organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3′-(Ethane-1,2-di­yl)bis­­(6-methyl-3,4-di­hydro-2H-1,3-benzoxazine)

aDepartamento de Química, Universidad Nacional de Colombia, Ciudad, Universitaria, Bogotá, Colombia, and bInstitute of Physics, v.v.i, AS CR, Na Slovance 2, 182 21 Prague 8, Czech Republic
*Correspondence e-mail: ariverau@unal.edu.co

(Received 1 July 2011; accepted 6 July 2011; online 13 July 2011)

The asymmetric unit of the title compound, C20H24N2O2, contains one half-mol­ecule, which is completed by inversion symmetry. In the crystal, mol­ecular chains are formed through non-classical C—H⋯O hydrogen bonds, formed between axial H atoms of the oxazine ring and a O atom of a neighboring mol­ecule.

Related literature

For the synthesis, see: Rivera et al. (1994[Rivera, A., Gallo, G. I., Gayón, M. E. & Joseph-Nathan, P. (1994). Synth. Commun. 24, 2081-2084.]). For a related structure, see: Rivera et al. (2010[Rivera, A., Rojas, J. J., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2010). Acta Cryst. E66, o1134.]). For uses of benzoxazines in polymer science, see Yaggi et al. (2009[Yaggi, Y., Kiskan, B. & Ghosh, N. N. (2009). J. Polym. Sci. Part A Polym. Chem. 47, 5565-5576.]). For the biological activity of bis-benzoxazine compounds, see: Billmann & Dorman (1963[Billmann, J. H. & Dorman, L. C. (1963). J. Med. Chem. 6, 701-708.]); Heinisch et al. (2002[Heinisch, L., Wittmann, S., Stoiber, T., Berg, A., Ankel-Fuchs, D. & Mollmann, U. (2002). J. Med. Chem. 45, 3032-3039.]).

[Scheme 1]

Experimental

Crystal data
  • C20H24N2O2

  • Mr = 324.41

  • Monoclinic, P 21 /n

  • a = 8.5042 (1) Å

  • b = 5.8558 (1) Å

  • c = 16.5519 (2) Å

  • β = 95.899 (1)°

  • V = 819.90 (2) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.68 mm−1

  • T = 130 K

  • 0.50 × 0.33 × 0.20 mm

Data collection
  • Xcalibur, Atlas, Gemini ultra diffractometer

  • Absorption correction: analytical (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.384, Tmax = 0.668

  • 7156 measured reflections

  • 1452 independent reflections

  • 1429 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.087

  • S = 1.03

  • 1452 reflections

  • 111 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O1i 0.97 2.57 3.425 (1) 147
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In the title compound, C20H24N2O2, the asymmetric unit contains one-half of the molecule, which is related to the other half by a centre of inversion located at the mid-point of the central C12—C12a bond (see Fig.1). The unit cell contains two molecules. Unlike the related structure Rivera et al. (2010), which crystallized in space group C2/c the title compound crystallizes in the P21./n space group.

The molecule contains two 1,3-benzoxazine units linked by a CH2CH2 spacer at the 3 position of heterocyclic ring. The bond lengths and angles are within normal ranges, whereas the observed C—O bond length [1.376 (1) Å and 1.453 (1) Å] are considerably shortened in relation to related structure (Rivera et al., 2010) [1.421 (2) Å and 1.529 (2) Å]. The C—N bond length [1.429 (1) Å] in the N—CH2—O segment is more agreement with the typical than the related structure (Rivera et al., 2010) [1.369 (2) Å]. This information indicates minor influence of the anomeric effect in the title compound. The heterocyclic ring adopts a cyclohexene-like half chair conformation. In the crystal structure, molecules are linked by non clasical intermolecular C—H···.O interactions between H2A and O1 of a neighboring molecule. This establishes crystal packing into 1-D extended chains along the b-axis (see Fig. 2).

Related literature top

For the synthesis, see: Rivera et al. (1994). For a related structure, see: Rivera et al. (2010). For uses of benzoxazines in polymer science, see Yaggi et al. (2009). For the biological activity of bis-benzoxazine compounds, see: Billmann & Dorman (1963); Heinisch et al. (2002).

Experimental top

To a stirred solution of 1,3-bis(2'-hydroxy-5'-methyl-benzyl)imidazolidine (1 mmol) in dioxne is added slowly dropwise formaldehyde solution 40% (1 mmol) (8 ml, 0.11 mmol) and the mixture gently warned at 40–42 °C until a precipitate appeared. The product was filtered and washed with alcohol and water. Recrystallization of solid from ethyl acetate gives title compound (yield 82%). M.p. 401–402 K.

Refinement top

All hydrogen atoms were discernible in difference Fourier maps and could be refined to reasonable geometry. According to common practice H atoms attached to C atoms were nevertheless kept in ideal positions during the refinement. The isotropic atomic displacement parameters of hydrogen atoms were evaluated as 1.2*Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecule of the title compound with atom-labeling scheme.
[Figure 2] Fig. 2. Packing of the molecules of the title compound view along b.
3,3'-(Ethane-1,2-diyl)bis(6-methyl-3,4-dihydro-2H-1,3-benzoxazine) top
Crystal data top
C20H24N2O2F(000) = 348
Mr = 324.41Dx = 1.314 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.5418 Å
Hall symbol: -P 2ynCell parameters from 6632 reflections
a = 8.5042 (1) Åθ = 5.2–67.0°
b = 5.8558 (1) ŵ = 0.68 mm1
c = 16.5519 (2) ÅT = 130 K
β = 95.899 (1)°Plate, colourless
V = 819.90 (2) Å30.50 × 0.33 × 0.20 mm
Z = 2
Data collection top
Xcalibur, Atlas, Gemini ultra
diffractometer
1452 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source1429 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.013
Detector resolution: 10.3784 pixels mm-1θmax = 67.1°, θmin = 5.4°
Rotation method data acquisition using ω scansh = 1010
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2011)
k = 76
Tmin = 0.384, Tmax = 0.668l = 1819
7156 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0446P)2 + 0.3441P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
1452 reflectionsΔρmax = 0.21 e Å3
111 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.033 (2)
Crystal data top
C20H24N2O2V = 819.90 (2) Å3
Mr = 324.41Z = 2
Monoclinic, P21/nCu Kα radiation
a = 8.5042 (1) ŵ = 0.68 mm1
b = 5.8558 (1) ÅT = 130 K
c = 16.5519 (2) Å0.50 × 0.33 × 0.20 mm
β = 95.899 (1)°
Data collection top
Xcalibur, Atlas, Gemini ultra
diffractometer
1452 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2011)
1429 reflections with I > 2σ(I)
Tmin = 0.384, Tmax = 0.668Rint = 0.013
7156 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.03Δρmax = 0.21 e Å3
1452 reflectionsΔρmin = 0.16 e Å3
111 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The isotropic temperature parameters of hydrogen atoms were calculated as 1.2*Ueq of the parent atom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.72879 (9)0.13355 (13)0.81920 (5)0.0219 (2)
C20.88891 (13)0.0460 (2)0.82084 (7)0.0207 (3)
H2A0.89590.04910.77340.025*
H2B0.96080.17350.81740.025*
N30.93877 (10)0.08416 (16)0.89191 (5)0.0191 (3)
C40.84012 (13)0.29037 (19)0.89165 (6)0.0196 (3)
H4A0.85830.36500.94410.023*
H4B0.87080.39560.85080.023*
C50.66601 (13)0.23570 (19)0.87416 (6)0.0189 (3)
C60.54855 (13)0.3874 (2)0.89236 (6)0.0205 (3)
H60.57810.52610.91680.025*
C70.38861 (13)0.3384 (2)0.87522 (7)0.0220 (3)
C80.34747 (13)0.1288 (2)0.83884 (7)0.0245 (3)
H80.24120.09170.82710.029*
C90.46154 (14)0.0245 (2)0.81998 (7)0.0232 (3)
H90.43190.16300.79550.028*
C100.62084 (13)0.02829 (19)0.83767 (6)0.0195 (3)
C110.26270 (14)0.5038 (2)0.89513 (7)0.0261 (3)
H11A0.21230.56850.84580.031*
H11B0.18560.42500.92320.031*
H11C0.30990.62340.92910.031*
C120.94008 (13)0.04830 (19)0.96715 (6)0.0205 (3)
H12A0.83570.04510.98580.025*
H12B0.96620.20600.95660.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0200 (4)0.0209 (4)0.0243 (4)0.0001 (3)0.0000 (3)0.0041 (3)
C20.0187 (5)0.0238 (6)0.0194 (6)0.0003 (4)0.0012 (4)0.0010 (4)
N30.0195 (5)0.0195 (5)0.0180 (5)0.0007 (4)0.0001 (4)0.0003 (4)
C40.0204 (6)0.0183 (6)0.0195 (5)0.0008 (4)0.0001 (4)0.0005 (4)
C50.0202 (6)0.0207 (6)0.0155 (5)0.0008 (4)0.0003 (4)0.0030 (4)
C60.0238 (6)0.0195 (6)0.0179 (5)0.0005 (4)0.0010 (4)0.0018 (4)
C70.0217 (6)0.0251 (6)0.0193 (5)0.0018 (5)0.0028 (4)0.0048 (5)
C80.0176 (6)0.0291 (7)0.0263 (6)0.0026 (5)0.0000 (4)0.0029 (5)
C90.0234 (6)0.0217 (6)0.0239 (6)0.0035 (5)0.0008 (4)0.0004 (5)
C100.0212 (6)0.0209 (6)0.0164 (5)0.0013 (4)0.0012 (4)0.0023 (4)
C110.0216 (6)0.0295 (7)0.0275 (6)0.0021 (5)0.0040 (5)0.0023 (5)
C120.0205 (5)0.0196 (6)0.0208 (6)0.0012 (4)0.0007 (4)0.0017 (4)
Geometric parameters (Å, º) top
O1—C101.3755 (14)C6—H60.9300
O1—C21.4525 (13)C7—C81.3958 (18)
C2—N31.4291 (14)C7—C111.5052 (16)
C2—H2A0.9700C8—C91.3808 (17)
C2—H2B0.9700C8—H80.9300
N3—C121.4663 (14)C9—C101.3910 (16)
N3—C41.4701 (14)C9—H90.9300
C4—C51.5134 (15)C11—H11A0.9600
C4—H4A0.9700C11—H11B0.9600
C4—H4B0.9700C11—H11C0.9600
C5—C61.3926 (16)C12—C12i1.521 (2)
C5—C101.3928 (16)C12—H12A0.9700
C6—C71.3905 (16)C12—H12B0.9700
C10—O1—C2113.49 (8)C6—C7—C11121.71 (11)
N3—C2—O1113.69 (8)C8—C7—C11120.52 (10)
N3—C2—H2A108.8C9—C8—C7121.23 (10)
O1—C2—H2A108.8C9—C8—H8119.4
N3—C2—H2B108.8C7—C8—H8119.4
O1—C2—H2B108.8C8—C9—C10119.98 (11)
H2A—C2—H2B107.7C8—C9—H9120.0
C2—N3—C12113.12 (9)C10—C9—H9120.0
C2—N3—C4108.35 (8)O1—C10—C9117.26 (10)
C12—N3—C4113.04 (8)O1—C10—C5122.45 (10)
N3—C4—C5111.94 (9)C9—C10—C5120.28 (11)
N3—C4—H4A109.2C7—C11—H11A109.5
C5—C4—H4A109.2C7—C11—H11B109.5
N3—C4—H4B109.2H11A—C11—H11B109.5
C5—C4—H4B109.2C7—C11—H11C109.5
H4A—C4—H4B107.9H11A—C11—H11C109.5
C6—C5—C10118.56 (10)H11B—C11—H11C109.5
C6—C5—C4122.21 (10)N3—C12—C12i110.89 (11)
C10—C5—C4119.22 (10)N3—C12—H12A109.5
C7—C6—C5122.18 (11)C12i—C12—H12A109.5
C7—C6—H6118.9N3—C12—H12B109.5
C5—C6—H6118.9C12i—C12—H12B109.5
C6—C7—C8117.77 (10)H12A—C12—H12B108.1
Symmetry code: (i) x+2, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O1ii0.972.573.425 (1)147
Symmetry code: (ii) x+3/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC20H24N2O2
Mr324.41
Crystal system, space groupMonoclinic, P21/n
Temperature (K)130
a, b, c (Å)8.5042 (1), 5.8558 (1), 16.5519 (2)
β (°) 95.899 (1)
V3)819.90 (2)
Z2
Radiation typeCu Kα
µ (mm1)0.68
Crystal size (mm)0.50 × 0.33 × 0.20
Data collection
DiffractometerXcalibur, Atlas, Gemini ultra
diffractometer
Absorption correctionAnalytical
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.384, 0.668
No. of measured, independent and
observed [I > 2σ(I)] reflections
7156, 1452, 1429
Rint0.013
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.087, 1.03
No. of reflections1452
No. of parameters111
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.16

Computer programs: CrysAlis PRO (Agilent, 2011), CrysAlis PRO (Agilent 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
O1—C101.3755 (14)O1—C21.4525 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O1i0.972.573.425 (1)147
Symmetry code: (i) x+3/2, y1/2, z+3/2.
 

Acknowledgements

We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de La Universidad Nacional de Colombia, for financial support of this work, as well as the Institutional research plan No. AVOZ10100521 of the Institute of Physics and the Praemium Academiae project of the Academy of Science of the Czech Republic.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBillmann, J. H. & Dorman, L. C. (1963). J. Med. Chem. 6, 701–708.  CrossRef PubMed Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationHeinisch, L., Wittmann, S., Stoiber, T., Berg, A., Ankel-Fuchs, D. & Mollmann, U. (2002). J. Med. Chem. 45, 3032–3039.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRivera, A., Gallo, G. I., Gayón, M. E. & Joseph-Nathan, P. (1994). Synth. Commun. 24, 2081–2084.  CrossRef CAS Google Scholar
First citationRivera, A., Rojas, J. J., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2010). Acta Cryst. E66, o1134.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYaggi, Y., Kiskan, B. & Ghosh, N. N. (2009). J. Polym. Sci. Part A Polym. Chem. 47, 5565–5576.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds