metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1102-m1103

catena-Poly[[di­aqua­calcium]bis­­[μ-2-(1,3-dioxoisoindolin-2-yl)acetato]-κ3O,O′:O;κ3O:O,O′]

aDepartment of Chemistry, Research Complex, Allama Iqbal Open University, Islamabad 44000, Pakistan, and bDepartment of Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong SAR, People's Republic of China
*Correspondence e-mail: sohail262001@yahoo.com

(Received 23 June 2011; accepted 11 July 2011; online 16 July 2011)

In the title complex, [Ca(C10H6NO4)2(H2O)2]n, the CaII atom lies on a twofold rotation axis and adopts a dodeca­hedral geometry. The CaII atom is octa­coordinated by two O atoms from two water mol­ecules and six O atoms from four acetate ligands. Each acetate acts as a tridentate ligand bridging two CaII atoms, resulting in a chain running along the c axis. O—H⋯O and C—H⋯O hydrogen bonds connect the chains into a two-dimensional network parallel to [011]. ππ inter­actions between adjacent isoindoline-1,3-dione rings [centroid–centroid distance = 3.4096 (11) Å] further consolidate the structure. One of the carboxylate O atoms is disordered over two sites in a 0.879 (12):0.121 (12) ratio.

Related literature

For background to N-phthaloylglycine, see: Khan & Ismail (2002[Khan, M. N. & Ismail, N. H. (2002). J. Chem. Res. 12, 593-595.]). For related structures, see: Barooah et al. (2006[Barooah, N., Sarma, R. J., Batsanov, A. S. & Baruah, J. B. (2006). Polyhedron, 25, 17-24.]).

[Scheme 1]

Experimental

Crystal data
  • [Ca(C10H6NO4)2(H2O)2]

  • Mr = 484.43

  • Monoclinic, C 2/c

  • a = 32.752 (1) Å

  • b = 9.0435 (3) Å

  • c = 6.9753 (3) Å

  • β = 99.020 (2)°

  • V = 2040.48 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 296 K

  • 0.34 × 0.32 × 0.32 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Tmin = 0.884, Tmax = 0.890

  • 12481 measured reflections

  • 2339 independent reflections

  • 1847 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.102

  • S = 1.04

  • 2339 reflections

  • 160 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O4i 0.82 (1) 2.10 (1) 2.907 (2) 171 (3)
O5—H5B⋯O4ii 0.82 (1) 2.49 (2) 3.095 (2) 131 (2)
C8—H8⋯O2iii 0.93 2.47 3.318 (2) 151
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) x, y, z+1; (iii) [x, -y+1, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker. (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker. (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

N-Phthaloylglycine is a simple N-phthaloylamino acid which has been widely studied for cleavage with various amines (Khan & Ismail, 2002) and metal complexation with interesting supramolecular structures (Barooah et al., 2006). In an attempt to synthesis calcium(II) complex of N-phthaloylglycine, we have prepared a calcium complex of N-phthaloylglycine as the title compound and studied it crystal structure which is presented in this article.

In the title complex, the calcium ayom is octa-coordinated to two oxygen atoms from two water solvates and to 6 oxygen atoms from four acetate ligands. Each acetate acts as a tridentate ligand bridging two calcium centres resulting in a 1-D polymeric chain running along the c-axis. The calcium atom sits on a 2-fold axis, thus the asymmetric unit contains only half of the complex (Fig. 1).

The oxygen atom O1 is slightly disordered over two sites with occupancy factors 0.879 (12) and 0.121 (12). The acetate ring plane, C1/C2/O1/O2, makes a dihedral angle of 75.62 (8)° (77.0 (4)° for C1/C2/O1B/O2) with the ring plane of the isoindole-1,3-dione, N1/O3/O4/C3—C10.

There are inter-molecular O—H···O H-bonding interactions which link the molecules into a 2-D network parallel to the [0 1 1] plane (Fig. 2). There are also weak ππ interactions between adjacent isoindole-1,3-dione rings along the c axis in the crystal lattice; the distance between the centroids of the rings C4—C9 and (N1/C3/C4/C9/C10)* (*: x, 1 - y, 1/2 + z) being 3.4096 (11) Å. These ππ interactions help stacking the acetate ligand plane along the c-axis in the lattice.

Related literature top

For background to N-phthaloylglycine, see: Khan & Ismail (2002). For related structures, see: Barooah et al. (2006).

Experimental top

The title compound was prepared from the reaction of CaCl2.2H2O (0.01 mol) and sodium (1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)acetate (0.02 mol) solution. Sodium (1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)acetate was first obtained by adding 0.02 mol of (1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)acetic acid to an aqueous solution of 0.02 mol NaHCO3. The mixture was set aside to crystallize at ambient temperature for several days, giving suitable colorless single crystals.

Refinement top

All of the C-bound H atoms were observable from difference Fourier map but were placed at geometrical positions with C—H = 0.93 and 0.97 Å for phenyl and methylene H-atoms, respectively, and were refined using riding model with Uiso(H) = 1.2Ueq(C). The O-bound H-atoms were located from difference Fourier map and refined with bond distance restrains O–H = 0.82 (1) Å and H···H = 1.32 (1) Å with the thermal parameters set at Uiso(H) = 1.5Ueq(O). The oxygen atom O1 was disordered over two sites, with site occupancy factors 0.879 (12) and 0.121 (12).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title complex drwan with 50% probability thermal ellipsoids showing the atom numbering scheme.
[Figure 2] Fig. 2. The packing diagram of the complex projected down the b axis showing the 1-D chain running parallel to the c axis; the cyan dotted lines indicate the H-bonding interactions.
catena-Poly[[diaquacalcium]bis[µ-2-(1,3-dioxoisoindolin-2- yl)acetato]-κ3O,O':O;κ3O:O,O'] top
Crystal data top
[Ca(C10H6NO4)2(H2O)2]F(000) = 1000
Mr = 484.43Dx = 1.577 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 12481 reflections
a = 32.752 (1) Åθ = 2.3–27.5°
b = 9.0435 (3) ŵ = 0.37 mm1
c = 6.9753 (3) ÅT = 296 K
β = 99.020 (2)°Block, colourless
V = 2040.48 (13) Å30.34 × 0.32 × 0.32 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2339 independent reflections
Radiation source: fine-focus sealed tube1847 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω and ϕ scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 4242
Tmin = 0.884, Tmax = 0.890k = 1111
12481 measured reflectionsl = 89
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0543P)2 + 0.9315P]
where P = (Fo2 + 2Fc2)/3
2339 reflections(Δ/σ)max = 0.001
160 parametersΔρmax = 0.28 e Å3
3 restraintsΔρmin = 0.23 e Å3
Crystal data top
[Ca(C10H6NO4)2(H2O)2]V = 2040.48 (13) Å3
Mr = 484.43Z = 4
Monoclinic, C2/cMo Kα radiation
a = 32.752 (1) ŵ = 0.37 mm1
b = 9.0435 (3) ÅT = 296 K
c = 6.9753 (3) Å0.34 × 0.32 × 0.32 mm
β = 99.020 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2339 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
1847 reflections with I > 2σ(I)
Tmin = 0.884, Tmax = 0.890Rint = 0.042
12481 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0363 restraints
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.28 e Å3
2339 reflectionsΔρmin = 0.23 e Å3
160 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ca10.00000.12307 (5)0.25000.02944 (16)
O10.03670 (7)0.0467 (4)0.0362 (7)0.0520 (9)0.879 (12)
O1B0.0322 (5)0.084 (2)0.126 (5)0.0520 (9)0.121 (12)
O20.07083 (4)0.19128 (16)0.1763 (2)0.0468 (4)
O30.18731 (4)0.15606 (15)0.0563 (2)0.0509 (4)
O40.07509 (4)0.44337 (16)0.1576 (2)0.0471 (4)
O50.02298 (6)0.3258 (2)0.4645 (3)0.0691 (5)
H5A0.0399 (7)0.384 (3)0.433 (4)0.104*
H5B0.0228 (10)0.337 (4)0.5810 (11)0.104*
N10.12562 (4)0.27067 (16)0.0647 (2)0.0338 (3)
C10.06666 (5)0.12894 (18)0.0183 (3)0.0341 (4)
C20.09973 (6)0.1420 (2)0.1122 (3)0.0387 (4)
H2A0.11680.05390.09850.046*
H2B0.08650.14840.24650.046*
C30.16724 (5)0.2673 (2)0.0189 (3)0.0343 (4)
C40.17993 (5)0.4252 (2)0.0462 (3)0.0320 (4)
C50.21772 (6)0.4866 (2)0.1170 (3)0.0391 (4)
H50.24070.42800.15830.047*
C60.22000 (6)0.6402 (2)0.1243 (3)0.0438 (5)
H60.24500.68520.17370.053*
C70.18598 (6)0.7274 (2)0.0598 (3)0.0436 (5)
H70.18860.82980.06610.052*
C80.14793 (6)0.6653 (2)0.0144 (3)0.0380 (4)
H80.12510.72370.05960.046*
C90.14567 (5)0.5126 (2)0.0178 (2)0.0311 (4)
C100.11039 (5)0.41339 (19)0.0884 (3)0.0331 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.0250 (2)0.0241 (2)0.0391 (3)0.0000.00463 (19)0.000
O10.0402 (9)0.0575 (14)0.062 (2)0.0247 (9)0.0201 (11)0.0249 (15)
O1B0.0402 (9)0.0575 (14)0.062 (2)0.0247 (9)0.0201 (11)0.0249 (15)
O20.0444 (8)0.0546 (9)0.0438 (8)0.0091 (7)0.0146 (6)0.0066 (7)
O30.0449 (8)0.0355 (7)0.0711 (11)0.0061 (6)0.0050 (7)0.0046 (7)
O40.0340 (7)0.0455 (8)0.0583 (10)0.0011 (6)0.0033 (6)0.0005 (7)
O50.0810 (13)0.0671 (11)0.0618 (11)0.0256 (9)0.0189 (10)0.0254 (10)
N10.0300 (7)0.0278 (7)0.0450 (9)0.0056 (6)0.0102 (6)0.0018 (6)
C10.0289 (8)0.0235 (8)0.0510 (12)0.0035 (6)0.0093 (8)0.0023 (8)
C20.0388 (10)0.0311 (9)0.0486 (11)0.0100 (7)0.0138 (8)0.0081 (8)
C30.0325 (9)0.0339 (9)0.0379 (10)0.0019 (7)0.0102 (8)0.0029 (8)
C40.0327 (9)0.0353 (9)0.0292 (9)0.0053 (7)0.0082 (7)0.0017 (7)
C50.0344 (9)0.0444 (10)0.0376 (10)0.0056 (8)0.0033 (8)0.0028 (9)
C60.0440 (11)0.0475 (11)0.0396 (11)0.0193 (9)0.0052 (9)0.0022 (9)
C70.0582 (12)0.0322 (9)0.0413 (11)0.0149 (9)0.0107 (10)0.0021 (8)
C80.0477 (11)0.0311 (9)0.0357 (10)0.0010 (8)0.0076 (8)0.0024 (8)
C90.0334 (9)0.0322 (9)0.0283 (9)0.0058 (7)0.0069 (7)0.0000 (7)
C100.0329 (9)0.0326 (9)0.0344 (10)0.0032 (7)0.0072 (7)0.0005 (7)
Geometric parameters (Å, º) top
Ca1—O1Bi2.258 (15)O5—H5B0.8199 (10)
Ca1—O1Bii2.258 (15)N1—C101.384 (2)
Ca1—O1i2.338 (2)N1—C31.396 (2)
Ca1—O1ii2.338 (2)N1—C21.447 (2)
Ca1—O52.4111 (16)C1—C21.525 (3)
Ca1—O5iii2.4111 (16)C2—H2A0.9700
Ca1—O22.5298 (13)C2—H2B0.9700
Ca1—O2iii2.5298 (13)C3—C41.492 (2)
Ca1—O1iii2.581 (3)C4—C51.375 (2)
Ca1—O12.581 (3)C4—C91.388 (2)
Ca1—O1B2.99 (3)C5—C61.391 (3)
Ca1—O1Biii2.99 (3)C5—H50.9300
O1—C11.242 (2)C6—C71.382 (3)
O1—Ca1i2.338 (2)C6—H60.9300
O1B—C11.45 (2)C7—C81.391 (3)
O1B—Ca1i2.258 (15)C7—H70.9300
O2—C11.226 (2)C8—C91.383 (3)
O3—C31.207 (2)C8—H80.9300
O4—C101.212 (2)C9—C101.485 (2)
O5—H5A0.8200 (10)
O1Bi—Ca1—O1Bii67.6 (16)O5—Ca1—O1Biii70.4 (6)
O1Bi—Ca1—O1i17.6 (8)O5iii—Ca1—O1Biii120.9 (3)
O1Bii—Ca1—O1i82.0 (9)O2—Ca1—O1Biii131.8 (5)
O1Bi—Ca1—O1ii82.0 (9)O2iii—Ca1—O1Biii52.5 (3)
O1Bii—Ca1—O1ii17.6 (8)O1iii—Ca1—O1Biii11.8 (5)
O1i—Ca1—O1ii97.9 (3)O1—Ca1—O1Biii156.4 (4)
O1Bi—Ca1—O5162.2 (7)O1B—Ca1—O1Biii166.6 (9)
O1Bii—Ca1—O5108.2 (9)C1—O1—Ca1i153.0 (2)
O1i—Ca1—O5167.07 (8)C1—O1—Ca192.55 (18)
O1ii—Ca1—O591.40 (14)Ca1i—O1—Ca1114.46 (8)
O1Bi—Ca1—O5iii108.2 (9)C1—O1B—Ca1i139.9 (19)
O1Bii—Ca1—O5iii162.2 (7)C1—O1B—Ca172.8 (11)
O1i—Ca1—O5iii91.40 (14)Ca1i—O1B—Ca1103.1 (9)
O1ii—Ca1—O5iii167.07 (8)C1—O2—Ca195.40 (11)
O5—Ca1—O5iii80.99 (11)Ca1—O5—H5A119 (2)
O1Bi—Ca1—O2120.8 (5)Ca1—O5—H5B131 (2)
O1Bii—Ca1—O283.9 (4)H5A—O5—H5B107 (3)
O1i—Ca1—O2115.25 (7)C10—N1—C3112.36 (14)
O1ii—Ca1—O283.90 (6)C10—N1—C2122.35 (15)
O5—Ca1—O274.56 (6)C3—N1—C2125.20 (15)
O5iii—Ca1—O284.00 (6)O2—C1—O1121.4 (2)
O1Bi—Ca1—O2iii83.9 (4)O2—C1—O1B135.8 (8)
O1Bii—Ca1—O2iii120.8 (5)O2—C1—C2120.75 (15)
O1i—Ca1—O2iii83.90 (6)O1—C1—C2117.7 (2)
O1ii—Ca1—O2iii115.25 (7)O1B—C1—C299.1 (10)
O5—Ca1—O2iii84.00 (6)O2—C1—Ca159.82 (10)
O5iii—Ca1—O2iii74.56 (6)O1—C1—Ca162.24 (17)
O2—Ca1—O2iii151.77 (7)O1B—C1—Ca178.9 (9)
O1Bi—Ca1—O1iii80.2 (6)C2—C1—Ca1175.44 (13)
O1Bii—Ca1—O1iii74.1 (6)N1—C2—C1111.80 (15)
O1i—Ca1—O1iii93.58 (5)N1—C2—H2A109.3
O1ii—Ca1—O1iii65.54 (8)C1—C2—H2A109.3
O5—Ca1—O1iii82.03 (12)N1—C2—H2B109.3
O5iii—Ca1—O1iii123.06 (6)C1—C2—H2B109.3
O2—Ca1—O1iii140.87 (9)H2A—C2—H2B107.9
O2iii—Ca1—O1iii49.82 (5)O3—C3—N1124.85 (17)
O1Bi—Ca1—O174.1 (6)O3—C3—C4129.69 (17)
O1Bii—Ca1—O180.2 (6)N1—C3—C4105.46 (14)
O1i—Ca1—O165.54 (8)C5—C4—C9121.49 (17)
O1ii—Ca1—O193.58 (5)C5—C4—C3130.51 (17)
O5—Ca1—O1123.06 (6)C9—C4—C3107.99 (14)
O5iii—Ca1—O182.03 (12)C4—C5—C6117.14 (18)
O2—Ca1—O149.82 (5)C4—C5—H5121.4
O2iii—Ca1—O1140.87 (9)C6—C5—H5121.4
O1iii—Ca1—O1148.96 (18)C7—C6—C5121.47 (17)
O1Bi—Ca1—O1B76.9 (9)C7—C6—H6119.3
O1Bii—Ca1—O1B91.8 (5)C5—C6—H6119.3
O1i—Ca1—O1B65.2 (3)C6—C7—C8121.36 (18)
O1ii—Ca1—O1B105.4 (5)C6—C7—H7119.3
O5—Ca1—O1B120.9 (3)C8—C7—H7119.3
O5iii—Ca1—O1B70.4 (6)C9—C8—C7116.88 (18)
O2—Ca1—O1B52.5 (3)C9—C8—H8121.6
O2iii—Ca1—O1B131.8 (5)C7—C8—H8121.6
O1iii—Ca1—O1B156.4 (4)C8—C9—C4121.64 (16)
O1—Ca1—O1B11.8 (5)C8—C9—C10130.22 (17)
O1Bi—Ca1—O1Biii91.8 (5)C4—C9—C10108.11 (15)
O1Bii—Ca1—O1Biii76.9 (9)O4—C10—N1124.03 (16)
O1i—Ca1—O1Biii105.4 (5)O4—C10—C9129.90 (17)
O1ii—Ca1—O1Biii65.2 (3)N1—C10—C9106.06 (14)
Symmetry codes: (i) x, y, z; (ii) x, y, z+1/2; (iii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O4iv0.82 (1)2.10 (1)2.907 (2)171 (3)
O5—H5B···O4v0.82 (1)2.49 (2)3.095 (2)131 (2)
C8—H8···O2vi0.932.473.318 (2)151
Symmetry codes: (iv) x, y+1, z+1/2; (v) x, y, z+1; (vi) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formula[Ca(C10H6NO4)2(H2O)2]
Mr484.43
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)32.752 (1), 9.0435 (3), 6.9753 (3)
β (°) 99.020 (2)
V3)2040.48 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.34 × 0.32 × 0.32
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.884, 0.890
No. of measured, independent and
observed [I > 2σ(I)] reflections
12481, 2339, 1847
Rint0.042
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.102, 1.04
No. of reflections2339
No. of parameters160
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.23

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O4i0.82 (1)2.095 (6)2.907 (2)171 (3)
O5—H5B···O4ii0.82 (1)2.49 (2)3.095 (2)131 (2)
C8—H8···O2iii0.932.473.318 (2)151
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y, z+1; (iii) x, y+1, z1/2.
 

Acknowledgements

SS is grateful to the University of Hong Kong for providing facilities for crystallographic studies.

References

First citationBarooah, N., Sarma, R. J., Batsanov, A. S. & Baruah, J. B. (2006). Polyhedron, 25, 17–24.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker. (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKhan, M. N. & Ismail, N. H. (2002). J. Chem. Res. 12, 593–595.  CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1102-m1103
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds