organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[Amino­(azido)­meth­yl­idene]-4-methyl­benzene­sulfonamide

aMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan
*Correspondence e-mail: iukhan@gcu.edu.pk

(Received 29 June 2011; accepted 6 July 2011; online 23 July 2011)

In the title mol­ecule, C8H10N5O2S, the amino­(azido)­methyl and p-toluene­sulfonyl moieties are inclined almost at right angles with respect to each other, making a dihedral angle of 83.49 (6)°. An intra­molecular N—H⋯O hydrogen bond gives rise to the formation of six-membered ring with graph-set motif S(6). In the crystal, inter­molecular N—H⋯O hydrogen bonding is responsible for the formation of dimers about inversion centers, which are linked through another N—H⋯O inter­action along the b axis.

Related literature

For the synthesis, see: Arshad et al. (2009[Arshad, M. N., Tahir, M. N., Khan, I. U., Siddiqui, W. A. & Shafiq, M. (2009). Acta Cryst. E65, o281.]). For the biological activity of sulfonamides, see: Moree et al. (1991[Moree, W. J., Van der Marel, G. A. & Liskamp, R. M. (1991). Tetrahedron Lett. 32, 409-411.]); Arshad et al. (2008[Arshad, M. N., Khan, I. U. & Zia-ur-Rehman, M. (2008). Acta Cryst. E64, o2283-o2284.]); Gennarti et al. (1994[Gennarti, C., Salom, B., Potenza, D. & Williams, A. (1994). Angew. Chem. Int. Ed. Engl. 33, 2067-2069.]). For related structures, see: Denny et al. (1980[Denny, G. H., Crageo, E. J. Jr & Rooney, C. S. (1980). J. Org. Chem. E45, 1662-1665.]); Müller & Bärnighausen (1970[Müller, U. & Bärnighausen, H. (1970). Acta Cryst. B26, 1671-1679.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C8H9N5O2S

  • Mr = 239.26

  • Triclinic, [P \overline 1]

  • a = 6.8986 (2) Å

  • b = 7.2146 (2) Å

  • c = 11.3771 (3) Å

  • α = 92.244 (1)°

  • β = 93.615 (1)°

  • γ = 110.505 (1)°

  • V = 528.18 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 296 K

  • 0.34 × 0.17 × 0.17 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 8664 measured reflections

  • 2549 independent reflections

  • 2343 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.088

  • S = 1.09

  • 2549 reflections

  • 152 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O2i 0.80 (2) 2.24 (2) 2.9459 (16) 148 (2)
N2—H3N⋯O1ii 0.89 (2) 2.08 (2) 2.9481 (15) 164 (2)
N2—H2N⋯O2 0.80 (2) 2.34 (2) 2.8862 (16) 127 (2)
Symmetry codes: (i) -x+2, -y, -z; (ii) x, y-1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Sulfonamides are an important class of pharmaceutical compounds (Moree et al., 1991), they exhibit a broad spectrum of biological activites which include antibacterial, diuretic, hypoglycermic, anti-convulsant, HIV protease inhibitors and for the treatment of inflammatory rheumatic and non-rheumatic processes including onsets and traumatologic lesions (Arshad et al., 2008; Gennarti et al., 1994). Herein, we report the crystal structure of the title compound.

In the title compound (Fig. 1), the azido group consisting of three nitrogen atoms carries cationic and anionic characters (Denny et al., 1980; Muller & Barnighausen, 1970). The bond distance N4—N5 is 1.112 (2) Å, which is nearly equal to a bond distance between two nitrogen atoms i.e. 1.10 Å. The amino(azido)methyl (N1/C8/N2/N3/N4/N5) moiety is almost planer with r. m. s. deviation of 0.0156 Å and is oriented at a dihedral angle of 83.19 (5)° with respect to the toluene ring (C1–C7). The molecule exhibits both inter- and intra-molecular hydrogen bonding. The intermolecular hydrogen bonds result in dimers about inversion centers which are further connected through N—H···O type interactions and extended along the b axis (Tab. 1 & Fig. 2). The intramolecular hydrogen bonding N2—H2N···O2 gives rise to the formation of a six membered ring motif which can be represented mathematically as S11(6) (Bernstein et al., 1995).

Related literature top

For the synthesis, see: Arshad et al. (2009). For the biological activity of sulfonamides, see: Moree et al. (1991); Arshad et al. (2008); Gennarti et al. (1994). For related structures, see: Denny et al. (1980); Müller & Bärnighausen (1970). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

A mixture of 5-aminotetrazole monohydrate (4.85 mmol, 0.5 g) and p-toluenesulfonyl chloride (4.85 mmol, 0.92 g) was stirred in distilled water (10 ml) at room temperature while pH was maintained at 9–10 in accordance with (Arshad et al., 2009). The completion of the reaction was checked by TLC. As the reaction completed, the precipitates obtained were filtered, washed with distilled water and finally dried. Suitable crystals for X-ray analysis were grown from mixture of methanol and ethyl acetate (1:1) by slow evaporation. Yield of the reaction was 84% (0.97 g). mp 408–413 K.

Refinement top

All H atoms were positioned geometrically with Cmethyl—H = 0.96 Å, Caromatic—H = 0.93 Å & N1—H = 0.8600 Å and treated as riding on their parent atoms with Uiso(H) = 1.2Ueq for aromatic & N1 H-atoms and 1.5Ueq for methyl H-atoms. The hydrogen atoms for primary amino group were located via fourier map allowed to refine with Uiso(H) = 1.5 Ueq(N).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Labelled diagram of the title molecule with thermal ellipsoids drawn at 50% probability level.
[Figure 2] Fig. 2. Unit cell packing diagram of the title compound showing hydrogen bonds by dshed lines; H-atoms not involved in H-bonds have been excluded for clarity.
N-[Amino(azido)methylidene]-4-methylbenzenesulfonamide top
Crystal data top
C8H9N5O2SZ = 2
Mr = 239.26F(000) = 248
Triclinic, P1Dx = 1.504 Mg m3
Hall symbol: -P 1Melting point: 444(2) K
a = 6.8986 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.2146 (2) ÅCell parameters from 7120 reflections
c = 11.3771 (3) Åθ = 3.0–28.3°
α = 92.244 (1)°µ = 0.30 mm1
β = 93.615 (1)°T = 296 K
γ = 110.505 (1)°Needle, colourless
V = 528.18 (3) Å30.34 × 0.17 × 0.17 mm
Data collection top
Bruker APEXII CCD
diffractometer
2343 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Graphite monochromatorθmax = 28.3°, θmin = 3.2°
ϕ and ω scansh = 99
8664 measured reflectionsk = 99
2549 independent reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0384P)2 + 0.179P]
where P = (Fo2 + 2Fc2)/3
2549 reflections(Δ/σ)max = 0.004
152 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C8H9N5O2Sγ = 110.505 (1)°
Mr = 239.26V = 528.18 (3) Å3
Triclinic, P1Z = 2
a = 6.8986 (2) ÅMo Kα radiation
b = 7.2146 (2) ŵ = 0.30 mm1
c = 11.3771 (3) ÅT = 296 K
α = 92.244 (1)°0.34 × 0.17 × 0.17 mm
β = 93.615 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2343 reflections with I > 2σ(I)
8664 measured reflectionsRint = 0.020
2549 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.30 e Å3
2549 reflectionsΔρmin = 0.29 e Å3
152 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The reflection 0 0 1 has been omitted as this was obscured by beamstop.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.77484 (4)0.16023 (4)0.12702 (3)0.02808 (11)
O10.70020 (17)0.32207 (14)0.13239 (11)0.0459 (3)
O20.87648 (15)0.13621 (15)0.02394 (8)0.0370 (2)
N10.57940 (16)0.03376 (15)0.14825 (9)0.0291 (2)
N20.7254 (2)0.27167 (18)0.08497 (12)0.0383 (3)
H2N0.825 (3)0.194 (3)0.0593 (18)0.057*
H3N0.710 (3)0.399 (3)0.0848 (18)0.057*
N30.40903 (18)0.37488 (16)0.15282 (11)0.0368 (3)
N40.27278 (18)0.32615 (17)0.19944 (11)0.0381 (3)
N50.1395 (2)0.3067 (2)0.24161 (15)0.0586 (4)
C11.3707 (4)0.2513 (3)0.55842 (19)0.0833 (8)
H1A1.32300.13260.60020.125*
H1B1.37380.36240.60880.125*
H1C1.50790.27180.53540.125*
C21.2249 (3)0.2310 (2)0.44945 (14)0.0514 (4)
C31.0431 (3)0.2697 (3)0.45779 (14)0.0578 (5)
H31.01160.30840.53090.069*
C40.9072 (3)0.2521 (2)0.35961 (14)0.0468 (4)
H40.78680.28070.36640.056*
C50.95280 (19)0.19123 (17)0.25110 (11)0.0301 (3)
C61.1336 (2)0.1525 (2)0.24079 (13)0.0391 (3)
H61.16480.11280.16780.047*
C71.2684 (3)0.1733 (3)0.34053 (15)0.0508 (4)
H71.39040.14780.33350.061*
C80.58221 (18)0.21318 (17)0.12696 (10)0.0275 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02984 (17)0.02068 (16)0.03386 (18)0.00862 (11)0.00265 (11)0.00626 (11)
O10.0493 (6)0.0259 (5)0.0674 (7)0.0189 (4)0.0042 (5)0.0108 (5)
O20.0366 (5)0.0402 (5)0.0313 (5)0.0090 (4)0.0053 (4)0.0083 (4)
N10.0278 (5)0.0233 (5)0.0357 (5)0.0081 (4)0.0037 (4)0.0035 (4)
N20.0397 (6)0.0250 (5)0.0526 (7)0.0129 (5)0.0117 (5)0.0047 (5)
N30.0366 (6)0.0243 (5)0.0458 (6)0.0054 (4)0.0072 (5)0.0039 (4)
N40.0360 (6)0.0283 (5)0.0438 (6)0.0028 (4)0.0057 (5)0.0077 (5)
N50.0480 (8)0.0493 (8)0.0766 (10)0.0108 (6)0.0250 (7)0.0119 (7)
C10.0957 (16)0.0691 (13)0.0535 (11)0.0045 (12)0.0346 (11)0.0146 (10)
C20.0585 (10)0.0377 (8)0.0402 (8)0.0029 (7)0.0128 (7)0.0082 (6)
C30.0735 (12)0.0533 (10)0.0311 (7)0.0038 (8)0.0057 (7)0.0045 (7)
C40.0470 (8)0.0470 (8)0.0410 (8)0.0101 (7)0.0089 (6)0.0059 (6)
C50.0334 (6)0.0212 (5)0.0317 (6)0.0045 (4)0.0024 (5)0.0021 (4)
C60.0391 (7)0.0417 (7)0.0366 (7)0.0153 (6)0.0015 (5)0.0002 (6)
C70.0441 (8)0.0537 (9)0.0513 (9)0.0154 (7)0.0110 (7)0.0039 (7)
C80.0301 (6)0.0233 (5)0.0271 (5)0.0073 (4)0.0009 (4)0.0036 (4)
Geometric parameters (Å, º) top
S1—O11.4324 (10)C1—H1B0.9600
S1—O21.4387 (10)C1—H1C0.9600
S1—N11.6064 (10)C2—C71.376 (3)
S1—C51.7648 (13)C2—C31.385 (3)
N1—C81.3147 (15)C3—C41.384 (3)
N2—C81.3104 (17)C3—H30.9300
N2—H2N0.80 (2)C4—C51.385 (2)
N2—H3N0.89 (2)C4—H40.9300
N3—N41.2523 (17)C5—C61.381 (2)
N3—C81.4034 (15)C6—C71.389 (2)
N4—N51.112 (2)C6—H60.9300
C1—C21.515 (2)C7—H70.9300
C1—H1A0.9600
O1—S1—O2117.13 (6)C3—C2—C1120.33 (19)
O1—S1—N1105.65 (6)C4—C3—C2121.43 (15)
O2—S1—N1112.85 (6)C4—C3—H3119.3
O1—S1—C5107.75 (6)C2—C3—H3119.3
O2—S1—C5107.55 (6)C3—C4—C5119.15 (16)
N1—S1—C5105.20 (6)C3—C4—H4120.4
C8—N1—S1121.49 (9)C5—C4—H4120.4
C8—N2—H2N120.4 (15)C6—C5—C4120.34 (13)
C8—N2—H3N119.0 (13)C6—C5—S1120.58 (10)
H2N—N2—H3N120.6 (19)C4—C5—S1119.08 (11)
N4—N3—C8113.81 (11)C5—C6—C7119.34 (14)
N5—N4—N3171.56 (14)C5—C6—H6120.3
C2—C1—H1A109.5C7—C6—H6120.3
C2—C1—H1B109.5C2—C7—C6121.31 (16)
H1A—C1—H1B109.5C2—C7—H7119.3
C2—C1—H1C109.5C6—C7—H7119.3
H1A—C1—H1C109.5N2—C8—N1130.52 (12)
H1B—C1—H1C109.5N2—C8—N3111.45 (11)
C7—C2—C3118.41 (15)N1—C8—N3118.03 (11)
C7—C2—C1121.3 (2)
O1—S1—N1—C8166.90 (10)O1—S1—C5—C441.58 (13)
O2—S1—N1—C837.71 (12)O2—S1—C5—C4168.70 (11)
C5—S1—N1—C879.26 (11)N1—S1—C5—C470.78 (12)
C8—N3—N4—N5177.3 (11)C4—C5—C6—C70.6 (2)
C7—C2—C3—C40.2 (3)S1—C5—C6—C7178.38 (12)
C1—C2—C3—C4179.94 (16)C3—C2—C7—C60.5 (3)
C2—C3—C4—C51.0 (3)C1—C2—C7—C6179.26 (16)
C3—C4—C5—C61.2 (2)C5—C6—C7—C20.3 (2)
C3—C4—C5—S1177.75 (12)S1—N1—C8—N22.0 (2)
O1—S1—C5—C6139.43 (11)S1—N1—C8—N3177.16 (9)
O2—S1—C5—C612.31 (13)N4—N3—C8—N2176.19 (12)
N1—S1—C5—C6108.21 (11)N4—N3—C8—N13.12 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O2i0.80 (2)2.24 (2)2.9459 (16)148 (2)
N2—H3N···O1ii0.89 (2)2.08 (2)2.9481 (15)164 (2)
N2—H2N···O20.80 (2)2.34 (2)2.8862 (16)127 (2)
Symmetry codes: (i) x+2, y, z; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC8H9N5O2S
Mr239.26
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.8986 (2), 7.2146 (2), 11.3771 (3)
α, β, γ (°)92.244 (1), 93.615 (1), 110.505 (1)
V3)528.18 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.34 × 0.17 × 0.17
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8664, 2549, 2343
Rint0.020
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.088, 1.09
No. of reflections2549
No. of parameters152
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.29

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O2i0.80 (2)2.24 (2)2.9459 (16)148 (2)
N2—H3N···O1ii0.89 (2)2.08 (2)2.9481 (15)164 (2)
N2—H2N···O20.80 (2)2.34 (2)2.8862 (16)127 (2)
Symmetry codes: (i) x+2, y, z; (ii) x, y1, z.
 

Footnotes

X-ray Diffraction and Physical Laboratory, Department of Physics, School of Physical Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan.

Acknowledgements

The authors acknowledge the Higher Education Commission of Pakistan for the purchase of the diffractometer under the grant to strengthen the Materials Chemistry Laboratory at GC University, Lahore, and thank Dr Sohail Anjum Shehzad for helpful discussions.

References

First citationArshad, M. N., Khan, I. U. & Zia-ur-Rehman, M. (2008). Acta Cryst. E64, o2283–o2284.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArshad, M. N., Tahir, M. N., Khan, I. U., Siddiqui, W. A. & Shafiq, M. (2009). Acta Cryst. E65, o281.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDenny, G. H., Crageo, E. J. Jr & Rooney, C. S. (1980). J. Org. Chem. E45, 1662–1665.  CSD CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGennarti, C., Salom, B., Potenza, D. & Williams, A. (1994). Angew. Chem. Int. Ed. Engl. 33, 2067–2069.  Google Scholar
First citationMoree, W. J., Van der Marel, G. A. & Liskamp, R. M. (1991). Tetrahedron Lett. 32, 409–411.  CrossRef CAS Web of Science Google Scholar
First citationMüller, U. & Bärnighausen, H. (1970). Acta Cryst. B26, 1671–1679.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds