metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1062-m1063

[2-(1H-Benzimidazol-2-yl-κN3)aniline-κN]di­chloridozinc

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, Faculty of Pure and Applied Sciences, International University of Africa, Sudan, cCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and dX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 1 July 2011; accepted 4 July 2011; online 9 July 2011)

In the title benzimidazole mononuclear complex, [ZnCl2(C13H11N3)], the ZnII ion is four-coordinated in a distorted tetra­hedral geometry by an imidazole N, an amino N and two Cl atoms. The dihedral angle between the benzimidazole and benzene rings is 9.57 (1)°. In the crystal, mol­ecules are linked by weak N—H⋯Cl hydrogen bonds into layers parallel to the bc plane. ππ inter­actions with centroid–centroid distances in the range 3.4452 (8)–3.8074 (8) Å are also observed.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For background to benzimidazoles and their applications, see: Chassaing et al. (2008[Chassaing, C., Berger, M., Heckeroth, A., Ilg, T., Jaeger, M., Kern, C., Schmid, K. & Uphoff, M. (2008). J. Med. Chem. 51, 1111-1114.]); Podunavac-Kuzmonovic et al. (1999[Podunavac-Kuzmonovic, S. O., Leovac, L. M., Perisic-Janjic, N. U., Rogan, J. & Balaz, J. (1999). J. Serb. Chem. Soc. 64, 381-388.]); Xue et al. (2011[Xue, F., Luo, X., Ye, C., Ye, W. & Wang, Y. (2011). Bioorg. Med. Chem. 19, 2641-2649.]). For related structures, see: Eltayeb et al. (2007[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S. & Fun, H.-K. (2007). Acta Cryst. E63, o4141-o4142.]; 2009[Eltayeb, N. E., Teoh, S. G., Quah, C. K., Fun, H.-K. & Adnan, R. (2009). Acta Cryst. E65, o1613-o1614.]; 2011[Eltayeb, N. E., Teoh, S. G., Yeap, C. S. & Fun, H.-K. (2011). Acta Cryst. E67, o1721-o1722.]); Maldonado-Rogado et al. (2007[Maldonado-Rogado, M. A., Viñuelas-Zahínos, E., Luna-Giles, F. & Bernalte-García, A. (2007). Polyhedron, 26, 3112-3120.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnCl2(C13H11N3)]

  • Mr = 345.54

  • Monoclinic, C 2/c

  • a = 22.0252 (7) Å

  • b = 10.0651 (3) Å

  • c = 15.3676 (6) Å

  • β = 125.244 (2)°

  • V = 2782.32 (18) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.14 mm−1

  • T = 100 K

  • 0.48 × 0.31 × 0.31 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.428, Tmax = 0.560

  • 50659 measured reflections

  • 7344 independent reflections

  • 5887 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.081

  • S = 1.02

  • 7344 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯Cl1i 0.82 2.56 3.3503 (9) 164
N3—H1N3⋯Cl1ii 0.89 2.49 3.3753 (9) 174
N3—H2N3⋯Cl2iii 0.94 2.44 3.3015 (12) 153
Symmetry codes: (i) -x, -y+1, -z; (ii) -x, -y+2, -z; (iii) [-x, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Benzimidazole compounds have a wide range of biological properties such as antibacterial (Chassaing et al., 2008) and inhibitory activity against enteroviruses (Xue et al., 2011). The complexes of transition metal salts with benzimidazole derivatives have been extensively studied as models of some important biological molecules (Podunavac-Kuzmonovic et al., 1999). As part of our ongoing structural studies of benzimidazoles (Eltayeb et al., 2007; 2009; 2011) and as an extension of investigation on their complexes, the title zinc(II) complex, (I), is reported here.

Complex (I) is a mononuclear zinc(II) complex (Fig. 1) in which the coordination geometry around the zinc ion is distorted tetrahedral, with the metal four-coordinated by an imidazole N, an amino N and two Cl atoms. In the complex, the 2-(2-aminophenyl)-1H-benzimidazole acts as a bidentate ligand. The bond angles around the central metal zinc(II) show some deviations from ideal tetrahedral geometry [N3-Zn1-Cl1 = 109.27 (3)°, N1-Zn1-Cl2= 114.83 (3)°, Cl1-Zn1-Cl2 = 117.844 (13)° and the bite angle N1–Zn1-N3 = 89.36 (3)°]. The Zn-N [2.0068 (8) and 2.0471 (9) Å] and Zn-Cl [2.2041 (3) and 2.2589 (3) Å] bond lengths are comparable to those found in a similar zinc(II) benzimidazole complex (Maldonado-Rogado et al., 2007). The benzimidazole ring system (C1–C7/N1–N2) is planar (r.m.s. of 0.0097 (1) Å), the larger deviation being observed for atom C1 (0.019 (1) Å). The dihedral angle between the benzimidazole and phenyl rings is 9.57 (6)°. The bond lengths of ligand are within normal ranges (Allen et al., 1987).

In the crystal structure (Fig. 2), the molecules are linked through N—H···Cl hydrogen bonds into two dimensional layers parallel to the bc plane. π···π interactions are observed with centroid···centroid distances: Cg1···Cg1iii = 3.4452 (8)) Å, Cg1···Cg2iii = 3.6879 (9) Å and Cg2···Cg3i = 3.8074 (8) Å (Cg1, Cg2 and Cg3 are the centroids of the C1/C6–C7/N1–N2, C1–C6 and C8–C13 rings, respectively; symmetry codes: (i) -x, 1-y, -z; (iii) -x, y, 1/2-z).

Related literature top

For bond-length data, see: Allen et al. (1987). For background to benzimidazoles and their applications, see: Chassaing et al. (2008); Podunavac-Kuzmonovic et al. (1999); Xue et al. (2011). For related structures, see: Eltayeb et al. (2007; 2009; 2011); Maldonado-Rogado et al. (2007). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was synthesized by adding 2-hydroxy-3-methylbenzaldehyde (0.136 g, 1.0 mmol) to a solution of 2-(2-aminophenyl)-1H-benzimidazole (0.209 g, 1.0 mmol) in ethanol (30 mL). The colour of the resulting solution was pale-yellow. Then upon addition of zinc chloride (0.136 g, 1.0 mmol), the colour of the solution became golden-yellow. The mixture was refluxed with stirring for 3 h. The resultant solution was filtered and the filtrate was evaporated to give a yellow solid product. Yellow block-shaped single crystals of the title compound suitable for X-ray structure determination were obtained by slow evaporation of an ethanol solution at room temperature after several days.

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(N—H) = 0.82 Å for NH; 0.88 and 0.94 Å for NH2, d(C-H) = 0.93 Å for aromatic. The Uiso values was constrained to be 1.2Ueq of the carrier atoms. The highest residual electron density peak is located at 0.64 Å from Cl1 and the deepest hole is located at 0.49 Å from Cl1. An outliner reflection (2 4 3) was omitted.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down the b axis. Hydrogen bonds are shown as dashed lines.
[2-(1H-Benzimidazol-2-yl-κN3)aniline- κN]dichloridozinc top
Crystal data top
[ZnCl2(C13H11N3)]F(000) = 1392
Mr = 345.54Dx = 1.650 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7344 reflections
a = 22.0252 (7) Åθ = 2.3–37.7°
b = 10.0651 (3) ŵ = 2.14 mm1
c = 15.3676 (6) ÅT = 100 K
β = 125.244 (2)°Block, yellow
V = 2782.32 (18) Å30.48 × 0.31 × 0.31 mm
Z = 8
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
7344 independent reflections
Radiation source: sealed tube5887 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 37.7°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 3736
Tmin = 0.428, Tmax = 0.560k = 1717
50659 measured reflectionsl = 2526
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0419P)2 + 0.7801P]
where P = (Fo2 + 2Fc2)/3
7344 reflections(Δ/σ)max = 0.002
172 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
[ZnCl2(C13H11N3)]V = 2782.32 (18) Å3
Mr = 345.54Z = 8
Monoclinic, C2/cMo Kα radiation
a = 22.0252 (7) ŵ = 2.14 mm1
b = 10.0651 (3) ÅT = 100 K
c = 15.3676 (6) Å0.48 × 0.31 × 0.31 mm
β = 125.244 (2)°
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
7344 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5887 reflections with I > 2σ(I)
Tmin = 0.428, Tmax = 0.560Rint = 0.023
50659 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 1.02Δρmax = 0.54 e Å3
7344 reflectionsΔρmin = 0.55 e Å3
172 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.057453 (6)0.825871 (11)0.151068 (9)0.03470 (4)
Cl10.094347 (18)0.82859 (2)0.04109 (2)0.04377 (6)
Cl20.121812 (17)0.94430 (3)0.29852 (2)0.04885 (7)
N10.03795 (5)0.63755 (8)0.17124 (6)0.03277 (14)
N20.01309 (5)0.43948 (8)0.11361 (7)0.03566 (16)
H1N20.04000.37760.07720.043*
N30.05430 (5)0.86317 (8)0.06474 (7)0.03630 (16)
H1N30.06130.94530.03950.044*
H2N30.06060.86610.12030.044*
C10.08602 (5)0.54368 (9)0.24599 (8)0.03401 (16)
C20.15487 (6)0.55968 (12)0.34379 (9)0.0441 (2)
H2A0.17650.64290.36860.053*
C30.18917 (8)0.44533 (15)0.40179 (11)0.0548 (3)
H3A0.23510.45190.46730.066*
C40.15673 (9)0.32000 (14)0.36457 (13)0.0578 (3)
H4A0.18160.24570.40630.069*
C50.08893 (8)0.30296 (12)0.26782 (11)0.0487 (3)
H5A0.06770.21950.24280.058*
C60.05428 (6)0.41848 (9)0.20999 (8)0.03638 (18)
C70.02133 (5)0.57180 (8)0.09356 (7)0.03092 (15)
C80.08750 (5)0.62967 (9)0.00210 (7)0.03133 (15)
C90.13949 (6)0.54428 (11)0.08355 (9)0.0409 (2)
H9A0.13130.45310.07510.049*
C100.20257 (7)0.59227 (14)0.17600 (10)0.0501 (3)
H10A0.23660.53360.22860.060*
C110.21502 (7)0.72704 (15)0.19038 (10)0.0556 (3)
H11A0.25670.75980.25350.067*
C120.16525 (7)0.81339 (12)0.11062 (10)0.0478 (3)
H12A0.17410.90430.12030.057*
C130.10222 (5)0.76671 (9)0.01632 (7)0.03314 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03589 (6)0.02529 (5)0.03528 (6)0.00291 (3)0.01612 (5)0.00044 (3)
Cl10.05837 (16)0.03021 (11)0.04711 (13)0.00299 (9)0.03297 (13)0.00024 (8)
Cl20.05149 (15)0.04321 (13)0.04471 (13)0.01328 (11)0.02364 (11)0.01315 (10)
N10.0341 (3)0.0252 (3)0.0324 (3)0.0009 (3)0.0154 (3)0.0028 (2)
N20.0392 (4)0.0235 (3)0.0404 (4)0.0010 (3)0.0207 (3)0.0010 (3)
N30.0372 (4)0.0252 (3)0.0366 (4)0.0020 (3)0.0156 (3)0.0006 (3)
C10.0358 (4)0.0293 (4)0.0345 (4)0.0030 (3)0.0188 (3)0.0054 (3)
C20.0390 (5)0.0421 (5)0.0387 (5)0.0026 (4)0.0153 (4)0.0045 (4)
C30.0460 (6)0.0552 (7)0.0454 (6)0.0125 (5)0.0162 (5)0.0139 (5)
C40.0568 (7)0.0461 (7)0.0588 (7)0.0189 (5)0.0266 (6)0.0219 (5)
C50.0541 (6)0.0299 (4)0.0586 (7)0.0101 (4)0.0306 (6)0.0126 (4)
C60.0405 (4)0.0275 (4)0.0413 (4)0.0039 (3)0.0237 (4)0.0055 (3)
C70.0345 (4)0.0238 (3)0.0331 (4)0.0006 (3)0.0187 (3)0.0011 (3)
C80.0316 (4)0.0280 (3)0.0313 (3)0.0009 (3)0.0163 (3)0.0002 (3)
C90.0391 (5)0.0345 (4)0.0406 (5)0.0050 (4)0.0180 (4)0.0065 (4)
C100.0374 (5)0.0505 (6)0.0421 (5)0.0056 (4)0.0112 (4)0.0100 (5)
C110.0369 (5)0.0533 (7)0.0440 (6)0.0034 (5)0.0045 (4)0.0008 (5)
C120.0372 (5)0.0385 (5)0.0438 (5)0.0061 (4)0.0095 (4)0.0038 (4)
C130.0307 (4)0.0288 (4)0.0334 (4)0.0015 (3)0.0147 (3)0.0007 (3)
Geometric parameters (Å, º) top
Zn1—N12.0068 (8)C3—H3A0.9300
Zn1—N32.0471 (9)C4—C51.381 (2)
Zn1—Cl22.2041 (3)C4—H4A0.9300
Zn1—Cl12.2589 (3)C5—C61.3933 (14)
N1—C71.3300 (12)C5—H5A0.9300
N1—C11.3890 (12)C7—C81.4668 (12)
N2—C71.3554 (12)C8—C91.4009 (13)
N2—C61.3798 (13)C8—C131.4049 (13)
N2—H1N20.8188C9—C101.3797 (16)
N3—C131.4460 (12)C9—H9A0.9300
N3—H1N30.8877C10—C111.376 (2)
N3—H2N30.9418C10—H10A0.9300
C1—C61.3916 (14)C11—C121.3816 (18)
C1—C21.3978 (15)C11—H11A0.9300
C2—C31.3830 (17)C12—C131.3878 (14)
C2—H2A0.9300C12—H12A0.9300
C3—C41.399 (2)
N1—Zn1—N389.36 (3)C3—C4—H4A118.9
N1—Zn1—Cl2114.83 (3)C4—C5—C6115.92 (12)
N3—Zn1—Cl2112.74 (3)C4—C5—H5A122.0
N1—Zn1—Cl1109.18 (3)C6—C5—H5A122.0
N3—Zn1—Cl1109.27 (3)N2—C6—C1105.68 (8)
Cl2—Zn1—Cl1117.844 (13)N2—C6—C5131.80 (10)
C7—N1—C1106.79 (8)C1—C6—C5122.52 (10)
C7—N1—Zn1121.20 (6)N1—C7—N2110.58 (8)
C1—N1—Zn1129.89 (7)N1—C7—C8126.51 (8)
C7—N2—C6108.33 (8)N2—C7—C8122.91 (8)
C7—N2—H1N2130.1C9—C8—C13117.84 (9)
C6—N2—H1N2121.5C9—C8—C7118.62 (9)
C13—N3—Zn1116.24 (6)C13—C8—C7123.53 (8)
C13—N3—H1N3113.1C10—C9—C8121.57 (10)
Zn1—N3—H1N3107.2C10—C9—H9A119.2
C13—N3—H2N3112.7C8—C9—H9A119.2
Zn1—N3—H2N399.8C11—C10—C9119.95 (10)
H1N3—N3—H2N3106.7C11—C10—H10A120.0
N1—C1—C6108.60 (8)C9—C10—H10A120.0
N1—C1—C2130.32 (9)C10—C11—C12119.67 (11)
C6—C1—C2121.07 (9)C10—C11—H11A120.2
C3—C2—C1116.57 (11)C12—C11—H11A120.2
C3—C2—H2A121.7C11—C12—C13121.13 (11)
C1—C2—H2A121.7C11—C12—H12A119.4
C2—C3—C4121.78 (12)C13—C12—H12A119.4
C2—C3—H3A119.1C12—C13—C8119.79 (9)
C4—C3—H3A119.1C12—C13—N3117.73 (9)
C5—C4—C3122.13 (11)C8—C13—N3122.48 (8)
C5—C4—H4A118.9
N3—Zn1—N1—C737.88 (8)C4—C5—C6—C10.90 (19)
Cl2—Zn1—N1—C7152.76 (7)C1—N1—C7—N21.27 (11)
Cl1—Zn1—N1—C772.34 (8)Zn1—N1—C7—N2163.70 (7)
N3—Zn1—N1—C1160.99 (9)C1—N1—C7—C8178.98 (9)
Cl2—Zn1—N1—C146.11 (10)Zn1—N1—C7—C816.04 (14)
Cl1—Zn1—N1—C188.79 (9)C6—N2—C7—N11.11 (12)
N1—Zn1—N3—C1347.06 (7)C6—N2—C7—C8179.14 (9)
Cl2—Zn1—N3—C13163.85 (6)N1—C7—C8—C9170.17 (10)
Cl1—Zn1—N3—C1363.07 (7)N2—C7—C8—C99.55 (15)
C7—N1—C1—C60.96 (11)N1—C7—C8—C1310.56 (16)
Zn1—N1—C1—C6162.24 (7)N2—C7—C8—C13169.73 (10)
C7—N1—C1—C2177.97 (12)C13—C8—C9—C101.27 (17)
Zn1—N1—C1—C218.82 (17)C7—C8—C9—C10179.41 (11)
N1—C1—C2—C3178.91 (12)C8—C9—C10—C110.9 (2)
C6—C1—C2—C30.09 (18)C9—C10—C11—C121.9 (2)
C1—C2—C3—C40.0 (2)C10—C11—C12—C130.7 (2)
C2—C3—C4—C50.3 (3)C11—C12—C13—C81.5 (2)
C3—C4—C5—C60.8 (2)C11—C12—C13—N3177.82 (13)
C7—N2—C6—C10.46 (11)C9—C8—C13—C122.43 (16)
C7—N2—C6—C5178.79 (13)C7—C8—C13—C12178.29 (11)
N1—C1—C6—N20.30 (11)C9—C8—C13—N3176.84 (10)
C2—C1—C6—N2178.75 (10)C7—C8—C13—N32.44 (15)
N1—C1—C6—C5179.64 (11)Zn1—N3—C13—C12143.37 (10)
C2—C1—C6—C50.59 (18)Zn1—N3—C13—C837.35 (12)
C4—C5—C6—N2178.24 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···Cl1i0.822.563.3503 (9)164
N3—H1N3···Cl1ii0.892.493.3753 (9)174
N3—H2N3···Cl2iii0.942.443.3015 (12)153
Symmetry codes: (i) x, y+1, z; (ii) x, y+2, z; (iii) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[ZnCl2(C13H11N3)]
Mr345.54
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)22.0252 (7), 10.0651 (3), 15.3676 (6)
β (°) 125.244 (2)
V3)2782.32 (18)
Z8
Radiation typeMo Kα
µ (mm1)2.14
Crystal size (mm)0.48 × 0.31 × 0.31
Data collection
DiffractometerBruker APEX DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.428, 0.560
No. of measured, independent and
observed [I > 2σ(I)] reflections
50659, 7344, 5887
Rint0.023
(sin θ/λ)max1)0.859
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.081, 1.02
No. of reflections7344
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.55

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···Cl1i0.822.563.3503 (9)164
N3—H1N3···Cl1ii0.892.493.3753 (9)174
N3—H2N3···Cl2iii0.942.443.3015 (12)153
Symmetry codes: (i) x, y+1, z; (ii) x, y+2, z; (iii) x, y, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-5085-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia for the RU research grant (1001/PKIMIA/815067). NEE thanks Universiti Sains Malaysia for a post-doctoral fellowship and the Inter­national University of Africa (Sudan) for providing study leave. The authors also thank Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChassaing, C., Berger, M., Heckeroth, A., Ilg, T., Jaeger, M., Kern, C., Schmid, K. & Uphoff, M. (2008). J. Med. Chem. 51, 1111–1114.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S. & Fun, H.-K. (2007). Acta Cryst. E63, o4141–o4142.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Quah, C. K., Fun, H.-K. & Adnan, R. (2009). Acta Cryst. E65, o1613–o1614.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Yeap, C. S. & Fun, H.-K. (2011). Acta Cryst. E67, o1721–o1722.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMaldonado-Rogado, M. A., Viñuelas-Zahínos, E., Luna-Giles, F. & Bernalte-García, A. (2007). Polyhedron, 26, 3112–3120.  Web of Science CSD CrossRef CAS Google Scholar
First citationPodunavac-Kuzmonovic, S. O., Leovac, L. M., Perisic-Janjic, N. U., Rogan, J. & Balaz, J. (1999). J. Serb. Chem. Soc. 64, 381–388.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXue, F., Luo, X., Ye, C., Ye, W. & Wang, Y. (2011). Bioorg. Med. Chem. 19, 2641–2649.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1062-m1063
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds