organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Cyano-N′-(5-hy­dr­oxy-2-nitro­benzyl­­idene)acetohydrazide monohydrate

aCollege of Chemistry and Biology Engineering, Yancheng Institute of Technology, Yancheng 224051, People's Republic of China
*Correspondence e-mail: hbli@ycit.edu.cn

(Received 25 June 2011; accepted 28 June 2011; online 9 July 2011)

The title compound, C10H8N4O4·H2O, was obtained by the reaction of 5-hy­droxy-2-nitro­benzaldehyde with cyano­acetohydrazide in methanol. The non-H atoms of the hydrazone molecule are approximately coplanar, with a mean deviation from the least-squares plane of 0.056 Å. In the crystal, mol­ecules are linked by N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds, generating a three-dimensional network.

Related literature

For the structures of hydrazones, see: Wang et al. (2011[Wang, F., Liu, D.-Y., Wang, H.-B., Meng, X.-S. & Kang, T.-G. (2011). Acta Cryst. E67, o810.]); Hashemian et al. (2011[Hashemian, S., Ghaeinee, V. & Notash, B. (2011). Acta Cryst. E67, o171.]); Singh & Singh (2010[Singh, V. P. & Singh, S. (2010). Acta Cryst. E66, o1172.]); Ahmad et al. (2010[Ahmad, T., Zia-ur-Rehman, M., Siddiqui, H. L., Mahmud, S. & Parvez, M. (2010). Acta Cryst. E66, o1022.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8N4O4·H2O

  • Mr = 266.22

  • Monoclinic, P 21 /n

  • a = 4.663 (1) Å

  • b = 13.238 (2) Å

  • c = 19.305 (2) Å

  • β = 90.312 (3)°

  • V = 1191.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 298 K

  • 0.27 × 0.23 × 0.23 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.968, Tmax = 0.973

  • 8851 measured reflections

  • 2531 independent reflections

  • 1935 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.148

  • S = 1.04

  • 2531 reflections

  • 184 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5B⋯N4i 0.84 (1) 2.32 (2) 3.117 (4) 158 (3)
O5—H5A⋯O1ii 0.84 (1) 2.22 (2) 3.017 (3) 157 (3)
O4—H4⋯O5 0.86 (1) 1.85 (1) 2.700 (3) 170 (3)
N3—H3A⋯O3iii 0.90 (1) 1.98 (1) 2.880 (2) 177 (2)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) -x+2, -y+1, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, a great number of hydrazones derived from the reaction of benzaldehyde and its derivatives with benzohydrazides have been reported (Wang et al., 2011; Hashemian et al., 2011; Singh & Singh, 2010; Ahmad et al., 2010). To the best of our knowledge, the hydrazones derived from cyanoacetohydrazide have never been reported so far. In this paper, the title new hydrazone compound, (I), is reported.

The compound contains a hydrazone molecule and a water molecule (Fig. 1). The non-hydrogen atoms of the hydrazone molecule are approximately coplanar, with mean deviation from the least-squares plane of 0.056 (3) Å. In the crystal structure, molecules are linked by intermolecular N—H···O, O—H···O, and O—H···N hydrogen bonds (Table 1), generating a three-dimensional network (Fig. 2).

Related literature top

For the structures of hydrazones, see: Wang et al. (2011); Hashemian et al. (2011); Singh & Singh (2010); Ahmad et al. (2010).

Experimental top

The title compound was obtained by the reaction of equimolar quantities (1.0 mmol each) of 5-hydroxy-2-nitrobenzaldehyde with cyanoacetohydrazide in methanol. Single crystals suitable for X-ray diffraction were obtained by the slow evaporation of the solution containing the compound in open air.

Refinement top

H atoms bonded to N3, O4 and O5 atoms were located in a difference map and refined with distance restraints of O—H = 0.85 (1) Å, N—H = 0.90 (1) Å, and with Uiso(H) = 1.5Ueq(O) and 1.2Ueq(N). Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms. O—H···O hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The packing of (I), viewed down the a axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.
2-Cyano-N'-(5-hydroxy-2-nitrobenzylidene)acetohydrazide monohydrate top
Crystal data top
C10H8N4O4·H2OF(000) = 552
Mr = 266.22Dx = 1.484 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 4.663 (1) ÅCell parameters from 2122 reflections
b = 13.238 (2) Åθ = 2.6–26.6°
c = 19.305 (2) ŵ = 0.12 mm1
β = 90.312 (3)°T = 298 K
V = 1191.7 (3) Å3Block, colorless
Z = 40.27 × 0.23 × 0.23 mm
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2531 independent reflections
Radiation source: fine-focus sealed tube1935 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 27.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 55
Tmin = 0.968, Tmax = 0.973k = 1616
8851 measured reflectionsl = 2423
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0727P)2 + 0.3422P]
where P = (Fo2 + 2Fc2)/3
2531 reflections(Δ/σ)max = 0.001
184 parametersΔρmax = 0.43 e Å3
5 restraintsΔρmin = 0.20 e Å3
Crystal data top
C10H8N4O4·H2OV = 1191.7 (3) Å3
Mr = 266.22Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.663 (1) ŵ = 0.12 mm1
b = 13.238 (2) ÅT = 298 K
c = 19.305 (2) Å0.27 × 0.23 × 0.23 mm
β = 90.312 (3)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2531 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1935 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.973Rint = 0.028
8851 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0545 restraints
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.43 e Å3
2531 reflectionsΔρmin = 0.20 e Å3
184 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1870 (4)0.73554 (14)0.16790 (9)0.0507 (5)
N20.5017 (3)0.64853 (11)0.03310 (8)0.0366 (4)
N30.7235 (3)0.57994 (11)0.03500 (8)0.0369 (4)
N40.9875 (6)0.5194 (2)0.26634 (12)0.0898 (8)
O10.3932 (4)0.67914 (16)0.16953 (9)0.0813 (6)
O20.0556 (5)0.75595 (16)0.22076 (9)0.0877 (7)
O31.0378 (3)0.48653 (11)0.09451 (7)0.0476 (4)
O40.2421 (3)0.91461 (12)0.07021 (8)0.0574 (4)
O50.0680 (5)0.8597 (2)0.18259 (10)0.0919 (7)
C10.2056 (4)0.75195 (13)0.03818 (9)0.0350 (4)
C20.0916 (4)0.77958 (14)0.10307 (10)0.0403 (5)
C30.1218 (5)0.85279 (15)0.10828 (12)0.0481 (5)
H30.19210.87110.15170.058*
C40.2291 (5)0.89799 (15)0.05048 (12)0.0489 (5)
H4A0.37140.94690.05450.059*
C50.1244 (4)0.87064 (14)0.01452 (11)0.0424 (5)
C60.0926 (4)0.79932 (13)0.01966 (10)0.0378 (4)
H60.16460.78280.06320.045*
C70.4343 (4)0.67707 (13)0.02755 (9)0.0362 (4)
H70.53020.65050.06550.043*
C80.8365 (4)0.54622 (14)0.09432 (10)0.0379 (4)
C90.7002 (5)0.58300 (19)0.16020 (10)0.0589 (6)
H9A0.69450.65620.16020.071*
H9B0.50470.55830.16280.071*
C100.8611 (6)0.54791 (19)0.21982 (12)0.0608 (6)
H3A0.804 (5)0.5585 (18)0.0045 (8)0.073*
H40.158 (6)0.891 (2)0.1062 (10)0.091*
H5A0.017 (5)0.839 (2)0.2181 (10)0.091*
H5B0.220 (4)0.889 (2)0.1943 (14)0.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0566 (12)0.0555 (11)0.0398 (10)0.0081 (9)0.0049 (8)0.0066 (8)
N20.0351 (9)0.0339 (8)0.0408 (9)0.0058 (6)0.0004 (7)0.0017 (6)
N30.0367 (9)0.0388 (8)0.0352 (8)0.0084 (7)0.0004 (6)0.0012 (6)
N40.1006 (19)0.117 (2)0.0512 (13)0.0011 (16)0.0282 (13)0.0015 (13)
O10.0820 (13)0.1149 (16)0.0470 (10)0.0336 (12)0.0046 (9)0.0139 (10)
O20.1152 (17)0.1065 (15)0.0413 (10)0.0179 (12)0.0188 (10)0.0071 (9)
O30.0456 (8)0.0548 (8)0.0423 (8)0.0165 (7)0.0015 (6)0.0026 (6)
O40.0541 (10)0.0521 (9)0.0661 (11)0.0165 (7)0.0021 (8)0.0071 (8)
O50.1056 (17)0.123 (2)0.0469 (10)0.0166 (14)0.0030 (10)0.0008 (11)
C10.0313 (10)0.0330 (9)0.0407 (10)0.0045 (7)0.0021 (8)0.0031 (7)
C20.0410 (11)0.0392 (10)0.0406 (10)0.0081 (8)0.0041 (8)0.0065 (8)
C30.0465 (12)0.0432 (11)0.0543 (12)0.0048 (9)0.0138 (10)0.0141 (9)
C40.0405 (12)0.0360 (10)0.0700 (14)0.0044 (8)0.0092 (10)0.0097 (10)
C50.0377 (11)0.0321 (9)0.0575 (12)0.0025 (8)0.0001 (9)0.0012 (8)
C60.0341 (10)0.0347 (9)0.0447 (10)0.0002 (8)0.0033 (8)0.0031 (8)
C70.0356 (10)0.0368 (9)0.0362 (10)0.0000 (8)0.0014 (7)0.0001 (7)
C80.0378 (11)0.0378 (10)0.0380 (10)0.0020 (8)0.0010 (8)0.0015 (8)
C90.0643 (15)0.0749 (16)0.0375 (11)0.0229 (12)0.0052 (10)0.0076 (10)
C100.0675 (16)0.0742 (16)0.0405 (12)0.0013 (13)0.0063 (11)0.0082 (11)
Geometric parameters (Å, º) top
N1—O21.218 (2)C1—C21.407 (3)
N1—O11.218 (2)C1—C71.470 (2)
N1—C21.453 (3)C2—C31.392 (3)
N2—C71.268 (2)C3—C41.363 (3)
N2—N31.377 (2)C3—H30.9300
N3—C81.335 (2)C4—C51.392 (3)
N3—H3A0.898 (10)C4—H4A0.9300
N4—C101.136 (3)C5—C61.387 (3)
O3—C81.227 (2)C6—H60.9300
O4—C51.343 (3)C7—H70.9300
O4—H40.856 (10)C8—C91.506 (3)
O5—H5A0.840 (10)C9—C101.447 (3)
O5—H5B0.839 (10)C9—H9A0.9700
C1—C61.387 (3)C9—H9B0.9700
O2—N1—O1120.5 (2)C5—C4—H4A120.2
O2—N1—C2118.5 (2)O4—C5—C6122.62 (18)
O1—N1—C2120.92 (17)O4—C5—C4117.80 (18)
C7—N2—N3113.79 (15)C6—C5—C4119.59 (19)
C8—N3—N2122.43 (15)C1—C6—C5122.01 (18)
C8—N3—H3A117.2 (17)C1—C6—H6119.0
N2—N3—H3A120.3 (17)C5—C6—H6119.0
C5—O4—H4108 (2)N2—C7—C1120.39 (17)
H5A—O5—H5B110 (2)N2—C7—H7119.8
C6—C1—C2117.14 (17)C1—C7—H7119.8
C6—C1—C7118.09 (16)O3—C8—N3121.08 (17)
C2—C1—C7124.77 (17)O3—C8—C9122.14 (17)
C3—C2—C1120.78 (19)N3—C8—C9116.76 (17)
C3—C2—N1116.07 (18)C10—C9—C8110.41 (19)
C1—C2—N1123.15 (18)C10—C9—H9A109.6
C4—C3—C2120.77 (19)C8—C9—H9A109.6
C4—C3—H3119.6C10—C9—H9B109.6
C2—C3—H3119.6C8—C9—H9B109.6
C3—C4—C5119.69 (19)H9A—C9—H9B108.1
C3—C4—H4A120.2N4—C10—C9179.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···N4i0.84 (1)2.32 (2)3.117 (4)158 (3)
O5—H5A···O1ii0.84 (1)2.22 (2)3.017 (3)157 (3)
O4—H4···O50.86 (1)1.85 (1)2.700 (3)170 (3)
N3—H3A···O3iii0.90 (1)1.98 (1)2.880 (2)177 (2)
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x1/2, y+3/2, z+1/2; (iii) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC10H8N4O4·H2O
Mr266.22
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)4.663 (1), 13.238 (2), 19.305 (2)
β (°) 90.312 (3)
V3)1191.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.27 × 0.23 × 0.23
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.968, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
8851, 2531, 1935
Rint0.028
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.148, 1.04
No. of reflections2531
No. of parameters184
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.20

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···N4i0.839 (10)2.323 (16)3.117 (4)158 (3)
O5—H5A···O1ii0.840 (10)2.224 (15)3.017 (3)157 (3)
O4—H4···O50.856 (10)1.854 (12)2.700 (3)170 (3)
N3—H3A···O3iii0.898 (10)1.983 (10)2.880 (2)177 (2)
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x1/2, y+3/2, z+1/2; (iii) x+2, y+1, z.
 

References

First citationAhmad, T., Zia-ur-Rehman, M., Siddiqui, H. L., Mahmud, S. & Parvez, M. (2010). Acta Cryst. E66, o1022.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHashemian, S., Ghaeinee, V. & Notash, B. (2011). Acta Cryst. E67, o171.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, V. P. & Singh, S. (2010). Acta Cryst. E66, o1172.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, F., Liu, D.-Y., Wang, H.-B., Meng, X.-S. & Kang, T.-G. (2011). Acta Cryst. E67, o810.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds