metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(aceto­hydroxamato-κ2O,O′)di­phenyl­tin(IV)

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: handongyin@163.com

(Received 10 June 2011; accepted 29 June 2011; online 6 July 2011)

The complex mol­ecule of the title compound, [Sn(C6H5)2(C2H4NO2)2], has crystallographically imposed twofold symmetry. The Sn atom is coordinated by four O atoms from two acetohydroxamate ligands and by two C atoms from phenyl groups in a distorted octa­hedral geometry. In the crystal, mol­ecules are connected by N—H⋯O hydrogen-bonding inter­actions, forming a chain structure along the c axis

Related literature

For the biological activity of diorganotin(IV) complexes with hydroxamates, see: Shang et al. (2007[Shang, X., Wu, J., Pombeiro, A. J. L. & Li, Q. (2007). Appl. Organomet. Chem. 21, 919-925.]). For a related structure, see: Harrison et al. (1976[Harrison, P. G., King, T. J. & Phillips, R. C. (1976). J. Chem. Soc. Dalton Trans. pp. 2317-2321.]). For van der Waals radii, see: Bondi (1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-443.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C6H5)2(C2H4NO2)2]

  • Mr = 421.01

  • Monoclinic, C 2/c

  • a = 18.7713 (17) Å

  • b = 10.2683 (8) Å

  • c = 9.8326 (6) Å

  • β = 112.842 (1)°

  • V = 1746.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.48 mm−1

  • T = 298 K

  • 0.38 × 0.33 × 0.19 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.603, Tmax = 0.766

  • 4295 measured reflections

  • 1542 independent reflections

  • 1367 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.077

  • S = 1.00

  • 1542 reflections

  • 106 parameters

  • H-atom parameters constrained

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.94 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.03 2.847 (4) 159
Symmetry code: (i) [x, -y+1, z-{\script{1\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Among many multidentate organic ligands, hydroxamic acids are of particular importance, because of their remarkable structural diversity and biological applications (Shang et al. , 2007). As a continuation of our interest in this area, we have synthesized the title compound and report its crystal structure herein.

The molecular structure of the compound is depicted in Fig. 1. The complex molecule has crystallographically imposed two-fold symmetry. The tin atom is six-coordinated in a distorted octahedral geometry. The Sn–O bond distances (Sn1–O2 = 2.103 (2) Å; Sn1–O = 2.275 (3) Å) are close to the sum of the covalent radii (2.13 Å; Bondi, 1964), and the Sn–C distance (Sn1–C3 = 2.147 (4) Å) are in the range observed in a related compound (2.14–2.18 Å; Harrison et al., 1976). In the crystal packing, the molecules are linked by N—H···O hydrogen bonds (Table 1) into a one-dimensional chains parallel to the c axis (Fig. 2).

Related literature top

For the biological activity of diorganotin(IV) complexes with hydroxamates, see: Shang et al. (2007). For a related structure, see: Harrison et al. (1976). For van der Waals radii, see: Bondi (1964).

Experimental top

The reaction was carried out under nitrogen atmosphere. Acetohydroxamic acid (0.4 mmol) and KOH (0.4 mmol) in methanol (30 ml) were added to a Schlenk flask and stirred for 30 min. Diphenyltin dichloride (0.2 mmol) was then added to the reactor. The reaction mixture was stirred for 8 h at room temperature and then filtrated. The filtrate was evaporated in vacuo to dryness. The obtained solid was recrystallized from a dichloromethane-petroleum ether (3:1 v/v) solution (yield 86%; m. p. 431 K). Anal. Calcd (%) for C16H18N2O4Sn (Mr = 421.01): C, 45.64; H, 4.31; N, 6.65; O, 15.20. Found (%): C, 45.60; H, 4.25; N, 6.62; O,15.16.

Refinement top

All H atoms were positioned with idealized geometry (C—H = 0.83-0.96 Å; N—H = 0.86 Å) and were refined isotropically with Uiso(H) = 1.2 Ueq(C, N) or 1.5 Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the compound, showing 50% probability displacement ellipsoids. H atoms are omitted for clarity. Symmetry code: (A) = -x, y, -z + 1/2.
[Figure 2] Fig. 2. View of the one-dimensional linear chain structure in the title compound.
Bis(acetohydroxamato-κ2O,O')diphenyltin(IV) top
Crystal data top
[Sn(C6H5)2(C2H4NO2)2]F(000) = 840
Mr = 421.01Dx = 1.601 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2602 reflections
a = 18.7713 (17) Åθ = 2.3–26.2°
b = 10.2683 (8) ŵ = 1.48 mm1
c = 9.8326 (6) ÅT = 298 K
β = 112.842 (1)°Block, colourless
V = 1746.6 (2) Å30.38 × 0.33 × 0.19 mm
Z = 4
Data collection top
Siemens SMART CCD area-detector
diffractometer
1542 independent reflections
Radiation source: fine-focus sealed tube1367 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
phi and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2214
Tmin = 0.603, Tmax = 0.766k = 1211
4295 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0322P)2 + 6.1631P]
where P = (Fo2 + 2Fc2)/3
1542 reflections(Δ/σ)max < 0.001
106 parametersΔρmax = 0.72 e Å3
0 restraintsΔρmin = 0.94 e Å3
Crystal data top
[Sn(C6H5)2(C2H4NO2)2]V = 1746.6 (2) Å3
Mr = 421.01Z = 4
Monoclinic, C2/cMo Kα radiation
a = 18.7713 (17) ŵ = 1.48 mm1
b = 10.2683 (8) ÅT = 298 K
c = 9.8326 (6) Å0.38 × 0.33 × 0.19 mm
β = 112.842 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
1542 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1367 reflections with I > 2σ(I)
Tmin = 0.603, Tmax = 0.766Rint = 0.048
4295 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 1.00Δρmax = 0.72 e Å3
1542 reflectionsΔρmin = 0.94 e Å3
106 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.00000.27983 (4)0.25000.03426 (15)
O10.07784 (14)0.4550 (3)0.2287 (3)0.0377 (6)
O20.04374 (15)0.3345 (3)0.0264 (3)0.0399 (6)
N10.07653 (16)0.4552 (3)0.0036 (3)0.0371 (7)
H10.08740.49290.08020.045*
C10.0919 (2)0.5148 (4)0.1067 (4)0.0356 (8)
C20.1242 (3)0.6484 (5)0.0813 (5)0.0599 (12)
H2A0.17620.64670.07660.090*
H2B0.12410.68120.01010.090*
H2C0.09320.70390.16080.090*
C30.0918 (2)0.1575 (4)0.2454 (4)0.0393 (9)
C40.0752 (3)0.0355 (5)0.1751 (5)0.0591 (12)
H40.02440.00610.13390.071*
C50.1343 (4)0.0411 (6)0.1669 (7)0.0833 (19)
H50.12280.12160.12000.100*
C60.2094 (3)0.0010 (7)0.2273 (7)0.0827 (18)
H60.24850.04940.21820.099*
C70.2269 (3)0.1177 (6)0.3013 (6)0.0710 (15)
H70.27810.14500.34520.085*
C80.1685 (2)0.1946 (5)0.3103 (5)0.0506 (11)
H80.18110.27310.36120.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0343 (2)0.0369 (2)0.0340 (2)0.0000.01590 (15)0.000
O10.0429 (14)0.0422 (16)0.0321 (13)0.0038 (12)0.0190 (11)0.0018 (11)
O20.0462 (15)0.0414 (16)0.0324 (13)0.0006 (13)0.0158 (11)0.0028 (12)
N10.0322 (16)0.049 (2)0.0299 (16)0.0002 (14)0.0117 (13)0.0062 (14)
C10.0300 (18)0.043 (2)0.0332 (19)0.0028 (16)0.0122 (15)0.0030 (16)
C20.073 (3)0.055 (3)0.061 (3)0.019 (3)0.036 (2)0.015 (2)
C30.040 (2)0.043 (2)0.0341 (19)0.0034 (18)0.0137 (16)0.0027 (17)
C40.057 (3)0.051 (3)0.061 (3)0.003 (2)0.014 (2)0.017 (2)
C50.089 (4)0.069 (4)0.087 (4)0.020 (3)0.029 (3)0.031 (3)
C60.068 (4)0.091 (5)0.091 (4)0.033 (3)0.034 (3)0.012 (4)
C70.043 (3)0.080 (4)0.087 (4)0.014 (3)0.022 (2)0.002 (3)
C80.042 (2)0.046 (3)0.063 (3)0.0045 (19)0.019 (2)0.003 (2)
Geometric parameters (Å, º) top
Sn1—O2i2.103 (2)C2—H2C0.9600
Sn1—O22.103 (2)C3—C81.383 (6)
Sn1—C3i2.147 (4)C3—C41.406 (6)
Sn1—C32.147 (4)C4—C51.388 (7)
Sn1—O1i2.275 (3)C4—H40.9300
Sn1—O12.275 (3)C5—C61.371 (9)
O1—C11.281 (4)C5—H50.9300
O2—N11.363 (4)C6—C71.374 (8)
N1—C11.308 (5)C6—H60.9300
N1—H10.8600C7—C81.381 (7)
C1—C21.482 (6)C7—H70.9300
C2—H2A0.9600C8—H80.9300
C2—H2B0.9600
O2i—Sn1—O2149.02 (16)C1—C2—H2B109.5
O2i—Sn1—C3i97.18 (12)H2A—C2—H2B109.5
O2—Sn1—C3i100.81 (12)C1—C2—H2C109.5
O2i—Sn1—C3100.81 (12)H2A—C2—H2C109.5
O2—Sn1—C397.18 (12)H2B—C2—H2C109.5
C3i—Sn1—C3108.4 (2)C8—C3—C4117.7 (4)
O2i—Sn1—O1i73.53 (10)C8—C3—Sn1122.0 (3)
O2—Sn1—O1i82.02 (10)C4—C3—Sn1120.3 (3)
C3i—Sn1—O1i162.29 (13)C5—C4—C3120.2 (5)
C3—Sn1—O1i88.41 (13)C5—C4—H4119.9
O2i—Sn1—O182.02 (10)C3—C4—H4119.9
O2—Sn1—O173.53 (10)C6—C5—C4120.5 (5)
C3i—Sn1—O188.41 (13)C6—C5—H5119.7
C3—Sn1—O1162.29 (13)C4—C5—H5119.7
O1i—Sn1—O175.54 (13)C5—C6—C7119.9 (5)
C1—O1—Sn1110.9 (2)C5—C6—H6120.1
N1—O2—Sn1112.5 (2)C7—C6—H6120.1
C1—N1—O2121.3 (3)C6—C7—C8120.0 (5)
C1—N1—H1119.4C6—C7—H7120.0
O2—N1—H1119.4C8—C7—H7120.0
O1—C1—N1118.3 (4)C7—C8—C3121.5 (5)
O1—C1—C2121.6 (4)C7—C8—H8119.2
N1—C1—C2120.1 (3)C3—C8—H8119.2
C1—C2—H2A109.5
O2i—Sn1—O1—C1144.7 (2)C3i—Sn1—C3—C8148.3 (4)
O2—Sn1—O1—C116.0 (2)O1i—Sn1—C3—C826.0 (4)
C3i—Sn1—O1—C1117.8 (3)O1—Sn1—C3—C850.8 (6)
C3—Sn1—O1—C144.1 (5)O2i—Sn1—C3—C4133.1 (4)
O1i—Sn1—O1—C169.8 (2)O2—Sn1—C3—C472.2 (4)
O2i—Sn1—O2—N124.99 (19)C3i—Sn1—C3—C431.7 (3)
C3i—Sn1—O2—N199.4 (2)O1i—Sn1—C3—C4154.0 (4)
C3—Sn1—O2—N1150.2 (2)O1—Sn1—C3—C4129.2 (4)
O1i—Sn1—O2—N162.9 (2)C8—C3—C4—C52.7 (7)
O1—Sn1—O2—N114.3 (2)Sn1—C3—C4—C5177.3 (4)
Sn1—O2—N1—C112.8 (4)C3—C4—C5—C60.1 (9)
Sn1—O1—C1—N115.1 (4)C4—C5—C6—C72.3 (10)
Sn1—O1—C1—C2164.6 (3)C5—C6—C7—C82.2 (10)
O2—N1—C1—O12.5 (5)C6—C7—C8—C30.4 (9)
O2—N1—C1—C2177.2 (3)C4—C3—C8—C72.8 (7)
O2i—Sn1—C3—C846.9 (4)Sn1—C3—C8—C7177.2 (4)
O2—Sn1—C3—C8107.8 (4)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1ii0.862.032.847 (4)159
Symmetry code: (ii) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formula[Sn(C6H5)2(C2H4NO2)2]
Mr421.01
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)18.7713 (17), 10.2683 (8), 9.8326 (6)
β (°) 112.842 (1)
V3)1746.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.48
Crystal size (mm)0.38 × 0.33 × 0.19
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.603, 0.766
No. of measured, independent and
observed [I > 2σ(I)] reflections
4295, 1542, 1367
Rint0.048
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.077, 1.00
No. of reflections1542
No. of parameters106
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.72, 0.94

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.032.847 (4)159
Symmetry code: (i) x, y+1, z1/2.
 

Acknowledgements

We acknowledge the National Natural Science Foundation of China (20771053), the National Basic Research Program (No. 2010CB234601) and the Natural Science Foundation of Shandong Province (Y2008B48) for financial support.

References

First citationBondi, A. (1964). J. Phys. Chem. 68, 441–443.  CrossRef CAS Web of Science Google Scholar
First citationHarrison, P. G., King, T. J. & Phillips, R. C. (1976). J. Chem. Soc. Dalton Trans. pp. 2317–2321.  CSD CrossRef Web of Science Google Scholar
First citationShang, X., Wu, J., Pombeiro, A. J. L. & Li, Q. (2007). Appl. Organomet. Chem. 21, 919–925.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds