organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Iodo­phen­yl)-1,2,3,4-tetra­hydro­iso­quinoline-1-carbo­nitrile

aCollege of Science, Northwest Agriculture and Forest University, Yangling 712100, People's Republic of China, and bCollege of Life Science, Northwest Agriculture and Forest University, Yangling 712100, People's Republic of China
*Correspondence e-mail: zhoulechem@yahoo.com.cn

(Received 8 April 2011; accepted 25 May 2011; online 23 July 2011)

In the title compound, C16H13IN2, the benzene ring of the tetra­hydro­isoquinoline moiety makes a dihedral angle of 45.02 (9)° with the benzene ring of the 4-iodo­phenyl fragment. The N atom and the adjacent unsubstituted C atom of the tetra­hydro­isoquinoline unit are displaced by 0.294 (2) and 0.441 (3) Å, respectively, from the plane through the remaining eight C atoms. In the crystal, pairs of adjacent mol­ecules are linked into dimers by weak inter­molecular C—H⋯π inter­actions.

Related literature

For the synthesis of the title compound, see: Ishii et al. (1985[Ishii, H., Ichikawa, Y. I. & Kawanabe, E. (1985). Chem. Pharm. Bull. 33, 4139-4151.]). For the biological activity of tetra­hydro­isoquinoline derivatives, see: Abe et al. (2005[Abe, K., Saitoh, T., Horiguchi, Y., Utsunomiya, I. & Taguchi, K. (2005). Biol. Pharm. Bull. 28, 1355-1362.]); Kamal et al. (2011[Kamal, A. M., Radwan, S. M. & Zaki, R. M. (2011). Eur. J. Med. Chem. 46, 567-578.]); Lane et al. (2006[Lane, J. W., Estevez, A., Mortara, K., Callan, O., Spencer, J. R. & Williams, R. M. (2006). Bioorg. Med. Chem. Lett. 16, 3180-3183.]); Liu et al. (2009[Liu, X. H., Zhu, J., Zhou, A. N., Song, B. A., Zhu, H. L., Bai, L. S., Bhadury, P. S. & Pan, C. X. (2009). Bioorg. Med. Chem. 17, 1207-1213.]); Storch et al. (2002[Storch, A., Ott, S., Hwang, Y. I., Ortmann, R., Hein, A., Frenzel, S., Matsubara, K., Ohta, S., Wolf, H. U., & Schwarz, J. (2002). Biochem. Pharmacol. 63, 909-920.]); Wright et al. (1990[Wright, A. E., Forleo, D. A., Gunawardana, G. P., Gunasekera, S. P., Koehn, F. E. & McConnell, O. J. (1990). J. Org. Chem. 55, 4508-4512.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13IN2

  • Mr = 360.18

  • Monoclinic, P 21 /c

  • a = 7.347 (4) Å

  • b = 14.832 (8) Å

  • c = 13.149 (7) Å

  • β = 100.157 (6)°

  • V = 1410.5 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.26 mm−1

  • T = 296 K

  • 0.32 × 0.17 × 0.15 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.532, Tmax = 0.728

  • 10475 measured reflections

  • 2604 independent reflections

  • 2185 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.062

  • S = 1.00

  • 2604 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯Cgi 0.93 2.93 3.449 (4) 117
Symmetry code: (i) -x, -y, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). SAINT-Plus and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SAINT-Plus and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The tetrahydroisoquinoline derivatives have attracted great attention in recent years due to their neurotoxicity (Abe et al. 2005; Storch et al. 2002), antitumor activities (Lane et al. 2006; Wright et al. 1990), and antimicrobial activity (Kamal et al. 2011; Liu et al. 2009). We report here the synthesis and crystal structure of the title compound.

As shown in Fig. 1, benzene ring C1/C2/C3/C4/C5/C6 make a dihedral angle of 45.02 (9)° with benzene ring C11/C12/C13/C14/C15/C16. Atoms C7 and C9 are coplanar with benzene ring of the tetrahydroisoquinoline moiety. The conformation of the saturated six membered ring of the tetrahydroisoquinoline fragment is analyzed with respect to the plane formed by C1/C2/C3/C4/C5/C6/C7/C9, and the corresponding deviations are 0.441 (3) and 0.294 (2) Å for C8 and N1, respectively.

In the crystal structure, two adjacent molecules are linked into a dimer by weak intermolecular C—H···π interactions. The H···Cg distance is 2.930 Å with C···Cg of 3.449 (4) Å and C—H···Cg angle of 117°, as shown in Fig. 2. However, there are no weak C—H···I hydrogen bonds in the crystal structure of the title compound.

Related literature top

For the synthesis of the title compound, see: Ishii et al. (1985). For the biological activity of tetrahydroisoquinoline derivatives, see: Abe et al. (2005); Kamal et al. (2011); Lane et al. (2006); Liu et al. (2009); Storch et al. (2002); Wright et al. (1990).

Experimental top

The title compound was synthesized according to the literature procedure (Ishii, et al. 1985), and crystals were obtained from a solution in ethyl acetate by slow evaporation at room temperature.

Refinement top

All of the non-hydrogen atoms were refined anisotropically. The hydrogen atoms were assigned with isotropic displacement factors Uiso(H) = 1.2 times Ueq(C), and included in the final refinement by using geometrical constraints, with C—H distances of 0.93 Å.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular of the title compound showing 30% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme.
[Figure 2] Fig. 2. The dimer structure of the title compound showing C—H···π interactions.
2-(4-Iodophenyl)-1,2,3,4-tetrahydroisoquinoline-1-carbonitrile top
Crystal data top
C16H13IN2F(000) = 704
Mr = 360.18Dx = 1.696 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4624 reflections
a = 7.347 (4) Åθ = 2.8–26.3°
b = 14.832 (8) ŵ = 2.26 mm1
c = 13.149 (7) ÅT = 296 K
β = 100.157 (6)°Block, colourless
V = 1410.5 (13) Å30.32 × 0.17 × 0.15 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2604 independent reflections
Radiation source: fine-focus sealed tube2185 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 25.5°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.532, Tmax = 0.728k = 1717
10475 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0295P)2 + 0.8261P]
where P = (Fo2 + 2Fc2)/3
2604 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C16H13IN2V = 1410.5 (13) Å3
Mr = 360.18Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.347 (4) ŵ = 2.26 mm1
b = 14.832 (8) ÅT = 296 K
c = 13.149 (7) Å0.32 × 0.17 × 0.15 mm
β = 100.157 (6)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2604 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2185 reflections with I > 2σ(I)
Tmin = 0.532, Tmax = 0.728Rint = 0.018
10475 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.062H-atom parameters constrained
S = 1.00Δρmax = 0.55 e Å3
2604 reflectionsΔρmin = 0.42 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2714 (3)0.15209 (17)0.6261 (2)0.0437 (6)
C20.3306 (4)0.21738 (19)0.5630 (2)0.0546 (7)
H20.38220.20010.50640.065*
C30.3126 (4)0.3078 (2)0.5845 (3)0.0669 (8)
H30.35160.35110.54200.080*
C40.2371 (4)0.3340 (2)0.6686 (3)0.0689 (9)
H40.22560.39490.68320.083*
C50.1793 (4)0.2698 (2)0.7306 (2)0.0600 (8)
H50.12890.28790.78740.072*
C60.1940 (4)0.17800 (19)0.7107 (2)0.0478 (6)
C70.1195 (4)0.1080 (2)0.7750 (2)0.0573 (7)
H7A0.01360.10430.75380.069*
H7B0.14480.12650.84680.069*
C80.2025 (4)0.01582 (19)0.76536 (19)0.0488 (6)
H8A0.13750.02870.79950.059*
H8B0.33140.01580.79850.059*
C90.2960 (3)0.05317 (17)0.60181 (19)0.0413 (6)
H90.25570.04460.52730.050*
C100.4980 (4)0.02988 (18)0.6277 (2)0.0467 (6)
C110.2096 (3)0.10006 (16)0.63235 (19)0.0393 (5)
C120.1592 (4)0.12960 (18)0.53047 (19)0.0448 (6)
H120.11360.08830.47900.054*
C130.1760 (4)0.21893 (18)0.5050 (2)0.0485 (6)
H130.14210.23770.43680.058*
C140.2433 (3)0.28069 (17)0.5812 (2)0.0446 (6)
C150.2939 (4)0.2529 (2)0.6825 (2)0.0523 (6)
H150.33880.29450.73370.063*
C160.2777 (4)0.16344 (18)0.7076 (2)0.0495 (6)
H160.31280.14510.77590.059*
I10.26329 (3)0.417129 (13)0.542901 (16)0.06623 (10)
N10.1875 (3)0.00726 (14)0.65543 (15)0.0412 (5)
N20.6490 (4)0.01027 (19)0.6491 (2)0.0653 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0390 (13)0.0450 (14)0.0460 (14)0.0045 (11)0.0048 (11)0.0015 (11)
C20.0525 (16)0.0515 (16)0.0595 (17)0.0038 (13)0.0094 (13)0.0053 (13)
C30.0638 (19)0.0478 (17)0.087 (2)0.0097 (15)0.0064 (17)0.0124 (16)
C40.065 (2)0.0480 (18)0.088 (2)0.0024 (15)0.0024 (18)0.0113 (17)
C50.0554 (17)0.0551 (18)0.0669 (19)0.0026 (14)0.0036 (14)0.0177 (15)
C60.0408 (14)0.0522 (15)0.0484 (15)0.0000 (12)0.0024 (11)0.0063 (12)
C70.0628 (18)0.0627 (18)0.0506 (16)0.0028 (14)0.0217 (14)0.0126 (13)
C80.0569 (16)0.0543 (16)0.0377 (13)0.0071 (13)0.0150 (12)0.0013 (12)
C90.0431 (14)0.0449 (13)0.0363 (13)0.0030 (11)0.0085 (10)0.0005 (10)
C100.0496 (17)0.0475 (15)0.0465 (15)0.0045 (12)0.0182 (12)0.0000 (12)
C110.0343 (13)0.0451 (14)0.0391 (13)0.0060 (10)0.0078 (10)0.0017 (10)
C120.0452 (15)0.0470 (15)0.0392 (13)0.0040 (12)0.0012 (11)0.0036 (11)
C130.0531 (16)0.0501 (15)0.0397 (13)0.0061 (12)0.0015 (12)0.0038 (12)
C140.0436 (14)0.0405 (13)0.0501 (15)0.0037 (11)0.0095 (11)0.0003 (11)
C150.0573 (16)0.0515 (16)0.0456 (14)0.0012 (13)0.0023 (12)0.0090 (12)
C160.0570 (16)0.0519 (16)0.0364 (13)0.0039 (13)0.0004 (12)0.0000 (12)
I10.09151 (18)0.04555 (13)0.06353 (15)0.00255 (10)0.01885 (11)0.00301 (9)
N10.0436 (11)0.0441 (12)0.0374 (11)0.0057 (9)0.0114 (9)0.0007 (9)
N20.0508 (16)0.0792 (19)0.0693 (17)0.0032 (14)0.0199 (13)0.0087 (14)
Geometric parameters (Å, º) top
C1—C61.391 (4)C8—H8B0.9700
C1—C21.393 (4)C9—N11.461 (3)
C1—C91.519 (4)C9—C101.503 (4)
C2—C31.381 (4)C9—H90.9800
C2—H20.9300C10—N21.133 (3)
C3—C41.378 (5)C11—C161.392 (4)
C3—H30.9300C11—C121.396 (3)
C4—C51.368 (5)C11—N11.425 (3)
C4—H40.9300C12—C131.378 (4)
C5—C61.395 (4)C12—H120.9300
C5—H50.9300C13—C141.383 (4)
C6—C71.501 (4)C13—H130.9300
C7—C81.511 (4)C14—C151.381 (4)
C7—H7A0.9700C14—I12.097 (3)
C7—H7B0.9700C15—C161.378 (4)
C8—N11.471 (3)C15—H150.9300
C8—H8A0.9700C16—H160.9300
C6—C1—C2119.9 (3)H8A—C8—H8B108.3
C6—C1—C9121.0 (2)N1—C9—C10110.6 (2)
C2—C1—C9119.0 (2)N1—C9—C1113.3 (2)
C3—C2—C1120.1 (3)C10—C9—C1108.9 (2)
C3—C2—H2119.9N1—C9—H9108.0
C1—C2—H2119.9C10—C9—H9108.0
C2—C3—C4120.3 (3)C1—C9—H9108.0
C2—C3—H3119.8N2—C10—C9177.9 (3)
C4—C3—H3119.8C16—C11—C12118.1 (2)
C5—C4—C3119.5 (3)C16—C11—N1122.8 (2)
C5—C4—H4120.2C12—C11—N1119.1 (2)
C3—C4—H4120.2C13—C12—C11121.0 (2)
C4—C5—C6121.7 (3)C13—C12—H12119.5
C4—C5—H5119.2C11—C12—H12119.5
C6—C5—H5119.2C12—C13—C14119.8 (2)
C1—C6—C5118.4 (3)C12—C13—H13120.1
C1—C6—C7120.0 (2)C14—C13—H13120.1
C5—C6—C7121.5 (3)C13—C14—C15120.1 (2)
C8—C7—C6112.7 (2)C13—C14—I1119.8 (2)
C8—C7—H7A109.1C15—C14—I1120.1 (2)
C6—C7—H7A109.0C16—C15—C14119.9 (2)
C8—C7—H7B109.0C16—C15—H15120.0
C6—C7—H7B109.1C14—C15—H15120.0
H7A—C7—H7B107.8C15—C16—C11121.0 (2)
N1—C8—C7109.4 (2)C15—C16—H16119.5
N1—C8—H8A109.8C11—C16—H16119.5
C7—C8—H8A109.8C11—N1—C9113.42 (19)
N1—C8—H8B109.8C11—N1—C8116.3 (2)
C7—C8—H8B109.8C9—N1—C8112.3 (2)
C6—C1—C2—C30.1 (4)N1—C11—C12—C13179.1 (2)
C9—C1—C2—C3178.9 (3)C11—C12—C13—C140.1 (4)
C1—C2—C3—C40.4 (5)C12—C13—C14—C150.1 (4)
C2—C3—C4—C50.3 (5)C12—C13—C14—I1178.6 (2)
C3—C4—C5—C60.2 (5)C13—C14—C15—C160.2 (4)
C2—C1—C6—C50.5 (4)I1—C14—C15—C16178.9 (2)
C9—C1—C6—C5178.4 (2)C14—C15—C16—C110.5 (4)
C2—C1—C6—C7176.2 (3)C12—C11—C16—C150.4 (4)
C9—C1—C6—C74.8 (4)N1—C11—C16—C15178.8 (2)
C4—C5—C6—C10.6 (4)C16—C11—N1—C9119.8 (3)
C4—C5—C6—C7176.1 (3)C12—C11—N1—C961.0 (3)
C1—C6—C7—C822.5 (4)C16—C11—N1—C812.6 (3)
C5—C6—C7—C8160.9 (3)C12—C11—N1—C8166.6 (2)
C6—C7—C8—N150.9 (3)C10—C9—N1—C1157.7 (3)
C6—C1—C9—N116.1 (3)C1—C9—N1—C11179.7 (2)
C2—C1—C9—N1165.0 (2)C10—C9—N1—C876.6 (3)
C6—C1—C9—C10107.4 (3)C1—C9—N1—C846.0 (3)
C2—C1—C9—C1071.5 (3)C7—C8—N1—C11162.7 (2)
C16—C11—C12—C130.1 (4)C7—C8—N1—C964.4 (3)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C13—H13···Cgi0.932.933.449 (4)117
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC16H13IN2
Mr360.18
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.347 (4), 14.832 (8), 13.149 (7)
β (°) 100.157 (6)
V3)1410.5 (13)
Z4
Radiation typeMo Kα
µ (mm1)2.26
Crystal size (mm)0.32 × 0.17 × 0.15
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.532, 0.728
No. of measured, independent and
observed [I > 2σ(I)] reflections
10475, 2604, 2185
Rint0.018
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.062, 1.00
No. of reflections2604
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.42

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C13—H13···Cgi0.932.933.449 (4)117
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NNSF; No. 30771454; 31000865).

References

First citationAbe, K., Saitoh, T., Horiguchi, Y., Utsunomiya, I. & Taguchi, K. (2005). Biol. Pharm. Bull. 28, 1355–1362.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2004). SAINT-Plus and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationIshii, H., Ichikawa, Y. I. & Kawanabe, E. (1985). Chem. Pharm. Bull. 33, 4139–4151.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKamal, A. M., Radwan, S. M. & Zaki, R. M. (2011). Eur. J. Med. Chem. 46, 567–578.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLane, J. W., Estevez, A., Mortara, K., Callan, O., Spencer, J. R. & Williams, R. M. (2006). Bioorg. Med. Chem. Lett. 16, 3180–3183.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, X. H., Zhu, J., Zhou, A. N., Song, B. A., Zhu, H. L., Bai, L. S., Bhadury, P. S. & Pan, C. X. (2009). Bioorg. Med. Chem. 17, 1207–1213.  Web of Science CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStorch, A., Ott, S., Hwang, Y. I., Ortmann, R., Hein, A., Frenzel, S., Matsubara, K., Ohta, S., Wolf, H. U., & Schwarz, J. (2002). Biochem. Pharmacol. 63, 909–920.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWright, A. E., Forleo, D. A., Gunawardana, G. P., Gunasekera, S. P., Koehn, F. E. & McConnell, O. J. (1990). J. Org. Chem. 55, 4508–4512.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds