organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(5-Cyclo­hexyl-3-methyl­sulfanyl-1-benzo­furan-2-yl)acetic acid

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 30 June 2011; accepted 2 July 2011; online 9 July 2011)

In the title compound, C17H20O3S, the cyclo­hexyl ring adopts a chair conformation. In the crystal, the carboxyl groups are involved in inter­molecular O—H⋯O hydrogen bonds, which link the mol­ecules into centrosymmetric dimers. These dimers are further stabilized by weak inter­molecular C—H⋯O hydrogen bonds. In addition, the crystal structure also exhibits aromatic ππ inter­actions between the furan rings of adjacent mol­ecules [centroid–centroid distance = 3.505 (2) Å, inter­planar distance = 3.385 (2) Å and slippage = 0.909 (2) Å], and inter­molecular C—H⋯π inter­actions.

Related literature

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2009[Aslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191-195.]); Galal et al. (2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]); Khan et al. (2005[Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796-4805.]). For natural products with benzofuran rings, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]). For structural studies of related 2-(5-alkyl-3-methyl­sulfanyl-1-benzofuran-2-yl) acetic acid derivatives, see: Choi et al. (2009a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009a). Acta Cryst. E65, o998.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009b). Acta Cryst. E65, o1527.]); Seo et al. (2007[Seo, P. J., Choi, H. D., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o2048-o2049.]).

[Scheme 1]

Experimental

Crystal data
  • C17H20O3S

  • Mr = 304.40

  • Triclinic, [P \overline 1]

  • a = 7.3434 (2) Å

  • b = 9.0765 (3) Å

  • c = 11.6009 (4) Å

  • α = 86.086 (2)°

  • β = 86.083 (2)°

  • γ = 86.690 (2)°

  • V = 768.53 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 173 K

  • 0.32 × 0.21 × 0.10 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.934, Tmax = 0.978

  • 14240 measured reflections

  • 3864 independent reflections

  • 3255 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.100

  • S = 1.05

  • 3864 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1/C2/C7/O1/C8 furan ring and C2–C7 benzene ring, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O3i 0.95 2.59 3.4777 (17) 157
O3—H3O⋯O2ii 0.84 1.80 2.6347 (15) 176
C13—H13ACg1iii 0.99 2.82 3.581 (2) 134
C14—H14BCg2iii 0.99 2.85 3.678 (2) 147
C15—H15ACg2iv 0.99 2.67 3.501 (2) 142
Symmetry codes: (i) -x+2, -y+1, -z; (ii) -x+2, -y+2, -z; (iii) -x+1, -y+1, -z+1; (iv) x, y, z-1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, many compounds containing a benzofuran moiety have drawn much attention in view of their valuable pharmacological properties such as antibacterial and antifungal, antitumor and antiviral, and antimicrobial activities (Aslam et al., 2009, Galal et al., 2009, Khan et al., 2005). These benzofuran derivatives occur in a wide range of natural products (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our ongoing study of the substituent effect on the solid state structures of 2-(5-alkyl-3-methylsulfanyl-1-benzofuran-2-yl)acetic acid analogues (Choi et al., 2009a,b, Seo et al., 2007), we report herein the crystal structure of the title compound.

In the title molecule, Fig. 1, the benzofuran unit is essentially planar, with a mean deviation of 0.006 (1)Å from the least-squares plane defined by the nine constituent atoms. The cyclohexyl ring has the chair-conformation. In the crystal structure, the carboxyl groups are involved in intermolecular O—H···O hydrogen bonds (Fig. 2 & Table 1), which link the molecules into centrosymmetric dimers. These dimers are further stabilized by weak intermolecular C—H···O hydrogen bonds between a benzene H atom and the O atom of the hydroxy group (Fig. 2 & Table 1; C6—H6···O3i). The crystal packing, Fig. 3, also exhibits aromatic ππ interactions between the furan rings of the adjacent molecules, with a Cg1···Cg1iv distance of 3.505 (2)Å and an interplanar distance of 3.385 (2)Å resulting in a slippage of 0.909 (2)Å (Cg1 is the centroid of C1/C2/C7/O1/C8 furan ring). Additionally, the crystal packing (Fig. 3) shows intermolecular C—H···π interactions; the first one between a cyclohexyl H atom and the furan ring (Table 1; C13—H13A···Cg1iii), the second one between a cyclohexyl H atom and the benzene ring (Table 1; C14—H14B···Cg2iii), and the third one between an H atom of the benzylic methylene group and the benzene ring (Table 1; C15—H15A···Cg2iv, Cg2 is the centroid of the C2–C7 benzene ring). Symmetry codes as in the Table 1 and Fig. 2 and Fig. 3.

Related literature top

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2009); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For structural studies of related 2-(5-alkyl-3-methylsulfanyl-1-benzofuran-2-yl) acetic acid derivatives, see: Choi et al. (2009a,b); Seo et al. (2007).

Experimental top

Ethyl 2-(5-cyclohexyl-3-methylsulfanyl-1-benzofuran-2-yl)acetate (398 mg, 1.2 mmol) was added to a solution of potassium hydroxide (337 mg, mmol) in water (10 ml) and methanol (10 ml), and the mixture was refluxed for 5h, then cooled. Water was added, and the solution was extracted with dichloromethane. The aqueous layer was acidified to pH = 1 with concentrated hydrochloric acid and then extracted with chloroform, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (ethyl acetate) to afford the title compound as a colourless solid [yield 83%, m.p. 423–424 K; Rf = 0.45 (ethyl acetate)]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in diisopropyl ether at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with O—H = 0.84Å, and C—H = 0.95Å for aryl, 1.00Å for methine, 0.99Å for methylene and 0.98Å for methyl H atoms, respectively. Uiso(H) = 1.5Ueq(O), and 1.2Ueq(C) for aryl, methine, and methylene and 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the O—H···O and C—H···O inetractions (dotted lines) in the crystal structure of the title compound. Symmetry codes: (i) -x+2, -y+1, -z; (ii) -x+2, -y+2, -z.
[Figure 3] Fig. 3. A view of the ππ and C—H···π inetractions (dotted lines) in the crystal structure of the title compound. Symmetry codes: (iii) -x+1, -y+1, -z+1; (iv) -x+1, -y+1, -z; (v) x, y, z-1.
2-(5-Cyclohexyl-3-methylsulfanyl-1-benzofuran-2-yl)acetic acid top
Crystal data top
C17H20O3SZ = 2
Mr = 304.40F(000) = 324
Triclinic, P1Dx = 1.315 Mg m3
Hall symbol: -P 1Melting point = 423–424 K
a = 7.3434 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.0765 (3) ÅCell parameters from 6244 reflections
c = 11.6009 (4) Åθ = 2.3–28.4°
α = 86.086 (2)°µ = 0.22 mm1
β = 86.083 (2)°T = 173 K
γ = 86.690 (2)°Block, colourless
V = 768.53 (4) Å30.32 × 0.21 × 0.10 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3864 independent reflections
Radiation source: rotating anode3255 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.030
Detector resolution: 10.0 pixels mm-1θmax = 28.6°, θmin = 1.8°
ϕ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 912
Tmin = 0.934, Tmax = 0.978l = 1515
14240 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: difference Fourier map
wR(F2) = 0.100H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0444P)2 + 0.2671P]
where P = (Fo2 + 2Fc2)/3
3864 reflections(Δ/σ)max = 0.001
191 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C17H20O3Sγ = 86.690 (2)°
Mr = 304.40V = 768.53 (4) Å3
Triclinic, P1Z = 2
a = 7.3434 (2) ÅMo Kα radiation
b = 9.0765 (3) ŵ = 0.22 mm1
c = 11.6009 (4) ÅT = 173 K
α = 86.086 (2)°0.32 × 0.21 × 0.10 mm
β = 86.083 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3864 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3255 reflections with I > 2σ(I)
Tmin = 0.934, Tmax = 0.978Rint = 0.030
14240 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.05Δρmax = 0.30 e Å3
3864 reflectionsΔρmin = 0.26 e Å3
191 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.39556 (5)0.81571 (4)0.07230 (3)0.02882 (11)
O10.75966 (12)0.47823 (10)0.08350 (8)0.0242 (2)
O20.88107 (14)0.86762 (12)0.06964 (8)0.0308 (2)
O30.96423 (14)0.89156 (11)0.11894 (8)0.0304 (2)
H3O1.01200.96720.09950.046*
C10.52945 (18)0.65343 (14)0.09979 (11)0.0211 (3)
C20.49420 (17)0.53545 (14)0.18707 (11)0.0201 (3)
C30.35767 (17)0.50941 (14)0.27432 (11)0.0209 (3)
H30.25770.57940.28520.025*
C40.36936 (18)0.37992 (14)0.34536 (11)0.0218 (3)
C50.51779 (19)0.27762 (15)0.32655 (12)0.0267 (3)
H50.52430.18890.37490.032*
C60.65490 (19)0.30100 (15)0.24036 (12)0.0271 (3)
H60.75440.23090.22830.032*
C70.63899 (18)0.43164 (14)0.17300 (11)0.0220 (3)
C80.68847 (18)0.61388 (14)0.04136 (11)0.0222 (3)
C90.22459 (18)0.35080 (15)0.44187 (11)0.0226 (3)
H90.14080.44160.44410.027*
C100.1076 (2)0.22267 (17)0.42058 (13)0.0308 (3)
H10A0.18600.13050.41670.037*
H10B0.05190.24230.34530.037*
C110.0433 (2)0.20246 (17)0.51702 (13)0.0329 (3)
H11A0.12950.29050.51520.039*
H11B0.11230.11540.50350.039*
C120.0348 (2)0.18098 (17)0.63539 (13)0.0339 (3)
H12A0.06660.17570.69600.041*
H12B0.10850.08620.64060.041*
C130.1536 (2)0.30655 (19)0.65673 (13)0.0330 (3)
H13A0.20990.28540.73160.040*
H13B0.07650.39930.66170.040*
C140.3035 (2)0.32710 (19)0.56051 (12)0.0331 (3)
H14A0.38890.23860.56140.040*
H14B0.37340.41350.57460.040*
C150.79618 (19)0.68726 (15)0.05668 (12)0.0250 (3)
H15A0.71470.71370.12030.030*
H15B0.89270.61570.08550.030*
C160.88468 (17)0.82431 (14)0.02779 (11)0.0221 (3)
C170.4488 (2)0.91892 (17)0.19209 (14)0.0352 (3)
H17A0.42420.86000.26490.053*
H17B0.37291.01130.19240.053*
H17C0.57810.94140.18400.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0332 (2)0.02291 (18)0.0301 (2)0.00036 (13)0.00535 (14)0.00250 (13)
O10.0233 (5)0.0225 (5)0.0260 (5)0.0032 (4)0.0036 (4)0.0003 (4)
O20.0374 (6)0.0353 (6)0.0211 (5)0.0181 (4)0.0030 (4)0.0037 (4)
O30.0382 (6)0.0302 (5)0.0235 (5)0.0169 (4)0.0045 (4)0.0020 (4)
C10.0225 (6)0.0191 (6)0.0223 (6)0.0060 (5)0.0021 (5)0.0004 (5)
C20.0222 (6)0.0191 (6)0.0197 (6)0.0061 (5)0.0025 (5)0.0013 (5)
C30.0204 (6)0.0210 (6)0.0215 (6)0.0034 (5)0.0011 (5)0.0021 (5)
C40.0236 (6)0.0223 (6)0.0201 (6)0.0067 (5)0.0013 (5)0.0012 (5)
C50.0305 (7)0.0226 (6)0.0262 (7)0.0026 (5)0.0007 (6)0.0036 (5)
C60.0264 (7)0.0233 (7)0.0304 (7)0.0017 (5)0.0007 (6)0.0006 (6)
C70.0216 (6)0.0230 (6)0.0215 (6)0.0057 (5)0.0008 (5)0.0011 (5)
C80.0257 (6)0.0200 (6)0.0215 (6)0.0069 (5)0.0019 (5)0.0012 (5)
C90.0237 (6)0.0233 (6)0.0208 (6)0.0061 (5)0.0000 (5)0.0008 (5)
C100.0330 (8)0.0339 (8)0.0270 (7)0.0150 (6)0.0009 (6)0.0044 (6)
C110.0315 (8)0.0336 (8)0.0346 (8)0.0160 (6)0.0034 (6)0.0037 (6)
C120.0361 (8)0.0329 (8)0.0310 (8)0.0076 (6)0.0071 (6)0.0055 (6)
C130.0322 (8)0.0452 (9)0.0217 (7)0.0085 (6)0.0013 (6)0.0012 (6)
C140.0285 (7)0.0485 (9)0.0233 (7)0.0132 (6)0.0018 (6)0.0002 (6)
C150.0288 (7)0.0239 (6)0.0227 (7)0.0088 (5)0.0024 (5)0.0023 (5)
C160.0196 (6)0.0233 (6)0.0233 (6)0.0038 (5)0.0000 (5)0.0008 (5)
C170.0402 (9)0.0269 (7)0.0388 (9)0.0018 (6)0.0023 (7)0.0063 (6)
Geometric parameters (Å, º) top
S1—C11.7463 (13)C9—H91.0000
S1—C171.8044 (16)C10—C111.530 (2)
O1—C71.3783 (15)C10—H10A0.9900
O1—C81.3808 (16)C10—H10B0.9900
O2—C161.2200 (16)C11—C121.520 (2)
O3—C161.3041 (16)C11—H11A0.9900
O3—H3O0.8400C11—H11B0.9900
C1—C81.3523 (19)C12—C131.518 (2)
C1—C21.4446 (17)C12—H12A0.9900
C2—C71.3880 (18)C12—H12B0.9900
C2—C31.3934 (17)C13—C141.523 (2)
C3—C41.3906 (18)C13—H13A0.9900
C3—H30.9500C13—H13B0.9900
C4—C51.4058 (19)C14—H14A0.9900
C4—C91.5109 (18)C14—H14B0.9900
C5—C61.3844 (19)C15—C161.5040 (18)
C5—H50.9500C15—H15A0.9900
C6—C71.3786 (19)C15—H15B0.9900
C6—H60.9500C17—H17A0.9800
C8—C151.4823 (18)C17—H17B0.9800
C9—C141.5268 (19)C17—H17C0.9800
C9—C101.5280 (19)
C1—S1—C17100.05 (7)C12—C11—C10111.44 (12)
C7—O1—C8105.90 (10)C12—C11—H11A109.3
C16—O3—H3O109.5C10—C11—H11A109.3
C8—C1—C2106.46 (11)C12—C11—H11B109.3
C8—C1—S1125.80 (10)C10—C11—H11B109.3
C2—C1—S1127.74 (10)H11A—C11—H11B108.0
C7—C2—C3119.29 (12)C13—C12—C11111.38 (12)
C7—C2—C1105.62 (11)C13—C12—H12A109.4
C3—C2—C1135.08 (12)C11—C12—H12A109.4
C4—C3—C2119.28 (12)C13—C12—H12B109.4
C4—C3—H3120.4C11—C12—H12B109.4
C2—C3—H3120.4H12A—C12—H12B108.0
C3—C4—C5119.13 (12)C12—C13—C14111.49 (13)
C3—C4—C9120.14 (12)C12—C13—H13A109.3
C5—C4—C9120.73 (12)C14—C13—H13A109.3
C6—C5—C4122.61 (13)C12—C13—H13B109.3
C6—C5—H5118.7C14—C13—H13B109.3
C4—C5—H5118.7H13A—C13—H13B108.0
C7—C6—C5116.27 (13)C13—C14—C9111.51 (12)
C7—C6—H6121.9C13—C14—H14A109.3
C5—C6—H6121.9C9—C14—H14A109.3
O1—C7—C6126.17 (12)C13—C14—H14B109.3
O1—C7—C2110.43 (11)C9—C14—H14B109.3
C6—C7—C2123.40 (12)H14A—C14—H14B108.0
C1—C8—O1111.59 (11)C8—C15—C16114.63 (11)
C1—C8—C15132.48 (13)C8—C15—H15A108.6
O1—C8—C15115.93 (11)C16—C15—H15A108.6
C4—C9—C14112.67 (11)C8—C15—H15B108.6
C4—C9—C10112.85 (11)C16—C15—H15B108.6
C14—C9—C10110.37 (12)H15A—C15—H15B107.6
C4—C9—H9106.8O2—C16—O3124.13 (12)
C14—C9—H9106.8O2—C16—C15123.70 (12)
C10—C9—H9106.8O3—C16—C15112.17 (11)
C9—C10—C11111.07 (12)S1—C17—H17A109.5
C9—C10—H10A109.4S1—C17—H17B109.5
C11—C10—H10A109.4H17A—C17—H17B109.5
C9—C10—H10B109.4S1—C17—H17C109.5
C11—C10—H10B109.4H17A—C17—H17C109.5
H10A—C10—H10B108.0H17B—C17—H17C109.5
C17—S1—C1—C8104.94 (13)S1—C1—C8—O1179.32 (9)
C17—S1—C1—C275.49 (13)C2—C1—C8—C15179.89 (13)
C8—C1—C2—C70.22 (14)S1—C1—C8—C150.5 (2)
S1—C1—C2—C7179.42 (10)C7—O1—C8—C10.29 (14)
C8—C1—C2—C3179.08 (14)C7—O1—C8—C15179.88 (11)
S1—C1—C2—C31.3 (2)C3—C4—C9—C14122.24 (14)
C7—C2—C3—C40.06 (18)C5—C4—C9—C1457.33 (17)
C1—C2—C3—C4179.28 (13)C3—C4—C9—C10111.93 (14)
C2—C3—C4—C50.68 (19)C5—C4—C9—C1068.49 (16)
C2—C3—C4—C9178.90 (11)C4—C9—C10—C11176.96 (12)
C3—C4—C5—C60.6 (2)C14—C9—C10—C1155.98 (16)
C9—C4—C5—C6178.95 (13)C9—C10—C11—C1255.76 (17)
C4—C5—C6—C70.2 (2)C10—C11—C12—C1354.84 (17)
C8—O1—C7—C6179.81 (13)C11—C12—C13—C1454.64 (18)
C8—O1—C7—C20.14 (14)C12—C13—C14—C955.54 (18)
C5—C6—C7—O1179.39 (12)C4—C9—C14—C13176.83 (12)
C5—C6—C7—C21.0 (2)C10—C9—C14—C1356.01 (17)
C3—C2—C7—O1179.39 (11)C1—C8—C15—C1669.12 (19)
C1—C2—C7—O10.04 (14)O1—C8—C15—C16111.10 (13)
C3—C2—C7—C60.9 (2)C8—C15—C16—O25.1 (2)
C1—C2—C7—C6179.63 (13)C8—C15—C16—O3174.44 (12)
C2—C1—C8—O10.32 (15)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1/C2/C7/O1/C8 furan ring and C2–C7 benzene ring, respectively.
D—H···AD—HH···AD···AD—H···A
C6—H6···O3i0.952.593.4777 (17)157
O3—H3O···O2ii0.841.802.6347 (15)176
C13—H13A···Cg1iii0.992.823.581 (2)134
C14—H14B···Cg2iii0.992.853.678 (2)147
C15—H15A···Cg2iv0.992.673.501 (2)142
Symmetry codes: (i) x+2, y+1, z; (ii) x+2, y+2, z; (iii) x+1, y+1, z+1; (iv) x, y, z1.

Experimental details

Crystal data
Chemical formulaC17H20O3S
Mr304.40
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.3434 (2), 9.0765 (3), 11.6009 (4)
α, β, γ (°)86.086 (2), 86.083 (2), 86.690 (2)
V3)768.53 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.32 × 0.21 × 0.10
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.934, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
14240, 3864, 3255
Rint0.030
(sin θ/λ)max1)0.672
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.100, 1.05
No. of reflections3864
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.26

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1/C2/C7/O1/C8 furan ring and C2–C7 benzene ring, respectively.
D—H···AD—HH···AD···AD—H···A
C6—H6···O3i0.952.593.4777 (17)157
O3—H3O···O2ii0.841.802.6347 (15)176
C13—H13A···Cg1iii0.992.823.581 (2)134
C14—H14B···Cg2iii0.992.853.678 (2)147
C15—H15A···Cg2iv0.992.673.501 (2)142
Symmetry codes: (i) x+2, y+1, z; (ii) x+2, y+2, z; (iii) x+1, y+1, z+1; (iv) x, y, z1.
 

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191–195.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009a). Acta Cryst. E65, o998.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009b). Acta Cryst. E65, o1527.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSeo, P. J., Choi, H. D., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o2048–o2049.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds