organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(4-Formyl­phen­yl)(hy­dr­oxy)meth­yl]acrylo­nitrile

aDepartment of Physics, Ethiraj College for Women, Chennai 600 008, India, bDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

(Received 5 July 2011; accepted 22 July 2011; online 30 July 2011)

In the title compound, C11H9NO2, the mean planes formed by the phenyl and acryl group are almost orthogonal to each other, with a dihedral angle of 88.61 (7)°. The carbonitrile side chain is almost linear, the C—C—N angle being 179.54 (16)°. In the crystal, mol­ecules are linked by inter­molecular O—H⋯O inter­actions into infinite chains running parallel to the b axis.

Related literature

For uses of acrylonitrile derivatives, see: Ohsumi et al. (1998[Ohsumi, K., Nakagawa, R., Fukuda, Y., Hatanaka, T., Morinaga, Y., Nihei, Y., Ohishi, K., Suga, Y., Akiyama, Y. & Tsuji, T. (1998). J. Med. Chem. 41, 3022-3032.]). For related structures, see: Cobo et al. (2005[Cobo, D., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2005). Acta Cryst. E61, o3639-o3641.]); Nizam Mohideen et al. (2007[Nizam Mohideen, M., Kannan, P. S., Subbiah Pandi, A., Ramesh, E. & Raghunathan, R. (2007). Acta Cryst. E63, o4756.]).

[Scheme 1]

Experimental

Crystal data
  • C11H9NO2

  • Mr = 187.19

  • Monoclinic, P 21 /n

  • a = 7.6089 (5) Å

  • b = 6.0895 (3) Å

  • c = 20.5135 (14) Å

  • β = 93.615 (2)°

  • V = 948.59 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • 12108 measured reflections

  • 2778 independent reflections

  • 2109 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.137

  • S = 1.04

  • 2778 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.82 1.99 2.8107 (15) 175
Symmetry code: (i) x+1, y-1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Acrylonitrile derivatives have been shown to possess antitubercular and antitumour activities (Ohsumi et al., 1998).

In the title compound (Fig. 1), the mean planes formed by the phenyl ring C2—C7 and acryl group (N1/C8—C11) are almost orthogonal to each other with a dihedral angle 88.61 (7)°. The bond length C9—C11 [1.4338 (18) Å] is significantly shorter than the expected value for a C—C single bond because of conjugation effects (Nizam Mohideen et al., 2007). The mean plane of C2—C1—O1 is slightly twisted out of the mean plane of phenyl ring C2—C7 with a dihedral angle 2.62 (9)°. The carbonitrile side chain (C9—C11—N1) is almost linear, with the angle around central carbon atom being 179.54 (16)°. The title compound exhibits structural similarities with closely related structures (Cobo et al.2005, Nizam Mohideen et al.2007).

In the title compound, the crystal packing is stabilized by O2—H2···O1 intermolecular interactions which link the molecules into infinite chains running parallel to the b-axis (Tab. 1 & Fig. 2).

Related literature top

For uses of acrylonitrile derivatives, see: Ohsumi et al. (1998). For related structures, see: Cobo et al. (2005); Nizam Mohideen et al. (2007). For related literature [on what subject?], see: Shi et al. (2002).

Experimental top

To a reaction mixture of terephthalaldehyde (1 mmol) and acrylonitrile (2 mmol) was added a catalytic quantity of 1,4-diazabicyclo[2.2.2]octane (10–15 mol %). The reaction mixture was left standing at room temperature in a stoppered sample flask. The progress of the reaction was monitored by Thin Layer Chromatography (TLC) over a period of several days. After 6 days the TLC revealed the presence of a product. The reaction mixture was dissolved in ethyl acetate and washed with aqueous HCl solution (0.25 M) and water followed by brine solution. The organic layer was separated and dried over sodium sulfate, filtering and evaporation of the organic solvent under reduced pressure. The product was seperated by flash column chromatography using hexane and ethyl acetate (4:1) as an eluent to give colorless solid. The product was dissolved in chloroform and heated for two minutes. The resulting solution was subjected to crystallization by slow evaporation of the solvent resulting in single crystals suitable for XRD studies.

Refinement top

The hydrogen atoms were placed in calculated positions with C—H = 0.93 to 0.98 Å and O—H = 0.82 Å and refined in the riding model with isotropic displacement parameters: Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A view of the unit cell of the title compound viewed down a-axis; O—H···O intermolecular interactions are indicated by dashed lines.
2-[(4-Formylphenyl)(hydroxy)methyl]acrylonitrile top
Crystal data top
C11H9NO2F(000) = 392
Mr = 187.19Dx = 1.311 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2778 reflections
a = 7.6089 (5) Åθ = 2.0–30.1°
b = 6.0895 (3) ŵ = 0.09 mm1
c = 20.5135 (14) ÅT = 293 K
β = 93.615 (2)°Block, colourless
V = 948.59 (10) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2109 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 30.1°, θmin = 2.0°
ω scansh = 1010
12108 measured reflectionsk = 85
2778 independent reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.068P)2 + 0.1498P]
where P = (Fo2 + 2Fc2)/3
2778 reflections(Δ/σ)max < 0.001
128 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C11H9NO2V = 948.59 (10) Å3
Mr = 187.19Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.6089 (5) ŵ = 0.09 mm1
b = 6.0895 (3) ÅT = 293 K
c = 20.5135 (14) Å0.30 × 0.20 × 0.20 mm
β = 93.615 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2109 reflections with I > 2σ(I)
12108 measured reflectionsRint = 0.025
2778 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.04Δρmax = 0.20 e Å3
2778 reflectionsΔρmin = 0.21 e Å3
128 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.29788 (17)1.2762 (2)0.08969 (7)0.0530 (3)
H10.20601.23720.11520.064*
C20.45120 (15)1.1299 (2)0.09117 (6)0.0402 (3)
C30.59636 (15)1.17738 (19)0.05636 (6)0.0403 (3)
H30.59821.30420.03120.048*
C40.73929 (15)1.03554 (19)0.05910 (6)0.0377 (3)
H40.83741.06830.03610.045*
C50.73630 (14)0.84482 (18)0.09612 (5)0.0341 (2)
C60.58917 (16)0.7961 (2)0.12973 (6)0.0440 (3)
H60.58550.66700.15380.053*
C70.44760 (16)0.9386 (2)0.12758 (6)0.0473 (3)
H70.34960.90590.15070.057*
C80.88910 (15)0.68441 (19)0.09921 (6)0.0386 (3)
H80.85300.55300.07420.046*
C90.94025 (16)0.6160 (2)0.16879 (6)0.0416 (3)
C100.9246 (2)0.4136 (2)0.19036 (8)0.0658 (4)
H10A0.95920.37990.23350.079*
H10B0.87880.30450.16250.079*
C111.01071 (18)0.7847 (2)0.21163 (7)0.0499 (3)
N11.0657 (2)0.9196 (3)0.24571 (8)0.0783 (4)
O10.28115 (14)1.44271 (18)0.05813 (6)0.0647 (3)
O21.03273 (12)0.77961 (17)0.07008 (5)0.0550 (3)
H21.11030.68740.06700.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0386 (6)0.0578 (8)0.0626 (8)0.0154 (6)0.0044 (6)0.0036 (6)
C20.0328 (5)0.0454 (6)0.0420 (6)0.0090 (4)0.0012 (4)0.0055 (5)
C30.0394 (6)0.0378 (6)0.0434 (6)0.0073 (4)0.0005 (5)0.0030 (5)
C40.0336 (5)0.0409 (6)0.0390 (6)0.0055 (4)0.0047 (4)0.0040 (4)
C50.0326 (5)0.0371 (5)0.0326 (5)0.0067 (4)0.0007 (4)0.0005 (4)
C60.0402 (6)0.0457 (6)0.0466 (7)0.0051 (5)0.0073 (5)0.0104 (5)
C70.0337 (6)0.0579 (7)0.0512 (7)0.0058 (5)0.0099 (5)0.0057 (6)
C80.0390 (6)0.0381 (5)0.0389 (6)0.0101 (4)0.0055 (4)0.0029 (4)
C90.0417 (6)0.0405 (6)0.0426 (6)0.0102 (5)0.0018 (5)0.0033 (5)
C100.0954 (12)0.0465 (8)0.0535 (8)0.0048 (8)0.0100 (8)0.0109 (6)
C110.0546 (7)0.0469 (7)0.0476 (7)0.0105 (6)0.0009 (6)0.0022 (5)
N10.0984 (12)0.0638 (8)0.0706 (9)0.0003 (8)0.0120 (8)0.0121 (7)
O10.0556 (6)0.0605 (6)0.0781 (7)0.0279 (5)0.0057 (5)0.0043 (5)
O20.0419 (5)0.0599 (6)0.0653 (6)0.0204 (4)0.0195 (4)0.0194 (5)
Geometric parameters (Å, º) top
C1—O11.2055 (18)C6—H60.9300
C1—C21.4664 (16)C7—H70.9300
C1—H10.9300C8—O21.4036 (15)
C2—C31.3829 (17)C8—C91.5139 (16)
C2—C71.3853 (18)C8—H80.9800
C3—C41.3871 (15)C9—C101.3173 (18)
C3—H30.9300C9—C111.4338 (18)
C4—C51.3887 (15)C10—H10A0.9300
C4—H40.9300C10—H10B0.9300
C5—C61.3835 (16)C11—N11.1410 (19)
C5—C81.5168 (14)O2—H20.8200
C6—C71.3818 (17)
O1—C1—C2125.37 (14)C6—C7—C2120.24 (11)
O1—C1—H1117.3C6—C7—H7119.9
C2—C1—H1117.3C2—C7—H7119.9
C3—C2—C7119.84 (10)O2—C8—C9110.75 (10)
C3—C2—C1121.51 (12)O2—C8—C5109.36 (9)
C7—C2—C1118.64 (12)C9—C8—C5111.56 (9)
C2—C3—C4119.92 (11)O2—C8—H8108.4
C2—C3—H3120.0C9—C8—H8108.4
C4—C3—H3120.0C5—C8—H8108.4
C3—C4—C5120.20 (11)C10—C9—C11120.17 (13)
C3—C4—H4119.9C10—C9—C8123.43 (12)
C5—C4—H4119.9C11—C9—C8116.39 (11)
C6—C5—C4119.58 (10)C9—C10—H10A120.0
C6—C5—C8118.90 (10)C9—C10—H10B120.0
C4—C5—C8121.50 (10)H10A—C10—H10B120.0
C7—C6—C5120.20 (11)N1—C11—C9179.54 (16)
C7—C6—H6119.9C8—O2—H2109.5
C5—C6—H6119.9
O1—C1—C2—C31.9 (2)C3—C2—C7—C60.60 (19)
O1—C1—C2—C7177.02 (14)C1—C2—C7—C6179.52 (12)
C7—C2—C3—C41.32 (18)C6—C5—C8—O2171.48 (11)
C1—C2—C3—C4179.80 (11)C4—C5—C8—O210.23 (15)
C2—C3—C4—C50.69 (18)C6—C5—C8—C948.61 (15)
C3—C4—C5—C60.66 (17)C4—C5—C8—C9133.09 (11)
C3—C4—C5—C8178.94 (10)O2—C8—C9—C10122.89 (15)
C4—C5—C6—C71.38 (19)C5—C8—C9—C10115.05 (15)
C8—C5—C6—C7179.71 (11)O2—C8—C9—C1156.40 (14)
C5—C6—C7—C20.8 (2)C5—C8—C9—C1165.67 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.992.8107 (15)175
Symmetry code: (i) x+1, y1, z.

Experimental details

Crystal data
Chemical formulaC11H9NO2
Mr187.19
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.6089 (5), 6.0895 (3), 20.5135 (14)
β (°) 93.615 (2)
V3)948.59 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12108, 2778, 2109
Rint0.025
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.137, 1.04
No. of reflections2778
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.21

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.992.8107 (15)175
Symmetry code: (i) x+1, y1, z.
 

Acknowledgements

CMS and KS thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the X-ray intensity data collection and Dr V. Murugan, Head of the Department of Physics, for providing facilities in the department to carry out this work.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCobo, D., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2005). Acta Cryst. E61, o3639–o3641.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNizam Mohideen, M., Kannan, P. S., Subbiah Pandi, A., Ramesh, E. & Raghunathan, R. (2007). Acta Cryst. E63, o4756.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOhsumi, K., Nakagawa, R., Fukuda, Y., Hatanaka, T., Morinaga, Y., Nihei, Y., Ohishi, K., Suga, Y., Akiyama, Y. & Tsuji, T. (1998). J. Med. Chem. 41, 3022–3032.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds