metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(O-n-butyl di­thio­carbonato-κ2S,S′)bis­­(pyridine-κN)manganese(II)

aDepartment of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cDepartment of Chemistry, Youngstown State University, 1 University Plaza, Youngstown, Ohio 44555, USA
*Correspondence e-mail: zainudin@um.edu.my

(Received 19 May 2011; accepted 4 July 2011; online 9 July 2011)

The structure of the title manganese complex, [Mn(C5H9OS2)2(C5H5N)2] or [Mn(S2CO-n-Bu)2(C5H5N)2], consists of discrete monomeric entities with Mn2+ ions located on centres of inversion. The metal atom is coordinated by a six-coordinate trans-N2S4 donor set with the pyridyl N atoms located in the apical positions. The observed slight deviations from octa­hedral geometry are caused by the bite angle of the bidentate κ2-S2CO-n-Bu ligands [69.48 (1)°]. The O(CH2)3(CH3) chains of the O-n-butyl dithio­carbonate units are disordered over two sets of sites with an occupancy ratio of 0.589 (2):0.411 (2).

Related literature

For general background to the title complex, see: Alam et al. (2008[Alam, N., Hill, M. S., Kociok-Köhn, G., Zeller, M., Mazhar, M. & Molloy, K. C. (2008). Chem. Mater. 20, 6157-6162.]); Tahir et al. (2010[Tahir, A. A., Ehsan, M. A., Mazhar, M., Upul Wijayantha, K. G., Zeller, M. & Hunter, A. D. (2010). Chem. Mater. 22, 5084-5092.]); Klevtsova & Glinskaya (1997[Klevtsova, R. F. & Glinskaya, L. A. (1997). Zh. Strukt. Khim. 38, 960-966.]); Câmpian et al. (2010[Câmpian, M. V., Haiduc, I. & Tiekink, E. R. T. (2010). J. Chem. Crystallogr. 40, 1029-1034.]); Kirichenko et al. (1994[Kirichenko, V. N., Glinskaya, L. A., Klevtsova, R. F., Leonova, T. G. & Larionov, S. V. (1994). J. Struct. Chem. 35, 242-247.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C5H9OS2)2(C5H5N)2]

  • Mr = 511.66

  • Monoclinic, P 21 /c

  • a = 10.9189 (17) Å

  • b = 6.0853 (9) Å

  • c = 17.650 (3) Å

  • β = 97.536 (3)°

  • V = 1162.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.95 mm−1

  • T = 100 K

  • 0.50 × 0.37 × 0.26 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.630, Tmax = 0.782

  • 11354 measured reflections

  • 2871 independent reflections

  • 2797 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.064

  • S = 1.12

  • 2871 reflections

  • 151 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.50 e Å−3

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2002[Bruker (2002). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

As a part of our ongoing studies on the development of single source precursors for the fabrication of pure manganese sulfide thin films through aerosol-assisted chemical vapour deposition (AACVD) (Alam et al., 2008; Tahir et al., 2010) the monomeric title complex [Mn(S2CO-n-Bu)2.(C5H5N)2] was synthesized and its crystal structure, one of just four manganese dithiocarbonates (Klevtsova & Glinskaya, 1997; Câmpian et al., 2010; Kirichenko et al., 1994), is reported here.

The structure of the manganese compound consists of centrosymmetric monomeric entities. Fig. 1 shows a perspective view of the monomeric unit with the atomic numbering scheme. The Mn(II) atom is in a distorted octahedral environment surrounded by two chelating xanthate ligands and two pyridines ligands. All managanese dithiocarbonato compounds structurally described so far are also octahedral complexes with an N2S4 donor set (Klevtsova & Glinskaya, 1997; Câmpian et al., 2010; Kirichenko et al., 1994), but the other four such compounds are all bipyridine derivative complexes and the title compound is the only one in which the two none-sulfur donor atoms occupy the apical sites. The four sulfur atoms and the manganese atom are almost coplanar. The bond angles around the manganese atom are in the range of 69.48 (1)° to 180°. The Mn—S bond lengths involving the xanthate ligands range are 2.5862 (4) and 2.6556 (5)Å and are in good agreement with those reported for other analogous Mn-dithiocarbonato complexes. The variation of the Mn—S bond distances in the complex of ca 0.07Å is not very pronounced and the bidentate κ2-S2CO-n-Bu ligands may thus be considered to be chelating in a symmetric (isobidentate) mode. The resulting N2S4 donor set defines an approximately octahedral geometry with distortions arising from the steric constraints imposed by the restricted bite distances of the chelating xanthate ligands. The two S atoms forming the longer Mn—S bonds are approximately trans to each other. The short value of 1.333 (8)Å for the C6—O1 bond lengths is consistent with a significant contribution of the resonance form of the xanthate anion that features a formal CO bond and negative charges on each of the S atoms. The two pyridine rings are coplanar and almost perfectly perpendicular to the O1/S1/S2/O1i/S1i/S2i plane. Symmetry code: (i) -x+1, -y+1, -z+2.

Packing of the title compound is facilitated mostly by shape recognition through van der Waals forces. A small number of C—H···O interactions (originating from the alkyl and aromatic C—H groups) can be observed (Fig. 2), and close contacts are present between sulfur atoms of neighboring complexes. These close contacts weakly connect the MnS4 units of the complexes along the direction of the b-axis to form infinite (MnS4)n chains as shown in Fig. 2.

Related literature top

For general background to the title complex, see: Alam et al. (2008); Tahir et al. (2010); Klevtsova & Glinskaya (1997); Câmpian et al. (2010); Kirichenko et al. (1994).

Experimental top

Sodium hydroxide (3.99 g, 0.1 mol) was dissolved in 250 ml n-butanol placed in a 500 ml oven dried round bottom flask fitted with reflux condenser, magnetic stirrer and vaccum line. Carbon disulfide (7.6 ml, 0.1 mol) was added dropwise to the saturated solution of sodium hydroxide over a period of 90 minutes. After stirring for one hour a clear yellow solution was formed. Mn(NO3)2.3H2O (11.64 g, 0.05 mole) was added directly into the reaction flask. The contents were stirred to dissolve the salt completely. About 30 ml of pyridine were added to give a light yellow solution and stirring was continued for another hour. Any insoluble matter was removed by filtration and slow evaporation of the reaction mixture at room temperature yielded 70% of the title compound in the form of yellow crystals. M.p. = 368 K. Elemental analyses: Found (Calc.) for: C 46.02 (46.99); H 5.33 (5.51); N 4.58 (5.47).

Refinement top

Reflections 1 0 0 and 0 0 2 were partially obstructed by the beam stop and were omitted from the refinement. The O(CH2)3(CH3) chain of the O-n-butyldithiocarbonato group is disordered over two positions with an occupancy ratio of 0.589 (2) to 0.411 (2). The C—O bond distance was restrained to be the same within a standard deviation of 0.02, and the ADPs of equivalent atoms were set to be identical. Hydrogen atoms were placed in calculated positions with C—H distances of 0.95, 0.99 and 0.99Å for aromatic, methyl and methylene H atoms, respectively, and were refined with an isotropic displacement parameter Uiso of 1.5 (methyl) or 1.2 times (aromatic) that of Ueq of the adjacent carbon atom. Methyl H atoms were allowed to rotate around the C—C bond axis at a fixed angle to best fit with the experimental electron density.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT-Plus (Bruker, 2002); data reduction: SAINT-Plus (Bruker, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Perspective view of the monomeric unit with the atomic numbering scheme. Displacement ellipsoids are drawn at with 50% probability level. The minor disordered alkyl chain is shown for one half of the molecule. Hydrogen atom lables, labels of less than 50% occupied atoms and of symmetry created atoms are omitted for clarity.
[Figure 2] Fig. 2. Packing plot, view down the b axis (displacement ellipsoids for non-H atoms). Less than 50% occupied atoms are omitted for clarity. Blue dashed lines represent close contacts (less than the sum of the van der Waals radii of the respective atoms) such as C—H···O and S···S contacts.
Bis(O-n-butyl dithiocarbonato-κ2S,S')bis(pyridine-κN)manganese(II) top
Crystal data top
[Mn(C5H9OS2)2(C5H5N)2]F(000) = 534
Mr = 511.66Dx = 1.462 Mg m3
Monoclinic, P21/cMelting point: 368 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.9189 (17) ÅCell parameters from 6031 reflections
b = 6.0853 (9) Åθ = 2.8–30.7°
c = 17.650 (3) ŵ = 0.95 mm1
β = 97.536 (3)°T = 100 K
V = 1162.6 (3) Å3Block, yellow
Z = 20.50 × 0.37 × 0.26 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2871 independent reflections
Radiation source: fine-focus sealed tube2797 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 28.3°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1414
Tmin = 0.630, Tmax = 0.782k = 88
11354 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0232P)2 + 0.6054P]
where P = (Fo2 + 2Fc2)/3
2871 reflections(Δ/σ)max = 0.001
151 parametersΔρmax = 0.34 e Å3
1 restraintΔρmin = 0.50 e Å3
Crystal data top
[Mn(C5H9OS2)2(C5H5N)2]V = 1162.6 (3) Å3
Mr = 511.66Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.9189 (17) ŵ = 0.95 mm1
b = 6.0853 (9) ÅT = 100 K
c = 17.650 (3) Å0.50 × 0.37 × 0.26 mm
β = 97.536 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2871 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
2797 reflections with I > 2σ(I)
Tmin = 0.630, Tmax = 0.782Rint = 0.028
11354 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0251 restraint
wR(F2) = 0.064H-atom parameters constrained
S = 1.12Δρmax = 0.34 e Å3
2871 reflectionsΔρmin = 0.50 e Å3
151 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.57264 (12)0.6534 (2)1.17119 (7)0.0219 (3)
H1A0.53020.78171.15160.026*
C20.61621 (13)0.6439 (2)1.24896 (7)0.0261 (3)
H2A0.60340.76341.28170.031*
C30.67842 (14)0.4574 (3)1.27770 (7)0.0282 (3)
H3A0.70830.44601.33060.034*
C40.69638 (13)0.2874 (2)1.22795 (8)0.0271 (3)
H4A0.73970.15851.24620.033*
C50.65016 (12)0.3084 (2)1.15104 (7)0.0224 (3)
H5A0.66270.19161.11720.027*
C60.72640 (11)0.6918 (2)0.95170 (6)0.0183 (2)
O10.8259 (9)0.7831 (13)0.9285 (10)0.0169 (10)0.589 (2)
C70.9256 (16)0.674 (3)0.9020 (10)0.0235 (7)0.589 (2)
H7A0.89440.54700.87000.028*0.589 (2)
H7B0.98240.61780.94600.028*0.589 (2)
C80.9949 (2)0.8301 (4)0.85523 (13)0.0212 (3)0.589 (2)
H8A1.06370.74950.83640.025*0.589 (2)
H8B0.93830.88040.81010.025*0.589 (2)
C91.0467 (2)1.0298 (4)0.90058 (13)0.0232 (4)0.589 (2)
H9A0.97921.10450.92280.028*0.589 (2)
H9B1.10880.98090.94320.028*0.589 (2)
C101.1062 (15)1.191 (2)0.8511 (9)0.0263 (14)0.589 (2)
H10A1.13921.31580.88230.039*0.589 (2)
H10B1.04441.24260.80970.039*0.589 (2)
H10C1.17361.11740.82940.039*0.589 (2)
O1B0.8163 (14)0.819 (2)0.9292 (15)0.0169 (10)0.411 (2)
C7B0.920 (2)0.683 (4)0.9022 (14)0.0235 (7)0.411 (2)
H7BA0.94310.55890.93720.028*0.411 (2)
H7BB0.89490.62570.85000.028*0.411 (2)
C8B1.0250 (3)0.8474 (5)0.90349 (19)0.0212 (3)0.411 (2)
H8BA1.09470.77510.88270.025*0.411 (2)
H8BB1.05370.88740.95730.025*0.411 (2)
C9B0.9920 (3)1.0572 (6)0.85830 (19)0.0232 (4)0.411 (2)
H9BA0.92391.13210.87980.028*0.411 (2)
H9BB0.96171.01770.80470.028*0.411 (2)
C10B1.102 (2)1.219 (3)0.8590 (13)0.0263 (14)0.411 (2)
H10D1.07301.35450.83240.039*0.411 (2)
H10E1.16631.15150.83310.039*0.411 (2)
H10F1.13511.25320.91190.039*0.411 (2)
Mn10.50000.50001.00000.01767 (8)
N10.58831 (10)0.48802 (18)1.12286 (6)0.0197 (2)
S10.61548 (3)0.86094 (5)0.978244 (17)0.01905 (8)
S20.71689 (3)0.41428 (5)0.953823 (19)0.02316 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0267 (6)0.0216 (6)0.0180 (6)0.0082 (5)0.0053 (5)0.0013 (5)
C20.0331 (7)0.0287 (7)0.0171 (6)0.0124 (6)0.0062 (5)0.0053 (5)
C30.0327 (7)0.0350 (7)0.0159 (6)0.0152 (6)0.0006 (5)0.0009 (5)
C40.0289 (7)0.0272 (7)0.0236 (6)0.0073 (6)0.0031 (5)0.0034 (5)
C50.0248 (6)0.0224 (6)0.0200 (6)0.0068 (5)0.0025 (5)0.0012 (5)
C60.0209 (6)0.0196 (6)0.0137 (5)0.0060 (5)0.0001 (4)0.0020 (4)
O10.0140 (14)0.005 (3)0.0317 (5)0.0019 (17)0.0048 (12)0.006 (2)
C70.0200 (14)0.0205 (13)0.0304 (7)0.0033 (11)0.0055 (8)0.0032 (8)
C80.0172 (8)0.0231 (8)0.0237 (8)0.0035 (7)0.0040 (7)0.0021 (8)
C90.0226 (9)0.0233 (8)0.0232 (9)0.0059 (7)0.0008 (6)0.0035 (7)
C100.0269 (13)0.022 (3)0.031 (3)0.007 (2)0.0053 (16)0.003 (2)
O1B0.0140 (14)0.005 (3)0.0317 (5)0.0019 (17)0.0048 (12)0.006 (2)
C7B0.0200 (14)0.0205 (13)0.0304 (7)0.0033 (11)0.0055 (8)0.0032 (8)
C8B0.0172 (8)0.0231 (8)0.0237 (8)0.0035 (7)0.0040 (7)0.0021 (8)
C9B0.0226 (9)0.0233 (8)0.0232 (9)0.0059 (7)0.0008 (6)0.0035 (7)
C10B0.0269 (13)0.022 (3)0.031 (3)0.007 (2)0.0053 (16)0.003 (2)
Mn10.02238 (14)0.01829 (14)0.01273 (12)0.00792 (10)0.00374 (9)0.00022 (9)
N10.0229 (5)0.0207 (5)0.0157 (5)0.0079 (4)0.0037 (4)0.0008 (4)
S10.02207 (16)0.01559 (14)0.01983 (15)0.00504 (11)0.00407 (11)0.00058 (11)
S20.02738 (17)0.01555 (15)0.02887 (17)0.00708 (12)0.01235 (13)0.00299 (12)
Geometric parameters (Å, º) top
C1—N11.3447 (17)C9—H9B0.9900
C1—C21.3937 (17)C10—H10A0.9800
C1—H1A0.9500C10—H10B0.9800
C2—C31.384 (2)C10—H10C0.9800
C2—H2A0.9500O1B—C7B1.52 (3)
C3—C41.387 (2)C7B—C8B1.52 (2)
C3—H3A0.9500C7B—H7BA0.9900
C4—C51.3906 (18)C7B—H7BB0.9900
C4—H4A0.9500C8B—C9B1.523 (5)
C5—N11.3454 (18)C8B—H8BA0.9900
C5—H5A0.9500C8B—H8BB0.9900
C6—O11.332 (8)C9B—C10B1.55 (2)
C6—O1B1.349 (11)C9B—H9BA0.9900
C6—S21.6925 (13)C9B—H9BB0.9900
C6—S11.7014 (13)C10B—H10D0.9800
O1—C71.41 (2)C10B—H10E0.9800
C7—C81.524 (16)C10B—H10F0.9800
C7—H7A0.9900Mn1—N1i2.2558 (11)
C7—H7B0.9900Mn1—N12.2558 (11)
C8—C91.523 (3)Mn1—S12.5863 (4)
C8—H8A0.9900Mn1—S1i2.5863 (4)
C8—H8B0.9900Mn1—S22.6554 (5)
C9—C101.513 (16)Mn1—S2i2.6554 (5)
C9—H9A0.9900
N1—C1—C2122.57 (13)O1B—C7B—H7BA111.1
N1—C1—H1A118.7C8B—C7B—H7BB111.1
C2—C1—H1A118.7O1B—C7B—H7BB111.1
C3—C2—C1118.86 (13)H7BA—C7B—H7BB109.1
C3—C2—H2A120.6C7B—C8B—C9B114.6 (9)
C1—C2—H2A120.6C7B—C8B—H8BA108.6
C2—C3—C4118.85 (12)C9B—C8B—H8BA108.6
C2—C3—H3A120.6C7B—C8B—H8BB108.6
C4—C3—H3A120.6C9B—C8B—H8BB108.6
C3—C4—C5119.09 (14)H8BA—C8B—H8BB107.6
C3—C4—H4A120.5C8B—C9B—C10B113.5 (9)
C5—C4—H4A120.5C8B—C9B—H9BA108.9
N1—C5—C4122.39 (13)C10B—C9B—H9BA108.9
N1—C5—H5A118.8C8B—C9B—H9BB108.9
C4—C5—H5A118.8C10B—C9B—H9BB108.9
O1—C6—S2118.6 (4)H9BA—C9B—H9BB107.7
O1B—C6—S2128.8 (6)C9B—C10B—H10D109.5
O1—C6—S1118.1 (4)C9B—C10B—H10E109.5
O1B—C6—S1107.9 (6)H10D—C10B—H10E109.5
S2—C6—S1123.34 (7)C9B—C10B—H10F109.5
C6—O1—C7127.1 (9)H10D—C10B—H10F109.5
O1—C7—C8110.3 (11)H10E—C10B—H10F109.5
O1—C7—H7A109.6N1i—Mn1—N1180.0
C8—C7—H7A109.6N1i—Mn1—S189.15 (3)
O1—C7—H7B109.6N1—Mn1—S190.85 (3)
C8—C7—H7B109.6N1i—Mn1—S1i90.86 (3)
H7A—C7—H7B108.1N1—Mn1—S1i89.15 (3)
C9—C8—C7112.9 (7)S1—Mn1—S1i180.0
C9—C8—H8A109.0N1i—Mn1—S289.85 (3)
C7—C8—H8A109.0N1—Mn1—S290.15 (3)
C9—C8—H8B109.0S1—Mn1—S269.478 (12)
C7—C8—H8B109.0S1i—Mn1—S2110.523 (12)
H8A—C8—H8B107.8N1i—Mn1—S2i90.16 (3)
C10—C9—C8111.8 (5)N1—Mn1—S2i89.84 (3)
C10—C9—H9A109.3S1—Mn1—S2i110.521 (12)
C8—C9—H9A109.3S1i—Mn1—S2i69.477 (12)
C10—C9—H9B109.3S2—Mn1—S2i180.0
C8—C9—H9B109.3C1—N1—C5118.23 (11)
H9A—C9—H9B107.9C1—N1—Mn1120.78 (9)
C6—O1B—C7B112.4 (12)C5—N1—Mn1120.81 (8)
C8B—C7B—O1B103.3 (16)C6—S1—Mn184.58 (4)
C8B—C7B—H7BA111.1C6—S2—Mn182.56 (4)
N1—C1—C2—C30.2 (2)S1i—Mn1—N1—C1121.11 (9)
C1—C2—C3—C40.7 (2)S2—Mn1—N1—C1128.36 (9)
C2—C3—C4—C50.8 (2)S2i—Mn1—N1—C151.64 (9)
C3—C4—C5—N10.0 (2)S1—Mn1—N1—C5126.13 (9)
O1B—C6—O1—C7171 (12)S1i—Mn1—N1—C553.87 (9)
S2—C6—O1—C73 (2)S2—Mn1—N1—C556.65 (9)
S1—C6—O1—C7177.8 (13)S2i—Mn1—N1—C5123.35 (9)
C6—O1—C7—C8159.6 (13)O1—C6—S1—Mn1178.4 (9)
O1—C7—C8—C959.6 (13)O1B—C6—S1—Mn1177.2 (12)
C7—C8—C9—C10175.5 (10)S2—C6—S1—Mn11.95 (7)
O1—C6—O1B—C7B7 (9)N1i—Mn1—S1—C689.05 (5)
S2—C6—O1B—C7B0 (3)N1—Mn1—S1—C690.95 (5)
S1—C6—O1B—C7B178.7 (15)S2—Mn1—S1—C61.11 (4)
C6—O1B—C7B—C8B163.2 (16)S2i—Mn1—S1—C6178.89 (4)
O1B—C7B—C8B—C9B54.0 (18)O1—C6—S2—Mn1178.5 (9)
C7B—C8B—C9B—C10B178.7 (15)O1B—C6—S2—Mn1177.1 (14)
C2—C1—N1—C50.99 (19)S1—C6—S2—Mn11.91 (7)
C2—C1—N1—Mn1174.12 (10)N1i—Mn1—S2—C688.03 (5)
C4—C5—N1—C10.90 (19)N1—Mn1—S2—C691.97 (5)
C4—C5—N1—Mn1174.21 (10)S1—Mn1—S2—C61.12 (4)
S1—Mn1—N1—C158.88 (9)S1i—Mn1—S2—C6178.88 (4)
Symmetry code: (i) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Mn(C5H9OS2)2(C5H5N)2]
Mr511.66
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.9189 (17), 6.0853 (9), 17.650 (3)
β (°) 97.536 (3)
V3)1162.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.95
Crystal size (mm)0.50 × 0.37 × 0.26
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.630, 0.782
No. of measured, independent and
observed [I > 2σ(I)] reflections
11354, 2871, 2797
Rint0.028
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.064, 1.12
No. of reflections2871
No. of parameters151
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.50

Computer programs: SMART (Bruker, 2002), SAINT-Plus (Bruker, 2002), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

 

Acknowledgements

We are thankful to HIR project No. UM·C/625/1/HIR/035 and UMRG project No. RG097-10AET for funding. The X-ray diffractometer was funded by NSF grant 0087210, Ohio Board of Regents grant CAP-491 and Youngstown State University.

References

First citationAlam, N., Hill, M. S., Kociok-Köhn, G., Zeller, M., Mazhar, M. & Molloy, K. C. (2008). Chem. Mater. 20, 6157–6162.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2002). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCâmpian, M. V., Haiduc, I. & Tiekink, E. R. T. (2010). J. Chem. Crystallogr. 40, 1029–1034.  Google Scholar
First citationKirichenko, V. N., Glinskaya, L. A., Klevtsova, R. F., Leonova, T. G. & Larionov, S. V. (1994). J. Struct. Chem. 35, 242–247.  CrossRef Web of Science Google Scholar
First citationKlevtsova, R. F. & Glinskaya, L. A. (1997). Zh. Strukt. Khim. 38, 960–966.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTahir, A. A., Ehsan, M. A., Mazhar, M., Upul Wijayantha, K. G., Zeller, M. & Hunter, A. D. (2010). Chem. Mater. 22, 5084–5092.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds