organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-[(carbamoyl­amino)­imino]­propano­ate hemihydrate

aNúcleo de Espectroscopia e Estrutura Molecular (NEEM), Department of Chemistry - Federal University of Juiz de Fora - Minas Gerais, 36036-900, Brazil, and bDepartment of Chemistry - Federal University of Juiz de Fora - Minas Gerais, 36036-900, Brazil
*Correspondence e-mail: charcorrea@gmail.com

(Received 7 June 2011; accepted 27 June 2011; online 2 July 2011)

The title compound, C6H11N3O3·0.5H2O, has two independent mol­ecules and one mol­ecule of water in the asymmetric unit. The crystal packing is stabilized by inter­molecular N—H⋯N, O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds. These inter­actions form a two-dimensional array in the ab plane with a zigzag motif which has an angle close to 35° between the zigzag planes. The hydrogen bonding can be best described using the graph-set notation as N1 = C(10)R22(10)R22(8) and N2 = R64(20)R22(8).

Related literature

For the synthesis and applications of ethyl pyruvate semicarbazone, see: Kulka (1946[Kulka, M. (1946). Can. J. Res. 24B, 221—223.]); Dimmock et al. (1993[Dimmock, J. R., Sidhu, K. K., Thayer, R. S., Mack, P., Dutty, M. J., Reid, R. S. & Quail, J. W. (1993). J. Med. Chem. 36, 2243-2252.]); Cerecetto et al. (2000[Cerecetto, H., Di Maio, R., Gonzalez, M., Risso, M., Sagrera, G., Seoane, G., Denicola, A., Peluffo, G., Quijano, C., Stoppani, A. O. M., Paulino, M., Olea-Azar, C. & Basombrio, M. A. (2000). Eur. J. Med. Chem. 35, 343-350.]); Armor (1992[Armor, J. N. (1992). Appl. Catal. B10, 221-256.]). For hydrogen-bond motifs, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C6H11N3O3·0.5H2O

  • Mr = 182.19

  • Monoclinic, P 21 /n

  • a = 11.173 (2) Å

  • b = 14.756 (3) Å

  • c = 11.565 (2) Å

  • β = 103.14 (3)°

  • V = 1856.8 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.21 × 0.10 × 0.09 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 18093 measured reflections

  • 4228 independent reflections

  • 1816 reflections with I > 2σ(I)

  • Rint = 0.109

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.137

  • S = 1.00

  • 4228 reflections

  • 255 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4N1⋯O1 0.85 (3) 2.19 (3) 3.030 (3) 166 (3)
N1—H1N1⋯O4 0.86 (3) 2.14 (3) 2.989 (3) 169 (3)
N2—H2N⋯O4i 0.84 (2) 2.09 (2) 2.920 (3) 169 (2)
N4—H4N2⋯O7ii 0.92 (3) 2.05 (3) 2.950 (3) 169 (3)
N1—H1N2⋯N3 0.88 (3) 2.31 (3) 2.656 (3) 103.5 (18)
N1—H1N2⋯O7 0.88 (3) 2.10 (3) 2.955 (3) 163 (3)
N5—H5N⋯O1iii 0.84 (2) 2.11 (2) 2.935 (3) 167 (2)
O7—H7A⋯O2 0.92 1.92 2.809 (3) 163
O7—H7B⋯O5iv 0.88 2.01 2.826 (3) 153
C6—H6C⋯O4i 0.96 2.47 3.397 (3) 162
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: COLLECT (Hooft, 1999[Hooft, R. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; program(s) used to refine structure: SHELXL97 (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006)[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]; software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Semicarbazones have been important in the consistent advances in design of novel anticonvulsant agents through the work of Dimmock et al. (Dimmock,1993); the aryl semicarbazone 4-bromobenzaldehyde semicarbazone has been a standard anticonvulsant drug selected by the National Institutes of Health, USA. They can also be used as drugs for Chagas's disease (Cerecetto, 2000) as well as hypnotic, pesticide and herbicide uses (Armor, 1992). The synthesis of ethyl pyruvate semicarbazone (spe) (Scheme I) was reported more than 60 years (Kulka, 1946); but to date the structure determination has not been reported. This structure will permit further study of the metal coordination properties of these interesting ligands.

Figure 1 shows the ORTEP representation of the asymmetric unit of spe. There are two crystallographically independent molecules and one water of crystallization in the asymmetric unit. The main differences between these molecules are the distances involved in the hydrogen bonds between [O4···H1N1···N1 = 2.989 (3) Å; O1···H4N1···N4 = 3.030 (3) Å; O7···H1N2···N1 = 2.955 (3) Å and O7i···H4N2···N4 = 2.950 (3) Å] (symmetry code: i: x - 1/2, -y + 1/2, z + 1/2) and also by the torsion angles between the groups CH3 and CH2 [C10—O6—C9—O5 = 0.8 (4)° and C4—O3—C3—O2 =-1.3 (4)°; C10—O6—C9—C8 = -179.00 (2)° and C4—O3—C3—C2 = 179,60 (2)°; C12—C8—C9—O5 = -178.90 (3)° and C6—C2—C3—O2 = - 173.10 (3)°; C12—C8—C9—O6 = 1.0 (4)° and C6—C2—C3—O3 = 6.0 (3)°]. The water molecule of crystallization stabilizes the crystal lattice by the intermolecular hydrogen bonds N—H···N, O—H···O and O—H···N, with average distances between the electronegative atoms of: 2.656 (3), 2.818 (3), 2.963 (3) Å, respectively. The hydrogen bonding scheme is displayed in Figure 2 and using the graph-set notation the system can be best described as N1=C(10)R22(10)R22(8) and N2=R64(20)R22(8) (Etter, 1990).

There are two isomeric forms for compounds derived from ethyl pyruvate semicarbazone namely the E and Z isomers. The present structure is clearly the E form, Figures 1 and 2. The molecules of spe form a two-dimensional array in the ab plane with a zigzag motif which has an angle close to 35° between the zigzag planes.

Related literature top

For the synthesis and applications of ethyl pyruvate semicarbazone, see: Kulka (1946); Dimmock et al. (1993); Cerecetto et al. (2000); Armor (1992). For hydrogen-bond motifs, see: Etter et al. (1990).

Experimental top

For the preparation of ethyl pyruvate semicarbazone spe, 50 ml of an aqueous solution of semicarbazide chloride (1.019 g, 9.14 mmol) was added to a 50 ml of an ethanolic solution of ethylpyruvate (1.060 g, 9.14 mmol) and amonium acetate (0.744 g, 9.66 mmol), and the final mixture was heated at 80 °C for 6 h. Colorless crystals were formed. The compound decomposes at 175 °C. Elemental analysis gave the following results: Anal. Calcd. for C6H13O4N3: C,37,69; H,6,85; N,21,98%; Found: C,38,33; H,5,85; N,22,09%. Infrared spectra show absorption bands at 3506–3170 cm-1 (νNH + νOH); 1698 cm-1 (νCO); 1599 cm-1 (νNH + νCN + νCC); 1480 cm-1(νCOasym); 1357 cm-1 (νCN); 1144 cm-1 (νCOsym) and 1103 cm-1 (νCOC).

Refinement top

C-bound H atoms were included using the riding model approximation with C—H = 0.95 Å, with a common U_iso_(H). The H atoms of the water molecule were located from an electron density map, fixed in these positions and assigned the same isotropic displacement as the other H atoms.

Computing details top

Data collection: COLLECT (Hooft, 1999); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View ORTEP of crystal structure of compound spe.
[Figure 2] Fig. 2. Hydrogen bonds between molecules of ethyl pyruvate semicarbazone and the water molecule, elucidating the ring formed by hydrogen bonds.
[Figure 3] Fig. 3. Crystal packing of compound spe, viewed along the c axis.
Ethyl 2-[(carbamoylamino)imino]propanoate hydrate top
Crystal data top
C6H11N3O3·0.5H2OF(000) = 776
Mr = 182.19Dx = 1.303 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 33 reflections
a = 11.173 (2) Åθ = 4.5–18.2°
b = 14.756 (3) ŵ = 0.11 mm1
c = 11.565 (2) ÅT = 293 K
β = 103.14 (3)°Prism, colourless
V = 1856.8 (6) Å30.21 × 0.10 × 0.09 mm
Z = 8
Data collection top
Nonius KappaCCD
diffractometer
1816 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.109
Horizonally mounted graphite crystal monochromatorθmax = 27.5°, θmin = 5.2°
Detector resolution: 9 pixels mm-1h = 1314
CCD scansk = 1819
18093 measured reflectionsl = 1514
4228 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.059 w = 1/[σ2(Fo2) + (0.045P)2 + 0.5582P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.137(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.20 e Å3
4228 reflectionsΔρmin = 0.18 e Å3
255 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0059 (11)
Primary atom site location: structure-invariant direct methodsAbsolute structure: no
Secondary atom site location: difference Fourier map
Crystal data top
C6H11N3O3·0.5H2OV = 1856.8 (6) Å3
Mr = 182.19Z = 8
Monoclinic, P21/nMo Kα radiation
a = 11.173 (2) ŵ = 0.11 mm1
b = 14.756 (3) ÅT = 293 K
c = 11.565 (2) Å0.21 × 0.10 × 0.09 mm
β = 103.14 (3)°
Data collection top
Nonius KappaCCD
diffractometer
1816 reflections with I > 2σ(I)
18093 measured reflectionsRint = 0.109
4228 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.20 e Å3
4228 reflectionsΔρmin = 0.18 e Å3
255 parametersAbsolute structure: no
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N60.63805 (17)0.15088 (15)0.54625 (17)0.0361 (5)
O40.88839 (14)0.22111 (13)0.43482 (14)0.0462 (5)
O11.12914 (15)0.27042 (14)0.71551 (14)0.0482 (5)
N50.70387 (18)0.17912 (16)0.4671 (2)0.0387 (6)
N21.31214 (18)0.31483 (16)0.6804 (2)0.0394 (6)
N31.37693 (17)0.34035 (15)0.59917 (16)0.0347 (5)
O60.34452 (15)0.08529 (13)0.56959 (15)0.0493 (5)
O31.66804 (14)0.40150 (13)0.56711 (15)0.0451 (5)
O71.25278 (16)0.33845 (15)0.32243 (15)0.0577 (6)
H7A1.32240.36720.36430.087*
H7B1.19330.37540.28760.087*
C80.5218 (2)0.13447 (18)0.5091 (2)0.0339 (6)
N11.1427 (2)0.29295 (18)0.52453 (19)0.0458 (7)
C11.1895 (2)0.29159 (18)0.6407 (2)0.0337 (6)
C21.4919 (2)0.36056 (17)0.6338 (2)0.0333 (6)
C70.8274 (2)0.19917 (18)0.5083 (2)0.0370 (7)
O50.51752 (17)0.09562 (17)0.71042 (17)0.0733 (7)
O21.49015 (16)0.39939 (15)0.42999 (16)0.0612 (6)
N40.8733 (2)0.19408 (19)0.6242 (2)0.0503 (7)
C90.4642 (2)0.10351 (19)0.6078 (2)0.0420 (7)
C31.5468 (2)0.38847 (19)0.5318 (2)0.0397 (7)
C100.2801 (2)0.0561 (2)0.6597 (3)0.0576 (9)
H10A0.28500.10260.71990.069*
H10B0.31670.00100.69780.069*
C120.4459 (2)0.1434 (2)0.3850 (2)0.0542 (8)
H12A0.49310.12390.32980.081*
H12B0.42230.20560.36960.081*
H12C0.37360.10650.37590.081*
C110.1485 (3)0.0396 (2)0.5977 (3)0.0725 (10)
H11A0.11410.09410.55840.109*
H11B0.10260.02210.65490.109*
H11C0.14460.00790.54030.109*
C51.8633 (3)0.4440 (2)0.5311 (3)0.0700 (10)
H5A1.87050.49410.58520.105*
H5B1.90750.45750.47090.105*
H5C1.89710.39060.57350.105*
C41.7302 (2)0.4283 (2)0.4739 (3)0.0533 (8)
H4A1.69360.48330.43540.064*
H4B1.72230.38090.41450.064*
C61.5688 (2)0.3594 (2)0.7578 (2)0.0595 (9)
H6A1.61200.41590.77420.089*
H6B1.62700.31060.76610.089*
H6C1.51690.35090.81260.089*
H2N1.344 (2)0.3065 (15)0.753 (2)0.026 (7)*
H4N10.949 (3)0.2061 (19)0.653 (2)0.061 (9)*
H1N11.066 (3)0.2794 (19)0.501 (2)0.055 (9)*
H5N0.672 (2)0.1881 (19)0.395 (2)0.056 (9)*
H4N20.826 (3)0.1839 (18)0.678 (2)0.051 (8)*
H1N21.190 (3)0.3057 (18)0.475 (2)0.048 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N60.0261 (11)0.0499 (15)0.0330 (12)0.0012 (10)0.0084 (9)0.0002 (10)
O40.0291 (9)0.0795 (15)0.0315 (10)0.0106 (10)0.0100 (8)0.0059 (10)
O10.0293 (9)0.0856 (16)0.0318 (10)0.0126 (10)0.0115 (8)0.0038 (10)
N50.0262 (11)0.0616 (17)0.0279 (12)0.0037 (11)0.0054 (10)0.0026 (12)
N20.0243 (11)0.0687 (18)0.0248 (12)0.0053 (11)0.0048 (9)0.0055 (12)
N30.0262 (11)0.0472 (15)0.0316 (12)0.0042 (10)0.0082 (9)0.0021 (10)
O60.0295 (9)0.0687 (14)0.0507 (11)0.0117 (10)0.0113 (8)0.0018 (10)
O30.0249 (9)0.0636 (14)0.0499 (11)0.0033 (9)0.0150 (8)0.0059 (10)
O70.0378 (10)0.0966 (16)0.0365 (9)0.0016 (11)0.0036 (8)0.0013 (11)
C80.0269 (13)0.0424 (17)0.0326 (14)0.0004 (12)0.0071 (11)0.0002 (12)
N10.0259 (12)0.081 (2)0.0305 (13)0.0111 (13)0.0063 (11)0.0008 (12)
C10.0244 (13)0.0485 (18)0.0287 (14)0.0020 (12)0.0071 (11)0.0032 (12)
C20.0227 (12)0.0410 (17)0.0366 (14)0.0009 (12)0.0073 (10)0.0007 (12)
C70.0266 (13)0.0505 (19)0.0336 (15)0.0015 (13)0.0062 (12)0.0056 (13)
O50.0409 (11)0.132 (2)0.0447 (12)0.0193 (13)0.0040 (10)0.0239 (13)
O20.0401 (11)0.1044 (18)0.0385 (11)0.0128 (12)0.0076 (9)0.0136 (11)
N40.0290 (13)0.093 (2)0.0281 (13)0.0114 (13)0.0049 (11)0.0015 (13)
C90.0288 (14)0.052 (2)0.0444 (17)0.0046 (13)0.0061 (12)0.0043 (14)
C30.0295 (14)0.0485 (19)0.0423 (16)0.0007 (13)0.0107 (12)0.0012 (14)
C100.0437 (17)0.071 (2)0.065 (2)0.0103 (16)0.0258 (15)0.0107 (17)
C120.0320 (15)0.084 (2)0.0445 (17)0.0064 (15)0.0040 (13)0.0101 (16)
C110.0404 (17)0.077 (3)0.106 (3)0.0113 (17)0.0272 (18)0.005 (2)
C50.0455 (17)0.081 (3)0.093 (2)0.0205 (17)0.0336 (17)0.013 (2)
C40.0407 (16)0.061 (2)0.066 (2)0.0024 (15)0.0293 (15)0.0131 (16)
C60.0288 (14)0.104 (3)0.0435 (17)0.0072 (16)0.0042 (13)0.0098 (17)
Geometric parameters (Å, º) top
N6—C81.295 (3)O7—H7B0.8700
N6—N51.363 (3)N1—H1N10.86 (3)
O4—C71.246 (3)N1—H1N20.88 (3)
O1—C11.252 (3)N2—H2N0.84 (2)
N5—C71.386 (3)N5—H5N0.84 (2)
N2—N31.363 (3)N4—H4N10.85 (3)
N2—C11.386 (3)N4—H4N20.92 (3)
N3—C21.291 (3)C5—H5C0.9600
O6—C91.337 (3)C5—H5A0.9600
O6—C101.460 (3)C5—H5B0.9600
O3—C31.337 (3)C4—H4A0.9700
O3—C41.463 (3)C4—H4B0.9700
C8—C121.498 (3)C6—H6C0.9600
C8—C91.503 (3)C6—H6A0.9600
N1—C11.326 (3)C6—H6B0.9600
C2—C61.495 (3)C11—H11A0.9600
C2—C31.505 (3)C11—H11B0.9600
C7—N41.324 (3)C11—H11C0.9600
O5—C91.207 (3)C10—H10A0.9700
O2—C31.215 (3)C10—H10B0.9700
C10—C111.502 (4)C12—H12A0.9600
C5—C41.502 (4)C12—H12B0.9600
O7—H7A0.9100C12—H12C0.9600
O1···N5i2.935 (3)O5···O7iv2.826 (3)
O1···C12i3.388 (3)O7···O5v2.826 (3)
O1···N43.030 (3)O7···N6v3.164 (3)
O2···C3ii3.201 (4)O7···O22.809 (3)
O2···O72.809 (3)O7···N12.955 (3)
O2···N32.704 (3)O7···N33.186 (3)
O4···N12.989 (3)O7···N4v2.950 (3)
O4···C6iii3.397 (3)N1···N32.656 (3)
O4···N2iii2.920 (3)N4···N62.655 (3)
O5···N62.692 (3)
C8—N6—N5119.2 (2)C7—N4—H4N1120.3 (16)
N6—N5—C7118.8 (2)C7—N4—H4N2123.1 (16)
N3—N2—C1118.7 (2)H5A—C5—H5B109.00
C2—N3—N2119.8 (2)H5B—C5—H5C109.00
C9—O6—C10116.3 (2)H5A—C5—H5C110.00
C3—O3—C4115.6 (2)C4—C5—H5C109.00
N6—C8—C12127.4 (2)C4—C5—H5B109.00
N6—C8—C9112.1 (2)O3—C4—H4A110.00
C12—C8—C9120.5 (2)O3—C4—H4B110.00
O1—C1—N1123.6 (2)H4A—C4—H4B109.00
O1—C1—N2118.7 (2)C5—C4—H4A110.00
N1—C1—N2117.7 (2)C5—C4—H4B110.00
N3—C2—C6127.6 (2)C2—C6—H6C109.00
N3—C2—C3112.0 (2)H6B—C6—H6A109.00
C6—C2—C3120.4 (2)C2—C6—H6B109.00
O4—C7—N4124.0 (2)H6B—C6—H6C110.00
O4—C7—N5118.5 (2)H6A—C6—H6C109.00
N4—C7—N5117.5 (2)C2—C6—H6A109.00
O5—C9—O6122.6 (2)C10—C11—H11A109.00
O5—C9—C8125.1 (2)C10—C11—H11B109.00
O6—C9—C8112.3 (2)H11A—C11—H11B109.00
O2—C3—O3123.1 (2)H11A—C11—H11C109.00
O2—C3—C2125.5 (2)H11B—C11—H11C109.00
O3—C3—C2111.4 (2)C10—C11—H11C110.00
O6—C10—C11107.2 (2)O6—C10—H10A110.00
O3—C4—C5107.8 (2)C11—C10—H10A110.00
H7A—O7—H7B114.00C11—C10—H10B110.00
C1—N1—H1N2120.3 (18)O6—C10—H10B110.00
H1N1—N1—H1N2123 (2)C8—C12—H12B109.00
C1—N1—H1N1116.8 (16)C8—C12—H12C109.00
C1—N2—H2N117.1 (16)C8—C12—H12A109.00
N3—N2—H2N123.8 (16)H12A—C12—H12C109.00
C7—N5—H5N118.2 (16)H12B—C12—H12C109.00
N6—N5—H5N122.9 (16)H12A—C12—H12B110.00
C4—O3—C3—O21.3 (4)N6—N5—C7—O4176.9 (2)
C4—O3—C3—C2179.6 (2)N6—N5—C7—N43.4 (4)
C3—O3—C4—C5177.3 (2)N5—N6—C8—C9179.6 (2)
C10—O6—C9—C8179.0 (2)N5—N6—C8—C120.5 (4)
C9—O6—C10—C11180.0 (3)N3—C2—C3—O26.4 (4)
C10—O6—C9—O50.8 (4)C6—C2—C3—O2173.1 (3)
C1—N2—N3—C2178.6 (2)C6—C2—C3—O36.0 (3)
N3—N2—C1—O1178.2 (2)N3—C2—C3—O3174.5 (2)
N3—N2—C1—N12.0 (4)N6—C8—C9—O51.0 (4)
N2—N3—C2—C60.4 (4)N6—C8—C9—O6179.1 (2)
N2—N3—C2—C3179.1 (2)C12—C8—C9—O5178.9 (3)
C7—N5—N6—C8178.1 (2)C12—C8—C9—O61.0 (4)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+3, y+1, z+1; (iii) x1/2, y+1/2, z1/2; (iv) x1/2, y+1/2, z+1/2; (v) x+1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4N1···O10.85 (3)2.19 (3)3.030 (3)166 (3)
N1—H1N1···O40.86 (3)2.14 (3)2.989 (3)169 (3)
N2—H2N···O4i0.84 (2)2.09 (2)2.920 (3)169 (2)
N4—H4N2···O7iv0.92 (3)2.05 (3)2.950 (3)169 (3)
N1—H1N2···N30.88 (3)2.31 (3)2.656 (3)103.5 (18)
N1—H1N2···O70.88 (3)2.10 (3)2.955 (3)163 (3)
N5—H5N···O1iii0.84 (2)2.11 (2)2.935 (3)167 (2)
O7—H7A···O20.921.922.809 (3)163
O7—H7B···O5v0.882.012.826 (3)153
C6—H6C···O4i0.962.473.397 (3)162
C6—H6C···N20.962.502.879 (3)103
C12—H12C···O60.962.362.770 (3)105
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z1/2; (iv) x1/2, y+1/2, z+1/2; (v) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC6H11N3O3·0.5H2O
Mr182.19
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.173 (2), 14.756 (3), 11.565 (2)
β (°) 103.14 (3)
V3)1856.8 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.21 × 0.10 × 0.09
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
18093, 4228, 1816
Rint0.109
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.137, 1.00
No. of reflections4228
No. of parameters255
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.18
Absolute structureNo

Computer programs: COLLECT (Hooft, 1999), SCALEPACK (Otwinowski & Minor, 1997), DENZO and SCALEPACK (Otwinowski & Minor 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4N1···O10.85 (3)2.19 (3)3.030 (3)166 (3)
N1—H1N1···O40.86 (3)2.14 (3)2.989 (3)169 (3)
N2—H2N···O4i0.84 (2)2.09 (2)2.920 (3)169 (2)
N4—H4N2···O7ii0.92 (3)2.05 (3)2.950 (3)169 (3)
N1—H1N2···N30.88 (3)2.31 (3)2.656 (3)103.5 (18)
N1—H1N2···O70.88 (3)2.10 (3)2.955 (3)163 (3)
N5—H5N···O1iii0.84 (2)2.11 (2)2.935 (3)167 (2)
O7—H7A···O20.921.922.809 (3)163
O7—H7B···O5iv0.882.012.826 (3)153
C6—H6C···O4i0.962.473.397 (3)162
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z1/2; (iv) x+1/2, y+1/2, z1/2.
 

Acknowledgements

The authors thank CNPq, CAPES, and FAPEMIG (Brazilian agencies) for financial support and also R. G. Bastos (LDRX-IF/UFF) for the X-ray diffraction facilities.

References

First citationArmor, J. N. (1992). Appl. Catal. B10, 221–256.  CrossRef Web of Science Google Scholar
First citationCerecetto, H., Di Maio, R., Gonzalez, M., Risso, M., Sagrera, G., Seoane, G., Denicola, A., Peluffo, G., Quijano, C., Stoppani, A. O. M., Paulino, M., Olea-Azar, C. & Basombrio, M. A. (2000). Eur. J. Med. Chem. 35, 343–350.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDimmock, J. R., Sidhu, K. K., Thayer, R. S., Mack, P., Dutty, M. J., Reid, R. S. & Quail, J. W. (1993). J. Med. Chem. 36, 2243–2252.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKulka, M. (1946). Can. J. Res. 24B, 221—223.  CrossRef Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds