organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,5′-[(2,4-Di­chloro­phen­yl)methyl­ene]bis­­(2,2-di­methyl-1,3-dioxane-4,6-dione)

aMicroScale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: wulanzeng@163.com

(Received 22 June 2011; accepted 28 June 2011; online 2 July 2011)

The title compound, C19H18Cl2O8, was prepared by the reaction of 2,2-dimethyl-1,3-dioxane-4,6-dione and 2,4-dichloro­benzaldehyde in ethanol. The two 1,3-dioxane rings exhibit boat conformations. In the crystal, mol­ecules are linked by weak inter­molecular C—H⋯O and C—H⋯Cl hydrogen bonds, forming chains parallel to the a axis.

Related literature

For related structures, see: Zeng (2010[Zeng, W.-L. (2010). Acta Cryst. E66, o2319.], 2011[Zeng, W.-L. (2011). Acta Cryst. E67, o478.]).

[Scheme 1]

Experimental

Crystal data
  • C19H18Cl2O8

  • Mr = 445.23

  • Monoclinic, P 21 /c

  • a = 7.9522 (6) Å

  • b = 11.5145 (11) Å

  • c = 22.0939 (19) Å

  • β = 100.201 (1)°

  • V = 1991.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 298 K

  • 0.40 × 0.34 × 0.28 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996)[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.] Tmin = 0.866, Tmax = 0.903

  • 9830 measured reflections

  • 3519 independent reflections

  • 1978 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.127

  • S = 1.03

  • 3519 reflections

  • 266 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O4i 0.98 2.32 3.220 (4) 151
C11—H11B⋯Cl1ii 0.96 2.75 3.387 (4) 125
C11—H11C⋯O4i 0.96 2.43 3.323 (4) 155
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In previous papers, the crystal structure of 5-(4-hydroxybenzylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione (Zeng, 2010) and 2,2-dimethyl-5-[(5-methylfuran-2-yl)methylidene]-1,3-dioxane-4,6-dione (Zeng, 2011) have been reported. As part of this ongoing search for new Meldrum's acid compounds, the title compound has been synthesized and its structure is reported here.

In the title compound (Fig. 1), bond lengths and angles fall in the usual ranges. The two 1,3-dioxane rings exhibit boat conformations. In the crystal structure, the molecules interact through weak intermolecular C—H···O and C—H···Cl hydrogen bonds (Table 1) to form chains parallel to the a axis.

Related literature top

For related structures, see: Zeng (2010, 2011).

Experimental top

A mixture of malonic acid (6.24 g, 0.06 mol) and acetic anhydride (9 ml) in concentrated sulfuric acid (0.25 ml) was stirred with water at 303 K, After dissolving, propan-2-one (3.48 g, 0.06 mol) was added dropwise into solution for 1 h. The reaction was allowed to proceed for 2 h. The mixture was cooled and filtered, and then an ethanol solution of 2,4-dichlorobenzaldehyde (10.44 g,0.06 mol) was added. The solution was then filtered and concentrated. Single crystals were obtained by evaporation of an petroleum ether/acetone (1:1 v/v) solution at room temperature over a period of several days.

Refinement top

The H atoms were placed in calculated positions (C—H = 0.93–0.98 Å), and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, drawn with 30% probability ellipsoids and spheres of arbritrary size for the H atoms.
5,5'-[(2,4-Dichlorophenyl)methylene]bis(2,2-dimethyl-1,3-dioxane-4,6-dione) top
Crystal data top
C19H18Cl2O8F(000) = 920
Mr = 445.23Dx = 1.485 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2055 reflections
a = 7.9522 (6) Åθ = 2.6–22.4°
b = 11.5145 (11) ŵ = 0.37 mm1
c = 22.0939 (19) ÅT = 298 K
β = 100.201 (1)°Block, colourless
V = 1991.1 (3) Å30.40 × 0.34 × 0.28 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3519 independent reflections
Radiation source: fine-focus sealed tube1978 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
phi and ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 89
Tmin = 0.866, Tmax = 0.903k = 1313
9830 measured reflectionsl = 2616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0473P)2 + 0.9163P]
where P = (Fo2 + 2Fc2)/3
3519 reflections(Δ/σ)max < 0.001
266 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C19H18Cl2O8V = 1991.1 (3) Å3
Mr = 445.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.9522 (6) ŵ = 0.37 mm1
b = 11.5145 (11) ÅT = 298 K
c = 22.0939 (19) Å0.40 × 0.34 × 0.28 mm
β = 100.201 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3519 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1978 reflections with I > 2σ(I)
Tmin = 0.866, Tmax = 0.903Rint = 0.039
9830 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.03Δρmax = 0.33 e Å3
3519 reflectionsΔρmin = 0.28 e Å3
266 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.34140 (13)0.58466 (10)0.82975 (4)0.0791 (4)
Cl20.94290 (17)0.39837 (13)0.91959 (5)0.1097 (5)
O10.4381 (3)0.67539 (19)0.54288 (9)0.0534 (6)
O20.6398 (3)0.77237 (18)0.61607 (10)0.0519 (6)
O30.2390 (3)0.5720 (2)0.57392 (10)0.0633 (7)
O40.6173 (3)0.75628 (19)0.71323 (10)0.0563 (7)
O50.0131 (3)0.43266 (19)0.63977 (10)0.0509 (6)
O60.1923 (3)0.30698 (19)0.61015 (10)0.0530 (6)
O70.0621 (3)0.5985 (2)0.68504 (11)0.0633 (7)
O80.4641 (3)0.3549 (2)0.62659 (11)0.0576 (6)
C10.3785 (5)0.6132 (3)0.58613 (14)0.0464 (8)
C20.5000 (4)0.6011 (2)0.64670 (13)0.0393 (8)
H20.58770.54520.63990.047*
C30.5907 (4)0.7152 (3)0.66308 (15)0.0422 (8)
C40.6071 (4)0.7239 (3)0.55467 (14)0.0483 (9)
C50.6000 (5)0.8257 (3)0.51133 (15)0.0637 (11)
H5A0.57940.79820.46970.096*
H5B0.70670.86670.51930.096*
H5C0.50930.87700.51740.096*
C60.7397 (5)0.6361 (3)0.54565 (16)0.0649 (10)
H6A0.73250.57030.57180.097*
H6B0.85120.67030.55590.097*
H6C0.72040.61130.50350.097*
C70.1059 (4)0.5050 (3)0.67033 (14)0.0453 (8)
C80.2861 (4)0.4576 (3)0.68544 (13)0.0375 (7)
H80.29040.41360.72370.045*
C90.3256 (5)0.3709 (3)0.63918 (14)0.0433 (8)
C100.0272 (4)0.3142 (3)0.62803 (15)0.0486 (8)
C110.0244 (5)0.2407 (3)0.68364 (16)0.0604 (10)
H11A0.04550.16120.67420.091*
H11B0.08530.24690.69570.091*
H11C0.11140.26690.71660.091*
C120.1003 (5)0.2776 (4)0.57242 (16)0.0731 (12)
H12A0.09420.32980.53900.110*
H12B0.21330.27950.58210.110*
H12C0.07460.20020.56080.110*
C130.4220 (4)0.5546 (3)0.70107 (13)0.0385 (7)
H130.36330.62050.71620.046*
C140.5585 (4)0.5159 (2)0.75482 (13)0.0360 (7)
C150.5303 (4)0.5281 (3)0.81477 (14)0.0432 (8)
C160.6490 (5)0.4927 (3)0.86523 (14)0.0524 (9)
H160.62840.50410.90490.063*
C170.7951 (5)0.4412 (3)0.85586 (16)0.0552 (9)
C180.8268 (5)0.4243 (3)0.79810 (17)0.0646 (11)
H180.92680.38780.79210.078*
C190.7089 (4)0.4620 (3)0.74818 (15)0.0538 (9)
H190.73210.45050.70880.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0685 (7)0.1167 (9)0.0547 (6)0.0359 (6)0.0181 (5)0.0067 (6)
Cl20.0957 (9)0.1545 (12)0.0645 (7)0.0415 (8)0.0254 (6)0.0215 (7)
O10.0564 (15)0.0646 (15)0.0350 (13)0.0160 (12)0.0035 (10)0.0125 (11)
O20.0649 (16)0.0464 (13)0.0429 (14)0.0127 (11)0.0053 (11)0.0009 (11)
O30.0572 (17)0.0817 (18)0.0445 (14)0.0252 (14)0.0084 (11)0.0136 (12)
O40.0752 (18)0.0515 (14)0.0378 (14)0.0083 (12)0.0014 (12)0.0084 (11)
O50.0375 (14)0.0526 (14)0.0589 (15)0.0018 (11)0.0017 (10)0.0004 (11)
O60.0548 (16)0.0554 (15)0.0494 (14)0.0127 (12)0.0112 (11)0.0114 (11)
O70.0477 (16)0.0586 (17)0.0805 (18)0.0128 (12)0.0029 (12)0.0087 (13)
O80.0479 (16)0.0574 (15)0.0708 (17)0.0008 (12)0.0200 (13)0.0130 (12)
C10.051 (2)0.048 (2)0.0379 (19)0.0090 (17)0.0009 (16)0.0024 (15)
C20.0433 (19)0.0407 (18)0.0308 (17)0.0043 (15)0.0014 (13)0.0011 (14)
C30.046 (2)0.0401 (19)0.038 (2)0.0034 (15)0.0009 (15)0.0013 (16)
C40.052 (2)0.053 (2)0.0368 (19)0.0139 (18)0.0017 (15)0.0010 (16)
C50.076 (3)0.064 (2)0.052 (2)0.012 (2)0.0134 (19)0.0162 (19)
C60.070 (3)0.070 (3)0.056 (2)0.005 (2)0.0158 (19)0.0018 (19)
C70.043 (2)0.050 (2)0.0423 (19)0.0013 (17)0.0040 (15)0.0070 (17)
C80.0324 (18)0.0442 (18)0.0349 (17)0.0001 (14)0.0034 (13)0.0028 (14)
C90.046 (2)0.0400 (19)0.044 (2)0.0019 (16)0.0068 (16)0.0028 (15)
C100.041 (2)0.057 (2)0.047 (2)0.0057 (17)0.0045 (15)0.0022 (17)
C110.057 (2)0.060 (2)0.062 (2)0.0143 (19)0.0053 (18)0.0097 (19)
C120.065 (3)0.088 (3)0.059 (3)0.022 (2)0.0093 (19)0.006 (2)
C130.0388 (19)0.0397 (18)0.0350 (17)0.0031 (14)0.0011 (13)0.0013 (14)
C140.0363 (18)0.0382 (17)0.0325 (17)0.0001 (14)0.0032 (13)0.0029 (13)
C150.0409 (19)0.050 (2)0.0384 (19)0.0044 (15)0.0064 (14)0.0030 (15)
C160.061 (2)0.064 (2)0.0318 (19)0.0010 (19)0.0061 (16)0.0034 (16)
C170.050 (2)0.067 (2)0.043 (2)0.0078 (19)0.0061 (16)0.0111 (18)
C180.048 (2)0.091 (3)0.054 (2)0.025 (2)0.0056 (18)0.007 (2)
C190.047 (2)0.075 (2)0.0395 (19)0.0140 (19)0.0091 (16)0.0045 (17)
Geometric parameters (Å, º) top
Cl1—C151.722 (3)C6—H6C0.9600
Cl2—C171.738 (3)C7—C81.515 (4)
O1—C11.346 (4)C8—C91.501 (4)
O1—C41.436 (4)C8—C131.550 (4)
O2—C31.345 (4)C8—H80.9800
O2—C41.447 (4)C10—C111.495 (4)
O3—C11.193 (4)C10—C121.508 (4)
O4—C31.189 (3)C11—H11A0.9600
O5—C71.349 (4)C11—H11B0.9600
O5—C101.435 (4)C11—H11C0.9600
O6—C91.355 (4)C12—H12A0.9600
O6—C101.439 (4)C12—H12B0.9600
O7—C71.194 (4)C12—H12C0.9600
O8—C91.197 (4)C13—C141.527 (4)
C1—C21.512 (4)C13—H130.9800
C2—C31.511 (4)C14—C191.378 (4)
C2—C131.542 (4)C14—C151.389 (4)
C2—H20.9800C15—C161.389 (4)
C4—C61.500 (5)C16—C171.352 (5)
C4—C51.508 (4)C16—H160.9300
C5—H5A0.9600C17—C181.358 (5)
C5—H5B0.9600C18—C191.384 (4)
C5—H5C0.9600C18—H180.9300
C6—H6A0.9600C19—H190.9300
C6—H6B0.9600
C1—O1—C4120.9 (2)O8—C9—C8124.9 (3)
C3—O2—C4120.4 (2)O6—C9—C8116.3 (3)
C7—O5—C10121.2 (2)O5—C10—O6110.4 (2)
C9—O6—C10120.9 (3)O5—C10—C11110.7 (3)
O3—C1—O1118.8 (3)O6—C10—C11109.9 (3)
O3—C1—C2125.9 (3)O5—C10—C12105.9 (3)
O1—C1—C2115.3 (3)O6—C10—C12105.9 (3)
C3—C2—C1109.6 (2)C11—C10—C12113.9 (3)
C3—C2—C13110.9 (2)C10—C11—H11A109.5
C1—C2—C13116.0 (3)C10—C11—H11B109.5
C3—C2—H2106.6H11A—C11—H11B109.5
C1—C2—H2106.6C10—C11—H11C109.5
C13—C2—H2106.6H11A—C11—H11C109.5
O4—C3—O2119.8 (3)H11B—C11—H11C109.5
O4—C3—C2124.6 (3)C10—C12—H12A109.5
O2—C3—C2115.6 (3)C10—C12—H12B109.5
O1—C4—O2109.1 (3)H12A—C12—H12B109.5
O1—C4—C6111.8 (3)C10—C12—H12C109.5
O2—C4—C6111.8 (3)H12A—C12—H12C109.5
O1—C4—C5105.0 (3)H12B—C12—H12C109.5
O2—C4—C5106.0 (3)C14—C13—C2112.2 (2)
C6—C4—C5112.8 (3)C14—C13—C8109.6 (2)
C4—C5—H5A109.5C2—C13—C8115.9 (2)
C4—C5—H5B109.5C14—C13—H13106.1
H5A—C5—H5B109.5C2—C13—H13106.1
C4—C5—H5C109.5C8—C13—H13106.1
H5A—C5—H5C109.5C19—C14—C15115.9 (3)
H5B—C5—H5C109.5C19—C14—C13124.0 (3)
C4—C6—H6A109.5C15—C14—C13120.0 (3)
C4—C6—H6B109.5C16—C15—C14122.3 (3)
H6A—C6—H6B109.5C16—C15—Cl1116.7 (3)
C4—C6—H6C109.5C14—C15—Cl1121.0 (2)
H6A—C6—H6C109.5C17—C16—C15119.1 (3)
H6B—C6—H6C109.5C17—C16—H16120.5
O7—C7—O5118.7 (3)C15—C16—H16120.5
O7—C7—C8125.1 (3)C16—C17—C18120.9 (3)
O5—C7—C8116.1 (3)C16—C17—Cl2118.4 (3)
C9—C8—C7113.2 (3)C18—C17—Cl2120.6 (3)
C9—C8—C13114.1 (3)C17—C18—C19119.5 (3)
C7—C8—C13112.6 (3)C17—C18—H18120.3
C9—C8—H8105.3C19—C18—H18120.3
C7—C8—H8105.3C14—C19—C18122.3 (3)
C13—C8—H8105.3C14—C19—H19118.9
O8—C9—O6118.8 (3)C18—C19—H19118.9
C4—O1—C1—O3178.1 (3)C7—O5—C10—C1180.4 (3)
C4—O1—C1—C21.0 (4)C7—O5—C10—C12155.7 (3)
O3—C1—C2—C3140.5 (4)C9—O6—C10—O541.7 (4)
O1—C1—C2—C340.4 (4)C9—O6—C10—C1180.6 (3)
O3—C1—C2—C1314.1 (5)C9—O6—C10—C12155.9 (3)
O1—C1—C2—C13166.9 (3)C3—C2—C13—C1469.0 (3)
C4—O2—C3—O4179.5 (3)C1—C2—C13—C14165.2 (3)
C4—O2—C3—C20.7 (4)C3—C2—C13—C8164.1 (2)
C1—C2—C3—O4138.2 (3)C1—C2—C13—C838.3 (4)
C13—C2—C3—O48.9 (4)C9—C8—C13—C1489.5 (3)
C1—C2—C3—O240.5 (4)C7—C8—C13—C14139.6 (3)
C13—C2—C3—O2169.9 (3)C9—C8—C13—C238.8 (4)
C1—O1—C4—O242.1 (4)C7—C8—C13—C292.1 (3)
C1—O1—C4—C682.0 (4)C2—C13—C14—C1936.7 (4)
C1—O1—C4—C5155.4 (3)C8—C13—C14—C1993.6 (4)
C3—O2—C4—O141.9 (4)C2—C13—C14—C15147.1 (3)
C3—O2—C4—C682.3 (4)C8—C13—C14—C1582.6 (3)
C3—O2—C4—C5154.5 (3)C19—C14—C15—C162.5 (5)
C10—O5—C7—O7171.7 (3)C13—C14—C15—C16179.0 (3)
C10—O5—C7—C86.0 (4)C19—C14—C15—Cl1175.5 (3)
O7—C7—C8—C9152.1 (3)C13—C14—C15—Cl11.0 (4)
O5—C7—C8—C930.4 (4)C14—C15—C16—C172.0 (5)
O7—C7—C8—C1320.8 (4)Cl1—C15—C16—C17176.0 (3)
O5—C7—C8—C13161.7 (2)C15—C16—C17—C180.2 (6)
C10—O6—C9—O8173.5 (3)C15—C16—C17—Cl2179.5 (3)
C10—O6—C9—C86.4 (4)C16—C17—C18—C191.0 (6)
C7—C8—C9—O8150.0 (3)Cl2—C17—C18—C19178.3 (3)
C13—C8—C9—O819.4 (4)C15—C14—C19—C181.3 (5)
C7—C8—C9—O630.1 (4)C13—C14—C19—C18177.6 (3)
C13—C8—C9—O6160.6 (2)C17—C18—C19—C140.4 (6)
C7—O5—C10—O641.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O4i0.982.323.220 (4)151
C11—H11B···Cl1ii0.962.753.387 (4)125
C11—H11C···O4i0.962.433.323 (4)155
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC19H18Cl2O8
Mr445.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)7.9522 (6), 11.5145 (11), 22.0939 (19)
β (°) 100.201 (1)
V3)1991.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.40 × 0.34 × 0.28
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.866, 0.903
No. of measured, independent and
observed [I > 2σ(I)] reflections
9830, 3519, 1978
Rint0.039
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.127, 1.03
No. of reflections3519
No. of parameters266
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.28

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O4i0.982.323.220 (4)151
C11—H11B···Cl1ii0.962.753.387 (4)125
C11—H11C···O4i0.962.433.323 (4)155
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y1/2, z+3/2.
 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeng, W.-L. (2010). Acta Cryst. E66, o2319.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZeng, W.-L. (2011). Acta Cryst. E67, o478.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds