H2O (8.0 ml) wasy sealed in a 23 ml Teflon-lined stainless-steel autoclave, which was heated to 413 K and kept at this temperature for 3 days, then the reactor was slow cooled to room temperature at a rate of 5 K/h, green crystals were collected after filtration.

Refinement top

H atoms bonded to C atoms were placed in their geometrically calculated positions and refined using the riding model, with C–H distances 0.93Å and Uiso(H) = 1.2 Ueq(C). H atoms attached to O atoms were found in a difference Fourier map and then refined using the riding model, with O–H distances fixed at 0.85Å and Uiso(H) values set at 1.2 Ueq(O). The final difference map showed residual electron density close to the Ni-atom which was essentially meaningless.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title compound. The dispalcement ellipsoids are drawn at 35% probability level.
[Figure 2] Fig. 2. Packing diagram of the title crystal structure viewed along [100]. O—H···O hydrogen bonds are shown as dashed line.
Aqua(4-carboxypyridine-2,6-dicarboxylato- κ3O2,N,O6)(1,10-phenanthroline- κ2N,N')nickel(II) top
Crystal data top
[Ni(C8H3NO6)(C12H8N2)(H2O)]F(000) = 952
Mr = 466.04Dx = 1.715 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 10705 reflections
a = 6.8387 (14) Åθ = 3.0–27.4°
b = 13.421 (3) ŵ = 1.13 mm1
c = 19.676 (4) ÅT = 293 K
β = 91.87 (3)°Chip, green
V = 1805.0 (6) Å30.24 × 0.22 × 0.10 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4058 independent reflections
Radiation source: fine-focus sealed tube2573 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Detector resolution: 0 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scanh = 87
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1717
Tmin = 0.763, Tmax = 0.893l = 2524
17250 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.0123P)2 + 8.1487P]
where P = (Fo2 + 2Fc2)/3
4058 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 1.34 e Å3
0 restraintsΔρmin = 1.52 e Å3
Crystal data top
[Ni(C8H3NO6)(C12H8N2)(H2O)]V = 1805.0 (6) Å3
Mr = 466.04Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.8387 (14) ŵ = 1.13 mm1
b = 13.421 (3) ÅT = 293 K
c = 19.676 (4) Å0.24 × 0.22 × 0.10 mm
β = 91.87 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4058 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2573 reflections with I > 2σ(I)
Tmin = 0.763, Tmax = 0.893Rint = 0.054
17250 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.19Δρmax = 1.34 e Å3
4058 reflectionsΔρmin = 1.52 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.26648 (9)0.77711 (4)0.53877 (3)0.02863 (18)
N10.2227 (6)0.8906 (3)0.60244 (19)0.0268 (9)
C10.3686 (7)0.9196 (3)0.6443 (2)0.0309 (11)
C20.3585 (7)1.0087 (3)0.6793 (2)0.0304 (11)
H2A0.46031.02890.70860.036*
C30.1919 (7)1.0673 (3)0.6695 (2)0.0286 (10)
C40.0397 (7)1.0350 (3)0.6258 (2)0.0297 (10)
H4A0.07301.07300.61910.036*
C50.0617 (7)0.9450 (3)0.5930 (2)0.0260 (10)
C60.5378 (7)0.8459 (3)0.6473 (2)0.0291 (10)
O10.5323 (5)0.7781 (3)0.60344 (17)0.0341 (8)
O20.6618 (5)0.8555 (3)0.69549 (19)0.0418 (9)
C70.1719 (8)1.1668 (4)0.7044 (2)0.0343 (11)
O30.3151 (6)1.1847 (3)0.7480 (2)0.0595 (13)
H3A0.32431.24100.76780.071*
O40.0343 (6)1.2209 (3)0.6934 (2)0.0495 (10)
C80.0789 (7)0.9010 (3)0.5395 (2)0.0275 (10)
O50.2403 (5)0.9434 (2)0.52867 (18)0.0337 (8)
O60.0182 (5)0.8251 (2)0.50894 (17)0.0339 (8)
N20.2834 (6)0.6679 (3)0.4662 (2)0.0322 (9)
C90.3157 (8)0.6781 (4)0.4005 (3)0.0422 (13)
H9A0.33030.74170.38280.051*
C100.3286 (9)0.5957 (5)0.3570 (3)0.0497 (15)
H10A0.34940.60530.31090.060*
C110.3106 (8)0.5023 (5)0.3821 (3)0.0498 (16)
H11A0.32300.44740.35370.060*
C120.2735 (7)0.4888 (4)0.4508 (3)0.0404 (13)
C130.2495 (8)0.3931 (4)0.4819 (4)0.0489 (16)
H13A0.25710.33580.45560.059*
C140.2159 (8)0.3851 (4)0.5490 (4)0.0494 (16)
H14A0.20200.32230.56810.059*
C150.2011 (7)0.4721 (4)0.5916 (3)0.0375 (12)
C160.1738 (8)0.4681 (4)0.6613 (3)0.0463 (15)
H16A0.16220.40710.68320.056*
C170.1642 (9)0.5552 (5)0.6972 (3)0.0507 (15)
H17A0.15180.55380.74410.061*
C180.1734 (8)0.6465 (4)0.6628 (3)0.0422 (13)
H18A0.15940.70500.68750.051*
C190.2191 (7)0.5668 (4)0.5611 (3)0.0317 (11)
C200.2586 (7)0.5750 (4)0.4907 (3)0.0324 (11)
N30.2010 (6)0.6526 (3)0.5969 (2)0.0324 (9)
O70.4073 (5)0.8742 (2)0.47182 (17)0.0345 (8)
H7A0.35120.92980.47800.041*
H7B0.51300.87610.49580.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0348 (3)0.0194 (3)0.0314 (3)0.0007 (3)0.0033 (2)0.0022 (3)
N10.034 (2)0.0173 (18)0.028 (2)0.0010 (16)0.0053 (17)0.0006 (15)
C10.040 (3)0.020 (2)0.033 (3)0.001 (2)0.005 (2)0.0031 (19)
C20.034 (3)0.023 (2)0.034 (3)0.000 (2)0.008 (2)0.001 (2)
C30.036 (3)0.021 (2)0.028 (2)0.002 (2)0.002 (2)0.0005 (19)
C40.038 (3)0.022 (2)0.028 (2)0.002 (2)0.005 (2)0.0019 (19)
C50.030 (2)0.020 (2)0.028 (2)0.0004 (18)0.0018 (19)0.0029 (18)
C60.037 (3)0.019 (2)0.031 (3)0.0007 (19)0.007 (2)0.0048 (19)
O10.0378 (19)0.0238 (17)0.040 (2)0.0042 (15)0.0057 (15)0.0025 (15)
O20.049 (2)0.0286 (19)0.046 (2)0.0032 (17)0.0203 (18)0.0017 (16)
C70.047 (3)0.025 (2)0.030 (3)0.002 (2)0.005 (2)0.003 (2)
O30.068 (3)0.039 (2)0.069 (3)0.011 (2)0.035 (2)0.028 (2)
O40.057 (3)0.031 (2)0.059 (3)0.0141 (19)0.021 (2)0.0126 (19)
C80.036 (3)0.021 (2)0.025 (2)0.003 (2)0.003 (2)0.0037 (18)
O50.0275 (18)0.0263 (18)0.047 (2)0.0016 (15)0.0073 (15)0.0007 (15)
O60.038 (2)0.0237 (17)0.039 (2)0.0017 (15)0.0099 (15)0.0071 (15)
N20.033 (2)0.028 (2)0.036 (2)0.0024 (17)0.0039 (18)0.0058 (18)
C90.043 (3)0.042 (3)0.041 (3)0.003 (3)0.001 (2)0.008 (3)
C100.052 (4)0.058 (4)0.038 (3)0.008 (3)0.009 (3)0.014 (3)
C110.043 (3)0.046 (4)0.060 (4)0.008 (3)0.008 (3)0.029 (3)
C120.028 (3)0.033 (3)0.060 (4)0.005 (2)0.011 (2)0.015 (3)
C130.034 (3)0.028 (3)0.083 (5)0.005 (2)0.011 (3)0.015 (3)
C140.038 (3)0.020 (3)0.090 (5)0.000 (2)0.004 (3)0.000 (3)
C150.026 (3)0.030 (3)0.057 (3)0.001 (2)0.003 (2)0.006 (2)
C160.033 (3)0.035 (3)0.070 (4)0.001 (2)0.004 (3)0.019 (3)
C170.050 (4)0.052 (4)0.050 (4)0.001 (3)0.005 (3)0.018 (3)
C180.048 (3)0.040 (3)0.039 (3)0.001 (3)0.007 (2)0.001 (2)
C190.026 (2)0.025 (2)0.044 (3)0.0004 (19)0.008 (2)0.003 (2)
C200.029 (3)0.024 (2)0.043 (3)0.003 (2)0.010 (2)0.006 (2)
N30.040 (2)0.024 (2)0.034 (2)0.0017 (18)0.0001 (18)0.0019 (17)
O70.039 (2)0.0264 (18)0.0378 (19)0.0009 (15)0.0046 (15)0.0006 (15)
Geometric parameters (Å, º) top
Ni1—N12.001 (4)N2—C201.349 (6)
Ni1—N22.053 (4)C9—C101.403 (8)
Ni1—N32.081 (4)C9—H9A0.9300
Ni1—O72.108 (4)C10—C111.355 (9)
Ni1—O62.115 (3)C10—H10A0.9300
Ni1—O12.184 (3)C11—C121.395 (8)
N1—C51.329 (6)C11—H11A0.9300
N1—C11.331 (6)C12—C201.402 (7)
C1—C21.381 (6)C12—C131.435 (8)
C1—C61.522 (7)C13—C141.352 (9)
C2—C31.393 (7)C13—H13A0.9300
C2—H2A0.9300C14—C151.442 (8)
C3—C41.398 (6)C14—H14A0.9300
C3—C71.510 (7)C15—C161.391 (8)
C4—C51.380 (6)C15—C191.413 (7)
C4—H4A0.9300C16—C171.368 (9)
C5—C81.522 (6)C16—H16A0.9300
C6—O11.254 (6)C17—C181.401 (8)
C6—O21.258 (6)C17—H17A0.9300
C7—O41.203 (6)C18—N31.320 (6)
C7—O31.302 (6)C18—H18A0.9300
O3—H3A0.8512C19—N31.358 (6)
C8—O51.253 (6)C19—C201.425 (7)
C8—O61.261 (6)O7—H7A0.8502
N2—C91.325 (7)O7—H7B0.8498
N1—Ni1—N2172.90 (16)C9—N2—C20118.0 (4)
N1—Ni1—N3103.18 (16)C9—N2—Ni1128.3 (4)
N2—Ni1—N380.03 (17)C20—N2—Ni1113.7 (3)
N1—Ni1—O790.09 (15)N2—C9—C10122.0 (6)
N2—Ni1—O788.24 (15)N2—C9—H9A119.0
N3—Ni1—O7161.85 (15)C10—C9—H9A119.0
N1—Ni1—O677.69 (14)C11—C10—C9119.8 (6)
N2—Ni1—O695.55 (14)C11—C10—H10A120.1
N3—Ni1—O6100.60 (16)C9—C10—H10A120.1
O7—Ni1—O694.23 (14)C10—C11—C12119.7 (5)
N1—Ni1—O176.68 (14)C10—C11—H11A120.2
N2—Ni1—O1110.16 (15)C12—C11—H11A120.2
N3—Ni1—O182.81 (15)C11—C12—C20117.0 (5)
O7—Ni1—O188.39 (13)C11—C12—C13123.8 (5)
O6—Ni1—O1154.24 (13)C20—C12—C13119.2 (5)
C5—N1—C1121.8 (4)C14—C13—C12120.8 (5)
C5—N1—Ni1118.1 (3)C14—C13—H13A119.6
C1—N1—Ni1119.1 (3)C12—C13—H13A119.6
N1—C1—C2120.8 (4)C13—C14—C15121.4 (5)
N1—C1—C6112.8 (4)C13—C14—H14A119.3
C2—C1—C6126.4 (4)C15—C14—H14A119.3
C1—C2—C3118.3 (4)C16—C15—C19118.0 (5)
C1—C2—H2A120.8C16—C15—C14123.8 (5)
C3—C2—H2A120.8C19—C15—C14118.2 (5)
C2—C3—C4119.9 (4)C17—C16—C15119.1 (5)
C2—C3—C7121.6 (4)C17—C16—H16A120.5
C4—C3—C7118.5 (4)C15—C16—H16A120.5
C5—C4—C3118.0 (4)C16—C17—C18119.6 (6)
C5—C4—H4A121.0C16—C17—H17A120.2
C3—C4—H4A121.0C18—C17—H17A120.2
N1—C5—C4121.2 (4)N3—C18—C17122.6 (5)
N1—C5—C8112.7 (4)N3—C18—H18A118.7
C4—C5—C8126.0 (4)C17—C18—H18A118.7
O1—C6—O2126.7 (5)N3—C19—C15122.2 (5)
O1—C6—C1116.1 (4)N3—C19—C20117.5 (4)
O2—C6—C1117.1 (4)C15—C19—C20120.3 (5)
C6—O1—Ni1114.3 (3)N2—C20—C12123.4 (5)
O4—C7—O3125.1 (5)N2—C20—C19116.6 (4)
O4—C7—C3122.3 (5)C12—C20—C19120.0 (5)
O3—C7—C3112.6 (4)C18—N3—C19118.4 (5)
C7—O3—H3A120.5C18—N3—Ni1129.1 (4)
O5—C8—O6126.0 (4)C19—N3—Ni1111.8 (3)
O5—C8—C5118.3 (4)Ni1—O7—H7A103.6
O6—C8—C5115.7 (4)Ni1—O7—H7B94.0
C8—O6—Ni1115.4 (3)H7A—O7—H7B105.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2i0.851.702.550 (5)178
O7—H7A···O5ii0.851.872.702 (5)167
O7—H7B···O5iii0.852.002.783 (5)152
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y+2, z+1; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Ni(C8H3NO6)(C12H8N2)(H2O)]
Mr466.04
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)6.8387 (14), 13.421 (3), 19.676 (4)
β (°) 91.87 (3)
V3)1805.0 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.13
Crystal size (mm)0.24 × 0.22 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.763, 0.893
No. of measured, independent and
observed [I > 2σ(I)] reflections
17250, 4058, 2573
Rint0.054
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.142, 1.19
No. of reflections4058
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.34, 1.52

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2i0.851.702.550 (5)178
O7—H7A···O5ii0.851.872.702 (5)167
O7—H7B···O5iii0.852.002.783 (5)152
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y+2, z+1; (iii) x+1, y, z.
 

Acknowledgements

This project was supported by the Scientific Research Fund of Zhejiang Provincial Education Department (grant No. Y201017782). Sincere thanks are also extended to the K. C. Wong Magna Fund of Ningbo University.

References

First citationHarrison, W. T. A., Ramadevi, P. & Kumaresan, S. (2006). Acta Cryst. E62, m513–m515.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMa, C.-B., Fan, C., Chen, C.-N. & Liu, Q.-T. (2002). Acta Cryst. C58, m553–m555.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRamadevi, P., Kumaresan, S. & Sharma, N. (2006). Acta Cryst. E62, m2957–m2959.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSyper, L., Kloc, K. & Mlochowski, J. (1980). Tetrahedron, 36, 123-129.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds