metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[(μ4-benzene-1,3,5-tri­carboxyl­ato)bis­­(N,N-di­methyl­formamide)­cerium(III)]

aThe Department of Physics–Chemistry, Henan Polytechnic University, Jiaozuo 454000, People's Republic of China
*Correspondence e-mail: lizhongyue@hpu.edu.cn

(Received 3 June 2011; accepted 13 June 2011; online 6 July 2011)

The asymmetric unit of the title rare earth coordination polymer, [Ce(C9H3O6)(C3H7NO)2]n, contains one eight-coordinated Ce3+ ion, one benzene-1,3,5-tricarboxyl­ate (BTC) ligand and two coordinated N,N-dimethyl­formamide (DMF) mol­ecules. The Ce3+ ion is coordinated by six O atoms from four carboxyl­ate groups of the BTC ligands and by two O atoms from two terminal DMF mol­ecules.

Related literature

Metal-organic framework (MOF) design and construction is currently a flourishing field of research owing to the intriguing mol­ecular topologies and the potentially exploitable adsorption, catalytic, fluorescence, and magnetic properties, see: Chen et al. (2006[Chen, B. L., Liang, C. D., Yang, J., Contreras, D. S., Clancy, Y. L., Lobkovsky, E. B., Yaghi, O. M. & Dai, S. (2006). Angew. Chem. Int. Ed. 45, 1390-1393.]); Serre et al. (2007[Serre, C., Mellot-Draznieks, C., Surblé, S., Audebrand, N., Filinchuk, Y. & Férey, G. (2007). Science, 315, 1828-1831.]); Zhang et al. (2007[Zhang, J., Liu, R., Feng, P. Y. & Bu, X. H. (2007). Angew. Chem. Int. Ed. 46, 8388-8391.]). As functional metal centers, rare earth metals are attracting increasing attention from synthesis chemists for their coordination properties and special chemical characteristics arising from 4f electrons and their propensity to form isostructural complexes, see: Thirumurugan et al. (2004[Thirumurugan, A. & Natarajan, S. (2004). Dalton Trans. pp. 2923-2928.]); Long et al. (2001[Long, D. L., Blake, A. J., Champness, N. R., Wilson, C. & Schroder, M. (2001). Angew. Chem. Int. Ed. 40, 2443-2447.]).

[Scheme 1]

Experimental

Crystal data
  • [Ce(C9H3O6)(C3H7NO)2]

  • Mr = 493.43

  • Monoclinic, P 21 /n

  • a = 10.6994 (11) Å

  • b = 13.6773 (14) Å

  • c = 12.1961 (13) Å

  • β = 101.574 (2)°

  • V = 1748.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.65 mm−1

  • T = 298 K

  • 0.8 × 0.6 × 0.5 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison,, Wisconsin, USA.]) Tmin = 0.226, Tmax = 0.351

  • 9223 measured reflections

  • 3087 independent reflections

  • 2516 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.076

  • S = 1.02

  • 3087 reflections

  • 239 parameters

  • H-atom parameters constrained

  • Δρmax = 1.14 e Å−3

  • Δρmin = −1.05 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison,, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison,, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Serre, C., Mellot-Draznieks, C., Surblé, S., Audebrand, N., Filinchuk, Y. & Férey, G. (2007). Science, 315, 1828-1831.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Related literature top

Metal-organic framework (MOF) design and construction is currently a flourishing field of research owing to the intriguing molecular topologies and the potentially exploitable adsorption, catalytic, fluorescence, and magnetic properties, see: Chen et al. (2006); Serre et al. (2007); Zhang et al. (2007). As functional metal centers, rare earth metals are attracting increasing attention from synthesis chemists for their coordination properties and special chemical characteristics arising from 4f electrons and their propensity to form isostructural complexes, see: Thirumurugan et al.( 2004); Long et al. (2001).

Experimental top

All reagents were of analytical grade. A mixture of cerium nitrate (40 mg, 0.10 mmol) and µ3-benzene-1,3,5-tricarboxylate acid(H3BTC) (10 mg, 0.05 mmol) was dissolved in N,N'-dimethylformamide (DMF) (10 mL) and isopropanol (2 mL) at room temperature, two drops of triethylamine was added, then some nitric acid(2M) was added utill the solution is clear. This mixture was placed in a 20 mL test tube. Then a small vial containing triethylamine (0.1 mL) and DMF (1.5 mL) was put in the test tube. The test tube was left undisturbed at room temprature for 15 days.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93 Å.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Coordination environment of Ce in the compound with nonhydrogen atoms represented by thermal ellipsoids draw at 30 % probability level.
Poly[(µ4-benzene-1,3,5-tricarboxylato)bis(N,N- dimethylformamide)cerium(III)] top
Crystal data top
[Ce(C9H3O6)(C3H7NO)2]Z = 4
Mr = 493.43F(000) = 972
Monoclinic, P21/nDx = 1.874 Mg m3
a = 10.6994 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.6773 (14) ŵ = 2.65 mm1
c = 12.1961 (13) ÅT = 298 K
β = 101.574 (2)°Rod, colorless
V = 1748.5 (3) Å30.8 × 0.6 × 0.5 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3087 independent reflections
Radiation source: fine-focus sealed tube2516 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
ϕ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 912
Tmin = 0.226, Tmax = 0.351k = 1616
9223 measured reflectionsl = 1314
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0173P)2]
where P = (Fo2 + 2Fc2)/3
3087 reflections(Δ/σ)max = 0.008
239 parametersΔρmax = 1.14 e Å3
0 restraintsΔρmin = 1.05 e Å3
Crystal data top
[Ce(C9H3O6)(C3H7NO)2]V = 1748.5 (3) Å3
Mr = 493.43Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.6994 (11) ŵ = 2.65 mm1
b = 13.6773 (14) ÅT = 298 K
c = 12.1961 (13) Å0.8 × 0.6 × 0.5 mm
β = 101.574 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3087 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2516 reflections with I > 2σ(I)
Tmin = 0.226, Tmax = 0.351Rint = 0.059
9223 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 1.02Δρmax = 1.14 e Å3
3087 reflectionsΔρmin = 1.05 e Å3
239 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ce10.62306 (3)1.03609 (3)0.39566 (3)0.01481 (11)
C10.6993 (6)0.9240 (4)0.6584 (5)0.0170 (15)
C20.8218 (6)0.8724 (4)0.7133 (6)0.0188 (15)
C30.9313 (6)0.8882 (4)0.6695 (5)0.0189 (15)
H30.92850.93090.60960.023*
C41.0448 (6)0.8403 (4)0.7153 (5)0.0174 (15)
C51.0469 (6)0.7730 (4)0.7994 (5)0.0179 (15)
H51.12100.73780.82640.021*
C60.9388 (6)0.7571 (4)0.8446 (5)0.0178 (15)
C70.8280 (6)0.8097 (4)0.8014 (5)0.0206 (15)
H70.75670.80180.83340.025*
C80.9393 (6)0.6846 (5)0.9368 (6)0.0184 (15)
C90.8386 (6)1.1342 (4)0.3310 (6)0.0189 (15)
C100.8855 (7)0.8868 (5)0.3589 (7)0.0347 (19)
H100.94230.87520.42600.042*
C110.8492 (8)0.9013 (7)0.1589 (7)0.068 (3)
H11A0.77490.93680.16900.102*
H11B0.82360.84080.12120.102*
H11C0.89590.93960.11480.102*
C121.0614 (7)0.8523 (6)0.2683 (8)0.061 (3)
H12A1.10290.90180.23270.091*
H12B1.06220.79150.22900.091*
H12C1.10570.84440.34450.091*
C130.4387 (8)0.9287 (5)0.1597 (7)0.038 (2)
H130.37290.93780.19820.046*
C140.2840 (8)0.8444 (6)0.0187 (8)0.068 (3)
H14A0.28500.77430.02060.102*
H14B0.25750.86620.05730.102*
H14C0.22550.86840.06270.102*
C150.5082 (8)0.8594 (6)0.0012 (7)0.053 (2)
H15A0.58380.89650.03030.080*
H15B0.47750.87610.07590.080*
H15C0.52780.79090.00720.080*
N10.9291 (6)0.8814 (4)0.2665 (6)0.0356 (16)
N20.4117 (6)0.8815 (4)0.0643 (5)0.0374 (16)
O10.7104 (4)0.9890 (3)0.5883 (4)0.0250 (11)
O20.5978 (4)0.9001 (3)0.6867 (4)0.0263 (11)
O30.8522 (4)1.1009 (3)0.4277 (4)0.0268 (11)
O40.7289 (4)1.1428 (3)0.2671 (4)0.0289 (12)
O50.5116 (4)0.8900 (3)0.4415 (4)0.0241 (11)
O60.6335 (4)1.1973 (3)0.4976 (4)0.0270 (12)
O70.7738 (5)0.9063 (3)0.3633 (4)0.0406 (14)
O80.5433 (4)0.9618 (4)0.2023 (4)0.0342 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ce10.01096 (19)0.01648 (19)0.0170 (2)0.00043 (18)0.00285 (13)0.00011 (19)
C10.012 (4)0.018 (4)0.019 (4)0.001 (3)0.001 (3)0.005 (3)
C20.012 (4)0.017 (4)0.026 (4)0.001 (3)0.000 (3)0.002 (3)
C30.020 (4)0.016 (3)0.021 (4)0.001 (3)0.004 (3)0.006 (3)
C40.020 (4)0.011 (3)0.021 (4)0.001 (3)0.005 (3)0.002 (3)
C50.010 (4)0.017 (4)0.025 (4)0.000 (3)0.001 (3)0.004 (3)
C60.016 (4)0.015 (4)0.022 (4)0.002 (3)0.003 (3)0.003 (3)
C70.016 (4)0.026 (4)0.021 (4)0.001 (3)0.005 (3)0.005 (3)
C80.013 (4)0.016 (4)0.026 (4)0.005 (3)0.003 (3)0.002 (3)
C90.015 (4)0.015 (4)0.029 (4)0.004 (3)0.009 (3)0.000 (3)
C100.032 (5)0.024 (4)0.047 (6)0.007 (4)0.004 (4)0.011 (4)
C110.068 (7)0.096 (8)0.037 (6)0.023 (6)0.006 (5)0.025 (6)
C120.032 (5)0.060 (6)0.097 (8)0.011 (4)0.029 (5)0.020 (6)
C130.044 (5)0.041 (5)0.029 (5)0.003 (4)0.004 (4)0.001 (4)
C140.069 (7)0.071 (7)0.053 (7)0.018 (5)0.014 (5)0.015 (5)
C150.075 (7)0.043 (5)0.039 (6)0.004 (4)0.006 (5)0.006 (4)
N10.029 (4)0.030 (4)0.049 (5)0.005 (3)0.011 (3)0.013 (3)
N20.043 (4)0.040 (4)0.024 (4)0.005 (3)0.004 (3)0.005 (3)
O10.023 (3)0.024 (3)0.025 (3)0.002 (2)0.002 (2)0.010 (2)
O20.012 (3)0.039 (3)0.029 (3)0.003 (2)0.005 (2)0.008 (2)
O30.021 (3)0.036 (3)0.026 (3)0.002 (2)0.008 (2)0.004 (2)
O40.012 (3)0.042 (3)0.032 (3)0.003 (2)0.003 (2)0.009 (2)
O50.019 (3)0.019 (3)0.035 (3)0.004 (2)0.007 (2)0.007 (2)
O60.030 (3)0.025 (3)0.030 (3)0.008 (2)0.016 (2)0.007 (2)
O70.028 (3)0.036 (3)0.060 (4)0.003 (2)0.015 (3)0.012 (3)
O80.031 (3)0.036 (3)0.031 (3)0.002 (3)0.002 (2)0.011 (3)
Geometric parameters (Å, º) top
Ce1—O12.434 (4)C9—O31.245 (8)
Ce1—O52.448 (4)C9—O41.278 (7)
Ce1—O72.483 (5)C9—C4iii1.511 (8)
Ce1—O62.522 (4)C10—O71.236 (7)
Ce1—O2i2.531 (4)C10—N11.306 (9)
Ce1—O82.553 (5)C10—H100.9300
Ce1—O32.562 (4)C11—N11.441 (10)
Ce1—O42.565 (4)C11—H11A0.9600
Ce1—O5i2.862 (4)C11—H11B0.9600
Ce1—C92.910 (6)C11—H11C0.9600
Ce1—C8ii3.049 (6)C12—N11.466 (8)
Ce1—Ce1i4.1322 (7)C12—H12A0.9600
C1—O21.247 (7)C12—H12B0.9600
C1—O11.256 (7)C12—H12C0.9600
C1—C21.520 (8)C13—O81.222 (8)
C2—C71.367 (8)C13—N21.311 (9)
C2—C31.399 (8)C13—H130.9300
C3—C41.394 (8)C14—N21.459 (9)
C3—H30.9300C14—H14A0.9600
C4—C51.374 (8)C14—H14B0.9600
C4—C9iii1.511 (8)C14—H14C0.9600
C5—C61.394 (8)C15—N21.438 (9)
C5—H50.9300C15—H15A0.9600
C6—C71.397 (8)C15—H15B0.9600
C6—C81.498 (8)C15—H15C0.9600
C7—H70.9300O2—Ce1i2.531 (4)
C8—O6iv1.236 (7)O5—C8vi1.276 (7)
C8—O5v1.276 (7)O5—Ce1i2.862 (4)
C8—Ce1iv3.049 (6)O6—C8ii1.236 (7)
O1—Ce1—O570.96 (14)C4—C3—H3119.9
O1—Ce1—O780.11 (16)C2—C3—H3119.9
O5—Ce1—O779.29 (15)C5—C4—C3119.8 (6)
O1—Ce1—O677.59 (14)C5—C4—C9iii122.9 (6)
O5—Ce1—O6125.18 (13)C3—C4—C9iii117.3 (6)
O7—Ce1—O6137.51 (16)C4—C5—C6120.6 (6)
O1—Ce1—O2i128.43 (14)C4—C5—H5119.7
O5—Ce1—O2i85.03 (14)C6—C5—H5119.7
O7—Ce1—O2i140.18 (16)C5—C6—C7118.7 (6)
O6—Ce1—O2i80.79 (15)C5—C6—C8121.4 (5)
O1—Ce1—O8141.15 (15)C7—C6—C8119.9 (5)
O5—Ce1—O878.37 (15)C2—C7—C6121.5 (6)
O7—Ce1—O871.08 (16)C2—C7—H7119.2
O6—Ce1—O8140.98 (15)C6—C7—H7119.2
O2i—Ce1—O870.00 (14)O6iv—C8—O5v122.6 (6)
O1—Ce1—O376.95 (14)O6iv—C8—C6119.1 (6)
O5—Ce1—O3137.95 (14)O5v—C8—C6118.3 (5)
O7—Ce1—O368.89 (15)O6iv—C8—Ce1iv53.7 (3)
O6—Ce1—O371.07 (14)O5v—C8—Ce1iv69.4 (3)
O2i—Ce1—O3136.88 (14)C6—C8—Ce1iv167.4 (4)
O8—Ce1—O3114.27 (14)O3—C9—O4122.0 (6)
O1—Ce1—O4127.54 (14)O3—C9—C4iii119.4 (6)
O5—Ce1—O4153.98 (15)O4—C9—C4iii118.5 (6)
O7—Ce1—O485.95 (15)O3—C9—Ce161.5 (3)
O6—Ce1—O479.79 (14)O4—C9—Ce161.7 (3)
O2i—Ce1—O493.02 (14)C4iii—C9—Ce1165.2 (4)
O8—Ce1—O476.61 (15)O7—C10—N1124.5 (8)
O3—Ce1—O450.97 (14)O7—C10—H10117.8
O1—Ce1—O5i64.72 (13)N1—C10—H10117.8
O5—Ce1—O5i78.09 (14)N1—C11—H11A109.5
O7—Ce1—O5i142.78 (15)N1—C11—H11B109.5
O6—Ce1—O5i47.78 (12)H11A—C11—H11B109.5
O2i—Ce1—O5i66.03 (13)N1—C11—H11C109.5
O8—Ce1—O5i131.33 (13)H11A—C11—H11C109.5
O3—Ce1—O5i111.80 (13)H11B—C11—H11C109.5
O4—Ce1—O5i124.65 (13)N1—C12—H12A109.5
O1—Ce1—C9102.23 (17)N1—C12—H12B109.5
O5—Ce1—C9152.48 (15)H12A—C12—H12B109.5
O7—Ce1—C973.23 (16)N1—C12—H12C109.5
O6—Ce1—C976.78 (15)H12A—C12—H12C109.5
O2i—Ce1—C9117.46 (17)H12B—C12—H12C109.5
O8—Ce1—C993.97 (17)O8—C13—N2125.4 (7)
O3—Ce1—C925.29 (16)O8—C13—H13117.3
O4—Ce1—C926.02 (16)N2—C13—H13117.3
O5i—Ce1—C9124.18 (15)N2—C14—H14A109.5
O1—Ce1—C8ii67.83 (15)N2—C14—H14B109.5
O5—Ce1—C8ii102.05 (15)H14A—C14—H14B109.5
O7—Ce1—C8ii145.03 (17)N2—C14—H14C109.5
O6—Ce1—C8ii23.26 (14)H14A—C14—H14C109.5
O2i—Ce1—C8ii73.98 (16)H14B—C14—H14C109.5
O8—Ce1—C8ii143.82 (16)N2—C15—H15A109.5
O3—Ce1—C8ii89.90 (15)N2—C15—H15B109.5
O4—Ce1—C8ii102.32 (16)H15A—C15—H15B109.5
O5i—Ce1—C8ii24.66 (13)N2—C15—H15C109.5
C9—Ce1—C8ii99.56 (17)H15A—C15—H15C109.5
O1—Ce1—Ce1i60.72 (10)H15B—C15—H15C109.5
O5—Ce1—Ce1i42.67 (9)C10—N1—C11121.7 (7)
O7—Ce1—Ce1i116.20 (11)C10—N1—C12120.9 (7)
O6—Ce1—Ce1i82.87 (9)C11—N1—C12117.3 (6)
O2i—Ce1—Ce1i70.56 (10)C13—N2—C15121.6 (7)
O8—Ce1—Ce1i109.76 (11)C13—N2—C14122.2 (7)
O3—Ce1—Ce1i134.19 (10)C15—N2—C14116.2 (7)
O4—Ce1—Ce1i157.85 (10)C1—O1—Ce1140.8 (4)
O5i—Ce1—Ce1i35.43 (8)C1—O2—Ce1i126.5 (4)
C9—Ce1—Ce1i156.13 (14)C9—O3—Ce193.2 (4)
C8ii—Ce1—Ce1i59.61 (12)C9—O4—Ce192.3 (4)
O2—C1—O1125.5 (6)C8vi—O5—Ce1164.1 (4)
O2—C1—C2118.6 (6)C8vi—O5—Ce1i85.9 (3)
O1—C1—C2115.9 (5)Ce1—O5—Ce1i101.90 (14)
C7—C2—C3119.0 (6)C8ii—O6—Ce1103.0 (4)
C7—C2—C1122.6 (5)C10—O7—Ce1145.6 (4)
C3—C2—C1118.3 (6)C13—O8—Ce1130.4 (5)
C4—C3—C2120.2 (6)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+3/2, y+1/2, z+3/2; (iii) x+2, y+2, z+1; (iv) x+3/2, y1/2, z+3/2; (v) x+1/2, y+3/2, z+1/2; (vi) x1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Ce(C9H3O6)(C3H7NO)2]
Mr493.43
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)10.6994 (11), 13.6773 (14), 12.1961 (13)
β (°) 101.574 (2)
V3)1748.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.65
Crystal size (mm)0.8 × 0.6 × 0.5
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.226, 0.351
No. of measured, independent and
observed [I > 2σ(I)] reflections
9223, 3087, 2516
Rint0.059
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.076, 1.02
No. of reflections3087
No. of parameters239
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.14, 1.05

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We thank the Open Research Fund of the State Key Laboratory of Inorganic Synthesis and Preparative Chemistry (grant No. 2011–08).

References

First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison,, Wisconsin, USA.  Google Scholar
First citationChen, B. L., Liang, C. D., Yang, J., Contreras, D. S., Clancy, Y. L., Lobkovsky, E. B., Yaghi, O. M. & Dai, S. (2006). Angew. Chem. Int. Ed. 45, 1390–1393.  Web of Science CSD CrossRef CAS Google Scholar
First citationLong, D. L., Blake, A. J., Champness, N. R., Wilson, C. & Schroder, M. (2001). Angew. Chem. Int. Ed. 40, 2443–2447.  CrossRef Google Scholar
First citationSerre, C., Mellot-Draznieks, C., Surblé, S., Audebrand, N., Filinchuk, Y. & Férey, G. (2007). Science, 315, 1828–1831.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThirumurugan, A. & Natarajan, S. (2004). Dalton Trans. pp. 2923–2928.  Web of Science CSD CrossRef Google Scholar
First citationZhang, J., Liu, R., Feng, P. Y. & Bu, X. H. (2007). Angew. Chem. Int. Ed. 46, 8388–8391.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds