organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Diiso­propyl­ammonium methane­sulfonate

aInstitut für Anorganische Chemie und Strukturchemie, Lehrstuhl II: Material- und Strukturforschung, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
*Correspondence e-mail: reissg@uni-duesseldorf.de

(Received 15 July 2011; accepted 20 July 2011; online 30 July 2011)

The title molecular salt, C6H16N+·CH3SO3, has been determined at 150 K. Two diisopropyl­ammonium cations (dipH) and two anions form N—H⋯O hydrogen-bonded cyclic dimers lying around centers of symmetry. Only two of the three O atoms of the methane­sulfonate anion are involved in hydrogen bonding, resulting in slightly longer S—O bond lengths. The title structure represents an example of a sulfonate anion that is part of a hydrogen-bonding R44(12) graph-set motif, which is well known for related dipH acetates. Additionally, the Raman and the IR spectroscopic data for the title compound are presented.

Related literature

For simple dipH salts, see: Bajorat & Reiss (2007[Bajorat, S. & Reiss, G. J. (2007). Acta Cryst. E63, o3144.]); Reiss (1998[Reiß, G. J. (1998). Acta Cryst. C54, 1489-1491.], 2002[Reiß, G. J. (2002). Acta Cryst. E58, m47-m50.]); Reiss (2010a[Reiss, G. J. (2010a). Private communication (deposition number: CCDC 771423). CCDC, Cambridge, England.],b[Reiss, G. J. (2010b). Private communication (deposition number: CCDC 790195). CCDC, Cambridge, England.]); Reiss & Engel (2004[Reiß, G. J. & Engel, J. S. (2004). Acta Cryst. E60, o985-o987.]); Reiss & Meyer (2010[Reiss, G. J. & Meyer, M. K. (2010). Z. Naturforsch. B, 65, 479-484.]); Sada et al. (2004[Sada, K., Watanabe, T., Miyamoto, J., Fukuda, T., Tohnai, N., Miyata, M., Kitayama, T., Maehara, K. & Ute, K. (2004). Chem. Lett. 33, 160-162.]), Summers et al. (1998[Summers, J. S., Roe, D., Boyle, P. D., Colvin, M. & Ramsay Shaw, B. (1998). Inorg. Chem. 37, 4158-4159.]). For spectroscopic data for sulfonate salts, see: Thomson (1972[Thomson, W. K. (1972). Spectrochim. Acta Part A, 28, 1479-1484.]); Genceli Guner et al. (2010[Genceli Guner, F. E., Martin Lutz, M., Sakurai, T., Spek, A. L. & Hondoh, T. (2010). Cryst. Growth Des. 10, 4327-4333.]). For graph-set analysis, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C6H16N+·CH3SO3

  • Mr = 197.29

  • Monoclinic, P 21 /n

  • a = 8.88154 (13) Å

  • b = 8.53537 (13) Å

  • c = 14.5784 (2) Å

  • β = 101.8161 (15)°

  • V = 1081.73 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 150 K

  • 0.65 × 0.25 × 0.10 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO.. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.951, Tmax = 1.000

  • 25064 measured reflections

  • 3149 independent reflections

  • 2782 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.060

  • S = 1.03

  • 3149 reflections

  • 146 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Selected geometric parameters (Å, °)

S1—O2 1.4433 (9)
S1—O1 1.4596 (8)
S1—O3 1.4600 (8)
S1—C1 1.7560 (12)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11⋯O1 0.885 (13) 1.944 (13) 2.8168 (11) 168.5 (12)
N1—H12⋯O3i 0.891 (13) 1.919 (13) 2.7944 (11) 166.9 (12)
Symmetry code: (i) -x+1, -y, -z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO.. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

More than one hundred structures are listed to date in the Cambridge Crystallographic Database, which include a diisopropylammonium cation (dipH). In most cases the dipH cation is the counter cation of bigger anionic species e.g. anionic complexes and clusters. A limited number of structures are reported that are solely constructed by small classical anions and the dipH cation. In these cases the structure type is strongly dependent on the geometry and the ability of these anions to form hydrogen bonds. The structures reported so far range from a quasi-molecular (dipH)2[SiF6] (Reiss, 1998), over cyclic dimers for some acetates (e.g.: Sada et al., 2004) and e.g. a substituted phosphate (Summers et al., 1998), to one-dimensional polymers for the halogenides and some pseudo-halogenides (literature cited in Reiss & Meyer, 2010). Even a two-dimensional hydrogen bonded network for the (dipH)2SO4 (Reiss & Engel, 2004) and three-dimensional networks for dipH[IrCl6] (Reiss, 2002) and (dipH)2[CdCl4] (Reiss, 2010a) have been reported. The asymmetric unit of the title compound, which crystallizes in the centrosymmetric space group P21/n, consists of one formular unit. The structure is composed of centrosymmetric, hydrogen bonded, cyclic dimers which are composed of two dipH cations and two methanesulfonate anions arranged as rings (Fig. 1). The graph set (Etter et al., 1990) for these hydrogen bonded dimers is R44(12). All N–C, C–C, S–O, and S–C bond lengths are generally within the expected range. The two S–O bond lengths of the oxygen atoms involved in hydrogen bonding (O1 and O3) are longer than the third one which is in accord to our anticipation (Table 1). The N–H···O hydrogen bonds with donor-acceptor distances close to 2.79–2.82 Å (Table 2) are in the range of medium strong hydrogen bonds. The R44(12) hydrogen bonding motif is well known for dipH acetates (Reiss & Meyer, 2010, Sada et al. 2004). Combinations of the dipH cation with structurally similar anions like [NO3] (Reiss, 2010b), [ClO4]- (Bajorat & Reiss, 2007) and various substituted carboxylate anions can be described as the generalized synthon: {dipH}+{O2XRy}- (X = C, Cl, N; y = 1,2, R = O, C). The title structure is a further example with this supramolecular synthon and the typical cyclic dimer.

Related literature top

For simple dipH salts, see: Bajorat & Reiss (2007); Reiss (1998, 2002); Reiss (2010a,b); Reiss & Engel (2004); Reiss & Meyer (2010); Sada et al. (2004), Summers et al. (1998). For spectroscopic data for sulfonate salts, see: Thomson (1972); Genceli Guner et al. (2010). For graph-set analysis, see: Etter et al. (1990).

Experimental top

Diisopropylammonium methanesulfonate, ((CH3)2CH)2NH2[CH3SO3] was prepared by the reaction of 0.72 g (7.12 mmol) diisopropylamine and 1.48 g (15.40 mmol) methanesulfonic acid at room temperature. From colourless solution small block-shaped crystals were obtained within a few days. A Raman spectrum was measured using a Bruker MULTIRAM spectrometer; Nd:YAG-Laser at 1064 nm; RT-InGaAS-detector; 4000–70 cm-1: 3022(sh), 2986(ν(C–H), s), 2944(ν(C–H), vs), 2784(ν(N–H), w), 1462 (δ(C–H, m), 1429(δ(C–H, m), 1350(w), 1315(w), 1227(w), 1183(w), 1158(w), 1099 (w), 1044 (ν(S–O),vs), 958 (w), 914(w), 808(s), 778(ν(C–S), s), 558(δ(S–O), s), 528(m), 470(m), 392(w), 348(ρ(S–O), br), 83(m). IR data collected on a Digilab FT3400 spectrometer using a MIRacle ATR unit (Pike Technologies); 4000–560 cm-1: 3019(ν(C–H), s), 2988 (sh), 2941(m), 2870(ν(C–H), s), 2781(ν(N–H), m), 2514(m), 1625(w), 1601(w), 1483(δ(C–H, m), 1416(w), 1397(m), 1331(w), 1314(w), 1206(vs), 1177(sh), 1153(νs(S–O), vs), 1100(m), 1040(νa(S–O), vs), 977(w), 954(w), 837(w), 805(w), 776(ν(C–S), s), 551(δ(S–O)s). Band assignments for Raman and IR spectroscopic data were made by comparing results of earlier work done on sodium- and caesium methanesulfonate (Thomson, 1972), magnesium sulfonate (Genceli Guner et al., 2010) and dipHCl (Reiss & Meyer 2010).

Refinement top

A single-crystal suitable for structure determination was harvested from the mother liquor and directly transferred into the cooling stream of an Oxford-Xcalibur diffractometer equipped with an EOS-CCD detector. Data collection was performed at 150 K. All hydrogen atoms were located via difference Fourier synthesis. Positional parameters of hydrogen atoms of the NH2 and the CH group were refined freely. All hydrogen atoms belonging to methyl groups were refined using a riding model with restrained angles and C–H distances but allowed to rotate about the C–C bond. Anisotrope displacement parameters of all non hydrogen atoms and individual isotropic displacement parameters for all hydrogen atoms were refined freely.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Hydrogen atoms are drawn with an arbitrary radius and the displacement ellipsoids are shown at the 50% probability level; ' = 1 - x,-y,-z.
Diisopropylammonium methanesulfonate top
Crystal data top
C6H16N+·CH3SO3F(000) = 432
Mr = 197.29Dx = 1.211 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 18202 reflections
a = 8.88154 (13) Åθ = 3.4–32.0°
b = 8.53537 (13) ŵ = 0.27 mm1
c = 14.5784 (2) ÅT = 150 K
β = 101.8161 (15)°Needle, colourless
V = 1081.73 (3) Å30.65 × 0.25 × 0.10 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
3149 independent reflections
Radiation source: fine-focus sealed tube2782 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 16.27 pixels mm-1θmax = 30.0°, θmin = 4.1°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1212
Tmin = 0.951, Tmax = 1.000l = 2020
25064 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.060 w = 1/[σ2(Fo2) + (0.01P)2 + 0.55P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3149 reflectionsΔρmax = 0.34 e Å3
146 parametersΔρmin = 0.32 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0276 (9)
Crystal data top
C6H16N+·CH3SO3V = 1081.73 (3) Å3
Mr = 197.29Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.88154 (13) ŵ = 0.27 mm1
b = 8.53537 (13) ÅT = 150 K
c = 14.5784 (2) Å0.65 × 0.25 × 0.10 mm
β = 101.8161 (15)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
3149 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2782 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 1.000Rint = 0.024
25064 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.060H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.34 e Å3
3149 reflectionsΔρmin = 0.32 e Å3
146 parameters
Special details top

Experimental. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.33.52, Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.38147 (3)0.02594 (3)0.180331 (16)0.01976 (7)
O10.47025 (9)0.13813 (10)0.13749 (6)0.0355 (2)
O20.47472 (10)0.09928 (12)0.22849 (6)0.0408 (2)
O30.24712 (9)0.03058 (10)0.11340 (5)0.02989 (17)
C10.30699 (15)0.12931 (19)0.26524 (9)0.0442 (3)
H1A0.24770.05950.29550.065 (5)*
H1B0.24240.21280.23570.062 (5)*
H1C0.39010.17210.31090.066 (5)*
N10.74609 (9)0.09843 (10)0.07323 (6)0.01840 (16)
H110.6562 (15)0.0976 (15)0.0906 (9)0.028 (3)*
H120.7329 (14)0.0729 (15)0.0128 (9)0.028 (3)*
C20.84677 (11)0.02552 (12)0.12848 (7)0.02104 (18)
H20.9413 (14)0.0236 (14)0.1056 (8)0.022 (3)*
C30.76690 (13)0.18212 (12)0.10422 (8)0.0283 (2)
H3A0.67090.18270.12480.036 (4)*
H3B0.83130.26490.13490.039 (4)*
H3C0.74800.19770.03760.037 (4)*
C40.87442 (13)0.00990 (14)0.23269 (7)0.0286 (2)
H4A0.92960.10690.24520.036 (4)*
H4B0.93370.07310.26700.037 (4)*
H4C0.77750.01830.25170.037 (4)*
C50.80229 (12)0.26542 (12)0.08130 (7)0.02175 (19)
H50.8146 (13)0.2921 (14)0.1445 (8)0.022 (3)*
C60.67707 (14)0.36632 (13)0.02325 (8)0.0322 (2)
H6A0.66060.33470.04120.041 (4)*
H6B0.70810.47420.02860.049 (4)*
H6C0.58340.35380.04570.041 (4)*
C70.95364 (13)0.27936 (14)0.04905 (8)0.0296 (2)
H7A1.02900.21290.08680.041 (4)*
H7B0.98840.38610.05530.042 (4)*
H7C0.93930.24790.01540.036 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01698 (10)0.02503 (12)0.01773 (10)0.00188 (9)0.00463 (8)0.00071 (9)
O10.0289 (4)0.0331 (4)0.0485 (5)0.0013 (3)0.0171 (4)0.0074 (4)
O20.0310 (4)0.0471 (5)0.0445 (5)0.0131 (4)0.0083 (4)0.0205 (4)
O30.0267 (4)0.0403 (4)0.0216 (3)0.0034 (3)0.0022 (3)0.0084 (3)
C10.0305 (6)0.0663 (9)0.0370 (6)0.0021 (6)0.0101 (5)0.0286 (7)
N10.0188 (4)0.0194 (4)0.0171 (4)0.0008 (3)0.0040 (3)0.0005 (3)
C20.0193 (4)0.0209 (4)0.0238 (4)0.0026 (4)0.0064 (3)0.0024 (4)
C30.0306 (5)0.0205 (5)0.0350 (6)0.0003 (4)0.0096 (4)0.0007 (4)
C40.0295 (5)0.0322 (6)0.0223 (5)0.0020 (4)0.0009 (4)0.0043 (4)
C50.0269 (5)0.0187 (4)0.0196 (4)0.0025 (4)0.0045 (4)0.0015 (3)
C60.0368 (6)0.0235 (5)0.0360 (6)0.0049 (4)0.0067 (5)0.0058 (4)
C70.0278 (5)0.0295 (6)0.0317 (5)0.0080 (4)0.0066 (4)0.0030 (4)
Geometric parameters (Å, º) top
S1—O21.4433 (9)C3—H3B0.9600
S1—O11.4596 (8)C3—H3C0.9600
S1—O31.4600 (8)C4—H4A0.9600
S1—C11.7560 (12)C4—H4B0.9600
C1—H1A0.9600C4—H4C0.9600
C1—H1B0.9600C5—C61.5196 (15)
C1—H1C0.9600C5—C71.5169 (14)
N1—C51.5068 (13)C5—H50.934 (12)
N1—C21.5076 (12)C6—H6A0.9600
N1—H110.885 (13)C6—H6B0.9600
N1—H120.891 (13)C6—H6C0.9600
C2—C41.5189 (14)C7—H7A0.9600
C2—C31.5206 (14)C7—H7B0.9600
C2—H20.964 (12)C7—H7C0.9600
C3—H3A0.9600
O2—S1—O1112.80 (5)N1—C2—C4110.58 (8)
O2—S1—O3112.92 (6)N1—C2—C3107.17 (8)
O1—S1—O3111.71 (5)C4—C2—C3112.32 (9)
O2—S1—C1106.90 (7)N1—C2—H2105.4 (7)
O1—S1—C1106.65 (7)C4—C2—H2111.6 (7)
O3—S1—C1105.24 (5)C3—C2—H2109.4 (7)
C5—N1—C2118.12 (8)N1—C5—C6107.44 (8)
C5—N1—H11106.8 (9)N1—C5—C7110.51 (8)
C2—N1—H11108.2 (8)C6—C5—C7112.14 (9)
C5—N1—H12106.4 (8)N1—C5—H5106.1 (8)
C2—N1—H12107.5 (8)C6—C5—H5109.6 (7)
H11—N1—H12109.6 (11)C7—C5—H5110.8 (7)
C5—N1—C2—C459.81 (11)C2—N1—C5—C6177.19 (8)
C5—N1—C2—C3177.47 (8)C2—N1—C5—C760.18 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O10.885 (13)1.944 (13)2.8168 (11)168.5 (12)
N1—H12···O3i0.891 (13)1.919 (13)2.7944 (11)166.9 (12)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC6H16N+·CH3SO3
Mr197.29
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)8.88154 (13), 8.53537 (13), 14.5784 (2)
β (°) 101.8161 (15)
V3)1081.73 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.65 × 0.25 × 0.10
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.951, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
25064, 3149, 2782
Rint0.024
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.060, 1.03
No. of reflections3149
No. of parameters146
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.32

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2010), publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
S1—O21.4433 (9)S1—O31.4600 (8)
S1—O11.4596 (8)S1—C11.7560 (12)
O2—S1—O1112.80 (5)O1—S1—O3111.71 (5)
O2—S1—O3112.92 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O10.885 (13)1.944 (13)2.8168 (11)168.5 (12)
N1—H12···O3i0.891 (13)1.919 (13)2.7944 (11)166.9 (12)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

We thank E. Hammes for technical support.

References

First citationBajorat, S. & Reiss, G. J. (2007). Acta Cryst. E63, o3144.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGenceli Guner, F. E., Martin Lutz, M., Sakurai, T., Spek, A. L. & Hondoh, T. (2010). Cryst. Growth Des. 10, 4327–4333.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO.. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationReiß, G. J. (1998). Acta Cryst. C54, 1489–1491.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationReiß, G. J. (2002). Acta Cryst. E58, m47–m50.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationReiss, G. J. (2010a). Private communication (deposition number: CCDC 771423). CCDC, Cambridge, England.  Google Scholar
First citationReiss, G. J. (2010b). Private communication (deposition number: CCDC 790195). CCDC, Cambridge, England.  Google Scholar
First citationReiß, G. J. & Engel, J. S. (2004). Acta Cryst. E60, o985–o987.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationReiss, G. J. & Meyer, M. K. (2010). Z. Naturforsch. B, 65, 479–484.  CAS Google Scholar
First citationSada, K., Watanabe, T., Miyamoto, J., Fukuda, T., Tohnai, N., Miyata, M., Kitayama, T., Maehara, K. & Ute, K. (2004). Chem. Lett. 33, 160–162.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSummers, J. S., Roe, D., Boyle, P. D., Colvin, M. & Ramsay Shaw, B. (1998). Inorg. Chem. 37, 4158–4159.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationThomson, W. K. (1972). Spectrochim. Acta Part A, 28, 1479–1484.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds