organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Diazo­naphthalen-2(1H)-one

aDepartment of Applied Chemistry, Kyushu Institute of Technology, 1-1 Sensuicho, Tobata, Kitakyushu 804-8550, Japan, and bInstitute for Materials Chemistry and Engineering, Kyushu University, 6-1, Kasugako-en, Kasuga 816-8580, Japan
*Correspondence e-mail: kita@che.kyutech.ac.jp

(Received 20 June 2011; accepted 3 July 2011; online 9 July 2011)

The mol­ecule of the title compound, C10H6N2O, is nearly planar [maximum deviation = 0.030 (1) Å]. The CN2 moiety is almost linear, with a C—N—N angle of 175.50 (14)°. A single inter­molecular C—H⋯O hydrogen bond is observed in the crystal structure. A ππ inter­action is also observed with the shortest distance being 3.6832 (12) Å between the the centroids of the six-membered rings.

Related literature

For the synthesis, see: Kitamura et al. (2010[Kitamura, M., Tashiro, N., Sakata, R. & Okauchi, T. (2010). Synlett, pp. 2503-2505.]). For the crystal structure of related diazo­naphtho­quinones, see: Seidel et al. (1989[Seidel, I., Kuban, R.-J., Brandtstädter, H. & Gey, E. (1989). Z. Chem. 29, 177-178.]); Ferreira et al. (2006[Ferreira, V. F., Jorqueira, A., Leal, K. Z., Pimentel, H. R. X., Seidl, P. R., da Silva, M. N., da Souza, M. C. B. V., Pinto, A. V., Wardell, J. L. & Wardell, S. M. S. V. (2006). Magn. Reson. Chem. 44, 481-490.]). For an example of the utility of the diazo­naphtho­quinones, see Reiser et al. (1996[Reiser, A., Shih, H.-Y., Yeh, T.-F. & Huang, J.-P. (1996). Angew. Chem. Int. Ed. Engl. 35, 2428-2440.]).

[Scheme 1]

Experimental

Crystal data
  • C10H6N2O

  • Mr = 170.17

  • Orthorhombic, P b c a

  • a = 11.900 (2) Å

  • b = 9.1978 (15) Å

  • c = 14.521 (3) Å

  • V = 1589.4 (5) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.78 mm−1

  • T = 123 K

  • 0.50 × 0.40 × 0.40 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.566, Tmax = 0.731

  • 18038 measured reflections

  • 1456 independent reflections

  • 1359 reflections with F2 > 2σ(F2)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.119

  • S = 1.08

  • 1456 reflections

  • 119 parameters

  • All H-atom parameters refined

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H3⋯O1i 0.95 2.55 3.466 (2) 162
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+2, z+{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku Americas and Rigaku, 2007[Rigaku Americas and Rigaku (2007). CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: CrystalStructure and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

1,2-Diazonaphthoquinone derivatives are unique cyclic α-diazocarobonyl compounds that can be drawn as diazonium naphtholate resonance forms, and are exclusively used photoresists such as novolak-diazonaphthoquinone resist (Reiser, et al., 1996). The reports on the X-ray structural data of diazonaphthoquinones are limitted (Seidel et al., 1989; Ferreira et al., 2006). We have synthesized the simplest diazonaphthoquinone, 1-diazo-1H-naphthalen-2-one, by the diazo-transfer reaction (Kitamura et al., 2010) and determined its crystal structure which is being reported in this article.

In the structure of the title compound (Fig. 1) the CN2 moiety is almost linear, with C1—N1—N2 = 175.50 (14)°. The bond length N1—N2 and C1—N2 are 1.1210 (19) and 1.3355 (19) Å. The keto CO bond length is 1.2474 (19) Å, which is close to a double bond. These data suggest that the structure of the title compound is not diazonium naphtholate form in the solid state.

A single intermolecular hydrogen bond is observed C6—H3···O1i is observed in the crystal structure (Fig. 2). In addition, a ππ interaction is obserbed with the shotest distance 3.6832 (12) Å between the the centroids of the six memberd rings.

Related literature top

For the synthesis, see: Kitamura et al. (2010). For the crystal structure of related diazonaphthoquinones, see: Seidel et al. (1989); Ferreira et al. (2006). For an example of the utility of the diazonaphthoquinones, see Reiser et al. (1996).

Experimental top

To a solution of 2-chloro-1,3-dimethylimidazolinium chloride (228 mg, 1.35 mmol) in acetonitrile (2 ml), sodium azide (99.4 mg, 1.5 mmol) and 15-crown-5 ether (0.06 ml, 0.3 mmol) were added at 253 K and the mixture was stirred for 30 min. 2-Naphthol (130 mg, 0.90 mmol) and triethylamine (0.25 ml, 1.8 mmol) in THF (4 ml) were added to the mixture, which was stirred for 20 min. The reaction was quenched with water, and organic materials were extracted three times with CH2Cl2. The combined extracts were washed with water and brine, and then, dried over anhydrous sodium sulfate. The solvent was removed in vacuo to afford crude compound. The crude material was purified by flash column chromatography (silica gel: hexane/ethyl acetate = 4/1) to give the title compound in 86% yield. Single-crystals suitable for X-ray crystallographic analysis were obtained by recrystallization from a mixture of hexane and ethyl acetate (5:1).

Refinement top

H atoms were positioned geometrically and were refined in as riding mode on the parent atoms, with C–H distances of 0.95 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku Americas and Rigaku, 2007); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: CrystalStructure (Rigaku Americas and Rigaku, 2007) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A unit cell packing diagram showing hydrogen bonds and ππ interaction; H-atoms not involved in H-bonds have been excluded for clarity.
1-Diazonaphthalen-2(1H)-one top
Crystal data top
C10H6N2OF(000) = 704.00
Mr = 170.17Dx = 1.422 Mg m3
Orthorhombic, PbcaCu Kα radiation, λ = 1.54187 Å
Hall symbol: -P 2ac 2abCell parameters from 17442 reflections
a = 11.900 (2) Åθ = 3.0–68.2°
b = 9.1978 (15) ŵ = 0.78 mm1
c = 14.521 (3) ÅT = 123 K
V = 1589.4 (5) Å3Prism, brown
Z = 80.50 × 0.40 × 0.40 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1359 reflections with F2 > 2σ(F2)
Detector resolution: 5.00 pixels mm-1Rint = 0.018
ω scansθmax = 68.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1414
Tmin = 0.566, Tmax = 0.731k = 1010
18038 measured reflectionsl = 1717
1456 independent reflections
Refinement top
Refinement on F20 restraints
R[F2 > 2σ(F2)] = 0.044All H-atom parameters refined
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0661P)2 + 0.5878P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1456 reflectionsΔρmax = 0.29 e Å3
119 parametersΔρmin = 0.13 e Å3
Crystal data top
C10H6N2OV = 1589.4 (5) Å3
Mr = 170.17Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 11.900 (2) ŵ = 0.78 mm1
b = 9.1978 (15) ÅT = 123 K
c = 14.521 (3) Å0.50 × 0.40 × 0.40 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1456 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1359 reflections with F2 > 2σ(F2)
Tmin = 0.566, Tmax = 0.731Rint = 0.018
18038 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.119All H-atom parameters refined
S = 1.08Δρmax = 0.29 e Å3
1456 reflectionsΔρmin = 0.13 e Å3
119 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance mat- rix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O(1)0.41204 (11)1.07612 (13)0.22608 (7)0.0476 (3)
N(1)0.55271 (11)0.89513 (13)0.31064 (8)0.0327 (3)
N(2)0.63438 (13)0.87983 (16)0.27341 (9)0.0441 (3)
C(1)0.45523 (13)0.92398 (16)0.35238 (10)0.0336 (3)
C(2)0.38659 (14)1.02931 (17)0.30396 (11)0.0390 (4)
C(3)0.28687 (14)1.07339 (17)0.35513 (11)0.0406 (4)
C(4)0.26340 (13)1.01769 (18)0.43965 (12)0.0419 (4)
C(5)0.33263 (12)0.91102 (16)0.48560 (10)0.0344 (3)
C(6)0.30613 (13)0.85591 (18)0.57389 (11)0.0389 (4)
C(7)0.37387 (14)0.75293 (19)0.61482 (11)0.0395 (4)
C(8)0.46903 (13)0.70173 (19)0.56895 (11)0.0388 (4)
C(9)0.49762 (13)0.75479 (17)0.48334 (10)0.0343 (3)
C(10)0.43117 (12)0.85986 (16)0.44128 (10)0.0310 (3)
H(1)0.23711.14270.32880.049*
H(2)0.19771.05080.47030.050*
H(3)0.24120.89010.60520.047*
H(4)0.35580.71680.67430.047*
H(5)0.51460.62950.59710.047*
H(6)0.56290.71950.45300.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O(1)0.0703 (8)0.0379 (6)0.0347 (6)0.0036 (5)0.0079 (5)0.0033 (4)
N(1)0.0406 (7)0.0295 (6)0.0279 (6)0.0016 (5)0.0014 (5)0.0001 (4)
N(2)0.0509 (8)0.0411 (8)0.0403 (7)0.0027 (6)0.0117 (6)0.0025 (6)
C(1)0.0362 (8)0.0325 (7)0.0320 (7)0.0001 (6)0.0012 (6)0.0042 (5)
C(2)0.0501 (9)0.0313 (8)0.0355 (8)0.0008 (6)0.0102 (7)0.0042 (6)
C(3)0.0414 (8)0.0361 (8)0.0442 (9)0.0067 (6)0.0124 (7)0.0073 (6)
C(4)0.0327 (7)0.0423 (8)0.0506 (9)0.0021 (6)0.0036 (6)0.0167 (7)
C(5)0.0317 (7)0.0345 (8)0.0371 (8)0.0045 (6)0.0059 (6)0.0105 (6)
C(6)0.0305 (7)0.0483 (9)0.0379 (8)0.0096 (6)0.0041 (6)0.0150 (7)
C(7)0.0428 (8)0.0484 (9)0.0274 (7)0.0132 (7)0.0011 (6)0.0029 (6)
C(8)0.0388 (8)0.0428 (9)0.0349 (8)0.0056 (6)0.0043 (6)0.0004 (6)
C(9)0.0300 (6)0.0384 (8)0.0344 (8)0.0019 (6)0.0001 (6)0.0027 (6)
C(10)0.0308 (7)0.0336 (7)0.0288 (7)0.0074 (5)0.0015 (5)0.0071 (5)
Geometric parameters (Å, º) top
O(1)—C(2)1.2474 (19)C(6)—C(7)1.378 (2)
N(1)—N(2)1.1210 (19)C(7)—C(8)1.396 (2)
N(1)—C(1)1.3355 (19)C(8)—C(9)1.378 (2)
C(1)—C(2)1.449 (2)C(9)—C(10)1.390 (2)
C(1)—C(10)1.448 (2)C(3)—H(1)0.950
C(2)—C(3)1.458 (2)C(4)—H(2)0.950
C(3)—C(4)1.359 (2)C(6)—H(3)0.950
C(4)—C(5)1.444 (2)C(7)—H(4)0.950
C(5)—C(6)1.414 (2)C(8)—H(5)0.950
C(5)—C(10)1.418 (2)C(9)—H(6)0.950
N(2)—N(1)—C(1)175.50 (14)C(1)—C(10)—C(5)115.66 (12)
N(1)—C(1)—C(2)113.72 (13)C(1)—C(10)—C(9)124.23 (13)
N(1)—C(1)—C(10)119.70 (13)C(5)—C(10)—C(9)120.11 (13)
C(2)—C(1)—C(10)126.40 (13)C(2)—C(3)—H(1)119.2
O(1)—C(2)—C(1)122.26 (14)C(4)—C(3)—H(1)119.2
O(1)—C(2)—C(3)124.32 (14)C(3)—C(4)—H(2)118.1
C(1)—C(2)—C(3)113.42 (13)C(5)—C(4)—H(2)118.1
C(2)—C(3)—C(4)121.52 (14)C(5)—C(6)—H(3)119.8
C(3)—C(4)—C(5)123.78 (14)C(7)—C(6)—H(3)119.8
C(4)—C(5)—C(6)122.35 (13)C(6)—C(7)—H(4)120.0
C(4)—C(5)—C(10)119.17 (13)C(8)—C(7)—H(4)120.0
C(6)—C(5)—C(10)118.48 (13)C(7)—C(8)—H(5)119.6
C(5)—C(6)—C(7)120.45 (14)C(9)—C(8)—H(5)119.6
C(6)—C(7)—C(8)120.04 (14)C(8)—C(9)—H(6)119.9
C(7)—C(8)—C(9)120.75 (15)C(10)—C(9)—H(6)119.9
C(8)—C(9)—C(10)120.14 (14)
N(2)—N(1)—C(1)—C(2)29.7 (19)C(3)—C(4)—C(5)—C(6)179.60 (15)
N(2)—N(1)—C(1)—C(10)145.8 (18)C(3)—C(4)—C(5)—C(10)0.0 (2)
N(1)—C(1)—C(2)—O(1)7.0 (2)C(4)—C(5)—C(6)—C(7)179.26 (15)
N(1)—C(1)—C(2)—C(3)173.04 (13)C(4)—C(5)—C(10)—C(1)1.5 (2)
N(1)—C(1)—C(10)—C(5)172.20 (13)C(4)—C(5)—C(10)—C(9)178.53 (14)
N(1)—C(1)—C(10)—C(9)7.8 (2)C(6)—C(5)—C(10)—C(1)178.15 (13)
C(2)—C(1)—C(10)—C(5)2.6 (2)C(6)—C(5)—C(10)—C(9)1.8 (2)
C(2)—C(1)—C(10)—C(9)177.38 (15)C(10)—C(5)—C(6)—C(7)1.1 (2)
C(10)—C(1)—C(2)—O(1)177.92 (14)C(5)—C(6)—C(7)—C(8)0.3 (2)
C(10)—C(1)—C(2)—C(3)2.1 (2)C(6)—C(7)—C(8)—C(9)1.1 (2)
O(1)—C(2)—C(3)—C(4)179.61 (15)C(7)—C(8)—C(9)—C(10)0.4 (2)
C(1)—C(2)—C(3)—C(4)0.4 (2)C(8)—C(9)—C(10)—C(1)178.89 (14)
C(2)—C(3)—C(4)—C(5)0.6 (2)C(8)—C(9)—C(10)—C(5)1.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H3···O1i0.952.553.466 (2)162
Symmetry code: (i) x+1/2, y+2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H6N2O
Mr170.17
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)123
a, b, c (Å)11.900 (2), 9.1978 (15), 14.521 (3)
V3)1589.4 (5)
Z8
Radiation typeCu Kα
µ (mm1)0.78
Crystal size (mm)0.50 × 0.40 × 0.40
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.566, 0.731
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
18038, 1456, 1359
Rint0.018
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.119, 1.08
No. of reflections1456
No. of parameters119
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.29, 0.13

Computer programs: PROCESS-AUTO (Rigaku, 1998), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), CrystalStructure (Rigaku Americas and Rigaku, 2007) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H3···O1i0.952.553.466 (2)162
Symmetry code: (i) x+1/2, y+2, z+1/2.
 

Acknowledgements

This work was supported by the Nagase Science Technology Foundation and a Grant-in-Aid from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

References

First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFerreira, V. F., Jorqueira, A., Leal, K. Z., Pimentel, H. R. X., Seidl, P. R., da Silva, M. N., da Souza, M. C. B. V., Pinto, A. V., Wardell, J. L. & Wardell, S. M. S. V. (2006). Magn. Reson. Chem. 44, 481–490.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKitamura, M., Tashiro, N., Sakata, R. & Okauchi, T. (2010). Synlett, pp. 2503–2505.  Web of Science CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationReiser, A., Shih, H.-Y., Yeh, T.-F. & Huang, J.-P. (1996). Angew. Chem. Int. Ed. Engl. 35, 2428–2440.  CrossRef Web of Science Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku Americas and Rigaku (2007). CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSeidel, I., Kuban, R.-J., Brandtstädter, H. & Gey, E. (1989). Z. Chem. 29, 177–178.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds