metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{μ-N,N,N′,N′-Tetra­kis[(di­phenyl­phosphan­yl)meth­yl]benzene-1,4-di­amine}­bis­­[(2,2′-bipyrid­yl)copper(I)] bis­­(tetra­fluoridoborate)

aSiChuan College of Chemical Technology, Luzhou 646005, People's Republic of China
*Correspondence e-mail: yangweizong_1@126.com

(Received 4 July 2011; accepted 20 July 2011; online 23 July 2011)

In the title compound, [Cu2(C10H8N2)2(C58H52N2P4)](BF4)2, the dinuclear cation lies on an inversion centre. The CuI atom is coordinated by two N atoms from a 2,2′-bipyridine ligand and two P atoms from an N,N,N′,N′-tetra­kis­[(diphenyl­phos­phan­yl)meth­yl]benzene-1,4-diamine ligand in a distorted tetra­hedral geometry. In the crystal, inter­molecular C—H⋯F hydrogen bonds link the ions into layers parallel to [[\overline{1}]01]. ππ inter­actions [centroid–centroid distance = 3.668 (4) Å] are also observed. One F atom of the anion is disordered over two orientations with a refined occupancy ratio of 0.675 (13):0.325 (13).

Related literature

For the synthesis, structure and applications of related copper(I) complexes, see: Chan et al. (1998[Chan, W.-H., Peng, S.-M. & Che, C.-M. (1998). J. Chem. Soc. Dalton Trans. pp. 2867-2872.]); Chen et al. (2009[Chen, Y., Chen, J.-S., Gan, X. & Fu, W.-F. (2009). Inorg. Chim. Acta, 362, 2492-2498.]); Linfoot et al. (2010[Linfoot, C. L., Richardson, P., Hewat, T. E., Moudam, O., Forde, M. M., Collins, A., White, F. & Robertson, N. (2010). Dalton Trans. 39, 8945-8956.]); Yang et al. (2005[Yang, L., Feng, J.-K., Ren, A.-M., Zhang, M., Ma, Y.-G. & Liu, X.-D. (2005). Eur. J. Inorg. Chem. pp. 1867-1879.]); Zhang et al. (2007[Zhang, Q., Ding, J., Cheng, Y., Wang, L., Xie, Z., Jing, X. & Wang, F. (2007). Adv. Funct. Mater. 17, 2983-2990.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C10H8N2)2(C58H52N2P4)](BF4)2

  • Mr = 1513.96

  • Monoclinic, P 21 /n

  • a = 9.912 (6) Å

  • b = 20.472 (10) Å

  • c = 17.938 (10) Å

  • β = 91.630 (7)°

  • V = 3638 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.74 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaky Mercury CCD diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.866, Tmax = 1.000

  • 31355 measured reflections

  • 6395 independent reflections

  • 4944 reflections with I > 2σ(I)

  • Rint = 0.070

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.173

  • S = 1.02

  • 6395 reflections

  • 451 parameters

  • 11 restraints

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20A⋯F1Bi 0.93 2.43 3.36 (2) 171
C30—H30A⋯F2ii 0.93 2.31 3.216 (9) 164
C33—H33A⋯F3iii 0.93 2.42 3.319 (8) 161
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) x-1, y, z+1.

Data collection: CrystalClear-SM Expert (Rigaku, 2009[Rigaku (2009). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Copper(I) complexes containing phosphine and nitrogen ligands have been reported to possess catalytic and luminescent properties (Chan et al., 1998; Chen et al., 2009; Linfoot et al., 2010; Yang et al., 2005; Zhang et al., 2007). As a contribution to this research field, we have synthesized the new dinuclear copper(I) title complex and report its crystal structure herein.

In the title compound (Fig. 1), the dinuclear cation has crystallographically imposed inversion symmetry, the central benzene ring of the N,N,N',N'-tetra[(diphenylphosphanyl)-methyl]benzene-1,4-diamine ligand (dpppda) lying about a centre of symmetry. Each copper(I) atom adopts a distorted tetrahedral geometry provided by two N atoms from a 2,2'-bipyridine ligand and two P atoms from the dpppda ligand. The Cu—P and Cu—N bond distances are in the range 2.2175 (17)–2.2198 (16) and 2.039 (4)–2.050 (4) Å, respectively. In the crystal structure cations and anions are linked by C—H···F hydrogen bonds (Table 1) into layers parallel to the [1 0 1] plane. ππ interactions involving the N3/C35-C39 rings of adjacent 2,2'-bipyridine ligands (centroid-to-centroid distance = 3.668 (4) Å) are also observed (Fig. 2).

Related literature top

For the synthesis, structure and applications of related copper(I) complexes, see: Chan et al. (1998); Chen et al. (2009); Linfoot et al. (2010); Yang et al. (2005); Zhang et al. (2007).

Experimental top

To a solution of 2,2'-bipyridine (0.0312 g, 0.2 mmol) and N,N,N',N'-tetra[(diphenylphosphanyl)-methyl]benzene-1,4-diamine (0.0900 g, 0.10 mmol) in CH3CN (5 ml) Cu(CH3CN)4]BF4(0.0656 g, 0.2 mmol) was added with stirring. The resulting yellow solution was allowed to stir for 0.5 h. Block-shaped yellow crystals suitable for X-ray analysis were formed by slow diffusion of diethyl ether into the solution (yield: 30%).

Refinement top

All hydrogen atoms were generated geometrically and refined using a riding model, with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq(C). The F1 atom is disordered over two orientations, which were refined isotropically with occupancy ratio of 0.675 (13):0.325 (13). The B–F bond lengths in the anion were restrained to 1.32 (2) Å. The displacement parameters of the C25 atom were restrained to be isotropic by means of the instruction ISOR (tolerance 0.01) in SHELXL-97.

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2009); cell refinement: CrystalClear-SM Expert (Rigaku, 2009); data reduction: CrystalClear-SM Expert (Rigaku, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound with displacement ellipsoids drawn at 30% probability level. Hydrogen atoms are omitted for clarity. Unlabelled atoms are related to the labelled atoms by the symmetry operation 1-x, -y, 1-z.
[Figure 2] Fig. 2. Partial packing diagram of the title compound showing a ππ interaction as dashed line. Hydrogen atoms are omitted for clarity.
{µ-N,N,N',N'- Tetrakis[(diphenylphosphanyl)methyl]benzene-1,4-diamine}bis[(2,2'- bipyridyl)copper(I)] bis(tetrafluoridoborate) top
Crystal data top
[Cu2(C10H8N2)2(C58H52N2P4)](BF4)2F(000) = 1556
Mr = 1513.96Dx = 1.382 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7518 reflections
a = 9.912 (6) Åθ = 2.1–27.5°
b = 20.472 (10) ŵ = 0.74 mm1
c = 17.938 (10) ÅT = 293 K
β = 91.630 (7)°Prism, yellow
V = 3638 (3) Å30.20 × 0.20 × 0.20 mm
Z = 2
Data collection top
Rigaky Mercury CCD
diffractometer
6395 independent reflections
Radiation source: fine-focus sealed tube4944 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.070
Detector resolution: 13.6612 pixels mm-1θmax = 25.0°, θmin = 2.5°
ω scansh = 1111
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 2424
Tmin = 0.866, Tmax = 1.000l = 2121
31355 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.079P)2 + 4.5666P]
where P = (Fo2 + 2Fc2)/3
6395 reflections(Δ/σ)max < 0.001
451 parametersΔρmax = 0.64 e Å3
11 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Cu2(C10H8N2)2(C58H52N2P4)](BF4)2V = 3638 (3) Å3
Mr = 1513.96Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.912 (6) ŵ = 0.74 mm1
b = 20.472 (10) ÅT = 293 K
c = 17.938 (10) Å0.20 × 0.20 × 0.20 mm
β = 91.630 (7)°
Data collection top
Rigaky Mercury CCD
diffractometer
6395 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4944 reflections with I > 2σ(I)
Tmin = 0.866, Tmax = 1.000Rint = 0.070
31355 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06511 restraints
wR(F2) = 0.173H-atom parameters constrained
S = 1.02Δρmax = 0.64 e Å3
6395 reflectionsΔρmin = 0.48 e Å3
451 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.14600 (5)0.06738 (3)0.78116 (3)0.0534 (2)
P20.07845 (11)0.06121 (6)0.66233 (6)0.0487 (3)
P30.36642 (11)0.05056 (6)0.77515 (6)0.0488 (3)
N10.3460 (3)0.03687 (17)0.62451 (18)0.0463 (8)
N30.0160 (4)0.0323 (2)0.8576 (2)0.0574 (9)
C40.2202 (4)0.0676 (2)0.5974 (2)0.0523 (11)
H4A0.19300.04760.55040.063*
H4B0.23760.11340.58800.063*
C170.4184 (4)0.0759 (2)0.6819 (2)0.0492 (10)
H17A0.39850.12190.67450.059*
H17B0.51490.06980.67760.059*
C20.4275 (4)0.0188 (2)0.5622 (2)0.0420 (9)
C110.0408 (4)0.1208 (2)0.6247 (2)0.0514 (10)
N20.1007 (4)0.1529 (2)0.8344 (2)0.0584 (9)
C350.0349 (5)0.0794 (3)0.9017 (2)0.0616 (12)
C30.5274 (4)0.0590 (2)0.5345 (2)0.0485 (10)
H3A0.54620.09890.55720.058*
C50.0030 (4)0.0164 (2)0.6417 (2)0.0538 (10)
C160.1308 (4)0.1484 (2)0.6721 (3)0.0587 (11)
H16A0.12730.13720.72240.070*
C340.0164 (4)0.1461 (2)0.8906 (2)0.0575 (11)
C180.4462 (4)0.0284 (2)0.7868 (2)0.0543 (11)
C100.1359 (5)0.0203 (3)0.6130 (3)0.0625 (12)
H10A0.18080.01770.59850.075*
C360.1313 (6)0.0644 (3)0.9537 (3)0.0850 (17)
H36A0.16530.09670.98440.102*
C120.0462 (5)0.1384 (3)0.5504 (3)0.0702 (14)
H12A0.01330.11990.51730.084*
C150.2269 (5)0.1926 (3)0.6460 (3)0.0698 (14)
H15A0.28870.21020.67850.084*
C330.0191 (6)0.1995 (3)0.9335 (3)0.0823 (16)
H33A0.07500.19380.97380.099*
C130.1408 (5)0.1841 (3)0.5252 (3)0.0777 (15)
H13A0.14280.19690.47540.093*
C90.2007 (6)0.0791 (3)0.6060 (3)0.0799 (16)
H9A0.28870.08050.58670.096*
C60.0604 (6)0.0745 (3)0.6634 (3)0.0733 (14)
H6A0.14810.07350.68330.088*
C190.3733 (6)0.0810 (3)0.8127 (3)0.0756 (15)
H19A0.28280.07550.82370.091*
C80.1382 (7)0.1347 (3)0.6268 (3)0.0890 (18)
H8A0.18380.17430.62180.107*
C210.5626 (9)0.1505 (3)0.8062 (4)0.102 (2)
H21A0.60110.19160.81210.123*
C300.1472 (6)0.2130 (3)0.8191 (3)0.0769 (15)
H30A0.20620.21810.78020.092*
C230.5806 (6)0.0389 (3)0.7710 (3)0.0792 (15)
H23A0.63210.00450.75350.095*
C380.1238 (7)0.0460 (4)0.9148 (4)0.095 (2)
H38A0.15290.08910.91860.114*
C140.2306 (5)0.2101 (3)0.5729 (3)0.0717 (14)
H14A0.29470.24000.55550.086*
C220.6391 (7)0.0995 (4)0.7807 (4)0.096 (2)
H22A0.72950.10580.77020.115*
C70.0071 (8)0.1341 (3)0.6556 (4)0.0917 (19)
H7A0.03540.17290.66960.110*
C390.0272 (5)0.0287 (3)0.8640 (3)0.0748 (14)
H39A0.00840.06080.83360.090*
C370.1751 (7)0.0016 (4)0.9590 (4)0.102 (2)
H37A0.24070.00890.99310.123*
C310.1106 (7)0.2672 (3)0.8592 (4)0.0900 (18)
H31A0.14270.30830.84660.108*
C320.0276 (7)0.2599 (3)0.9169 (4)0.0947 (19)
H32A0.00270.29590.94500.114*
F30.8501 (6)0.1767 (2)0.0998 (3)0.154 (2)
C10.4009 (4)0.0397 (2)0.5269 (2)0.0496 (10)
H1A0.33370.06680.54470.059*
C200.4326 (9)0.1410 (3)0.8225 (4)0.104 (2)
H20A0.38230.17560.84060.125*
B0.9019 (11)0.2287 (5)0.1340 (5)0.126 (4)
F40.9421 (6)0.2774 (2)0.0915 (3)0.162 (2)
F1A1.0328 (10)0.1992 (4)0.1493 (5)0.168 (5)*0.675 (13)
F1B0.7738 (19)0.2625 (10)0.1282 (13)0.189 (11)*0.325 (13)
C240.4638 (4)0.1026 (2)0.8380 (2)0.0582 (11)
C290.5659 (7)0.1438 (3)0.8177 (4)0.098 (2)
H29A0.58790.14540.76770.118*
C280.6372 (9)0.1826 (4)0.8672 (5)0.121 (3)
H28A0.70970.20770.85200.145*
C250.4326 (8)0.1042 (5)0.9100 (4)0.127 (3)
H25A0.36190.07840.92620.152*
C270.5981 (9)0.1832 (4)0.9393 (5)0.116 (3)
H27A0.63950.21200.97290.139*
C260.5039 (9)0.1441 (6)0.9625 (4)0.146 (4)
H26A0.48370.14251.01280.176*
F20.8636 (8)0.2407 (4)0.1998 (3)0.209 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0458 (3)0.0768 (4)0.0380 (3)0.0015 (2)0.0080 (2)0.0052 (2)
P20.0386 (5)0.0697 (8)0.0379 (6)0.0084 (5)0.0029 (4)0.0040 (5)
P30.0427 (6)0.0680 (7)0.0356 (5)0.0001 (5)0.0021 (4)0.0035 (5)
N10.0336 (16)0.066 (2)0.0394 (17)0.0025 (15)0.0044 (14)0.0049 (15)
N30.049 (2)0.079 (3)0.044 (2)0.0034 (19)0.0035 (17)0.0022 (18)
C40.039 (2)0.082 (3)0.036 (2)0.011 (2)0.0034 (17)0.0010 (19)
C170.044 (2)0.064 (3)0.040 (2)0.0028 (18)0.0056 (18)0.0035 (18)
C20.0346 (19)0.057 (2)0.0347 (19)0.0059 (17)0.0049 (16)0.0001 (17)
C110.040 (2)0.063 (3)0.051 (2)0.0016 (18)0.0017 (18)0.002 (2)
N20.053 (2)0.078 (3)0.044 (2)0.0000 (19)0.0047 (17)0.0053 (18)
C350.047 (2)0.096 (4)0.041 (2)0.007 (2)0.006 (2)0.005 (2)
C30.048 (2)0.052 (2)0.046 (2)0.0047 (18)0.0075 (18)0.0043 (18)
C50.053 (2)0.068 (3)0.040 (2)0.008 (2)0.0021 (19)0.0027 (19)
C160.046 (2)0.074 (3)0.056 (3)0.008 (2)0.004 (2)0.009 (2)
C340.052 (3)0.083 (3)0.037 (2)0.007 (2)0.0037 (19)0.006 (2)
C180.051 (2)0.066 (3)0.045 (2)0.000 (2)0.006 (2)0.002 (2)
C100.054 (3)0.077 (3)0.056 (3)0.006 (2)0.002 (2)0.001 (2)
C360.065 (3)0.121 (5)0.070 (4)0.003 (3)0.027 (3)0.016 (3)
C120.058 (3)0.096 (4)0.057 (3)0.019 (3)0.011 (2)0.012 (3)
C150.050 (3)0.072 (3)0.087 (4)0.012 (2)0.005 (3)0.011 (3)
C330.079 (4)0.107 (5)0.062 (3)0.009 (3)0.016 (3)0.019 (3)
C130.068 (3)0.092 (4)0.073 (3)0.016 (3)0.002 (3)0.024 (3)
C90.072 (4)0.096 (4)0.073 (4)0.013 (3)0.007 (3)0.001 (3)
C60.076 (3)0.078 (4)0.066 (3)0.017 (3)0.001 (3)0.000 (3)
C190.072 (3)0.077 (4)0.077 (4)0.009 (3)0.005 (3)0.018 (3)
C80.102 (5)0.085 (4)0.080 (4)0.016 (4)0.015 (4)0.002 (3)
C210.136 (7)0.070 (4)0.099 (5)0.024 (4)0.022 (5)0.005 (3)
C300.086 (4)0.083 (4)0.063 (3)0.012 (3)0.013 (3)0.006 (3)
C230.065 (3)0.079 (4)0.094 (4)0.011 (3)0.010 (3)0.010 (3)
C380.085 (4)0.112 (5)0.088 (4)0.025 (4)0.007 (4)0.027 (4)
C140.057 (3)0.063 (3)0.095 (4)0.008 (2)0.004 (3)0.010 (3)
C220.089 (4)0.102 (5)0.097 (5)0.039 (4)0.000 (4)0.003 (4)
C70.129 (6)0.059 (4)0.088 (4)0.020 (3)0.012 (4)0.003 (3)
C390.072 (3)0.090 (4)0.062 (3)0.010 (3)0.003 (3)0.007 (3)
C370.079 (4)0.141 (7)0.089 (5)0.012 (4)0.035 (4)0.032 (4)
C310.110 (5)0.073 (4)0.087 (4)0.010 (3)0.002 (4)0.014 (3)
C320.106 (5)0.093 (5)0.086 (4)0.010 (4)0.006 (4)0.032 (4)
F30.194 (5)0.150 (4)0.123 (3)0.071 (4)0.067 (3)0.056 (3)
C10.043 (2)0.056 (3)0.050 (2)0.0088 (18)0.0067 (19)0.0047 (19)
C200.123 (6)0.073 (4)0.116 (6)0.011 (4)0.008 (5)0.027 (4)
B0.130 (8)0.122 (7)0.129 (8)0.063 (6)0.080 (7)0.049 (6)
F40.201 (5)0.119 (4)0.171 (5)0.015 (4)0.083 (4)0.025 (3)
C240.048 (2)0.079 (3)0.047 (2)0.004 (2)0.005 (2)0.014 (2)
C290.123 (5)0.095 (5)0.076 (4)0.038 (4)0.021 (4)0.005 (3)
C280.144 (7)0.099 (5)0.117 (6)0.029 (5)0.023 (5)0.029 (5)
C250.123 (5)0.187 (7)0.070 (4)0.058 (5)0.008 (4)0.028 (4)
C270.121 (6)0.103 (6)0.123 (7)0.011 (5)0.028 (5)0.057 (5)
C260.138 (7)0.236 (11)0.066 (4)0.041 (7)0.012 (5)0.062 (6)
F20.266 (8)0.264 (8)0.101 (4)0.030 (6)0.057 (5)0.084 (4)
Geometric parameters (Å, º) top
Cu1—N32.039 (4)C13—H13A0.9300
Cu1—N22.050 (4)C9—C81.345 (8)
Cu1—P32.2175 (17)C9—H9A0.9300
Cu1—P22.2198 (16)C6—C71.397 (8)
P2—C111.816 (4)C6—H6A0.9300
P2—C51.816 (5)C19—C201.372 (8)
P2—C41.855 (4)C19—H19A0.9300
P3—C181.810 (5)C8—C71.385 (9)
P3—C241.810 (5)C8—H8A0.9300
P3—C171.839 (4)C21—C201.344 (10)
N1—C21.446 (5)C21—C221.375 (10)
N1—C41.467 (5)C21—H21A0.9300
N1—C171.473 (5)C30—C311.376 (8)
N3—C391.327 (7)C30—H30A0.9300
N3—C351.353 (6)C23—C221.378 (8)
C4—H4A0.9700C23—H23A0.9300
C4—H4B0.9700C38—C371.365 (9)
C17—H17A0.9700C38—C391.386 (8)
C17—H17B0.9700C38—H38A0.9300
C2—C11.377 (6)C14—H14A0.9300
C2—C31.390 (5)C22—H22A0.9300
C11—C161.371 (6)C7—H7A0.9300
C11—C121.381 (6)C39—H39A0.9300
N2—C341.335 (5)C37—H37A0.9300
N2—C301.344 (7)C31—C321.350 (9)
C35—C361.389 (7)C31—H31A0.9300
C35—C341.474 (7)C32—H32A0.9300
C3—C1i1.385 (6)F3—B1.325 (8)
C3—H3A0.9300C1—C3i1.385 (6)
C5—C61.395 (7)C1—H1A0.9300
C5—C101.403 (6)C20—H20A0.9300
C16—C151.386 (6)B—F21.275 (8)
C16—H16A0.9300B—F41.323 (9)
C34—C331.389 (7)B—F1B1.447 (15)
C18—C191.384 (7)B—F1A1.451 (12)
C18—C231.387 (7)F1B—F21.61 (2)
C10—C91.367 (7)C24—C251.337 (8)
C10—H10A0.9300C24—C291.374 (8)
C36—C371.360 (9)C29—C281.373 (8)
C36—H36A0.9300C29—H29A0.9300
C12—C131.390 (7)C28—C271.361 (11)
C12—H12A0.9300C28—H28A0.9300
C15—C141.359 (7)C25—C261.420 (10)
C15—H15A0.9300C25—H25A0.9300
C33—C321.356 (9)C27—C261.307 (11)
C33—H33A0.9300C27—H27A0.9300
C13—C141.361 (7)C26—H26A0.9300
N3—Cu1—N280.60 (16)C8—C9—C10120.6 (6)
N3—Cu1—P3128.36 (11)C8—C9—H9A119.7
N2—Cu1—P3112.60 (11)C10—C9—H9A119.7
N3—Cu1—P2116.53 (11)C5—C6—C7120.3 (6)
N2—Cu1—P2115.57 (11)C5—C6—H6A119.8
P3—Cu1—P2102.42 (5)C7—C6—H6A119.8
C11—P2—C5103.4 (2)C20—C19—C18120.9 (6)
C11—P2—C4102.5 (2)C20—C19—H19A119.6
C5—P2—C4105.9 (2)C18—C19—H19A119.6
C11—P2—Cu1119.61 (15)C9—C8—C7121.0 (6)
C5—P2—Cu1111.45 (14)C9—C8—H8A119.5
C4—P2—Cu1112.67 (14)C7—C8—H8A119.5
C18—P3—C24103.3 (2)C20—C21—C22120.3 (6)
C18—P3—C17103.0 (2)C20—C21—H21A119.9
C24—P3—C17104.0 (2)C22—C21—H21A119.9
C18—P3—Cu1124.13 (16)N2—C30—C31122.3 (5)
C24—P3—Cu1112.77 (15)N2—C30—H30A118.8
C17—P3—Cu1107.60 (14)C31—C30—H30A118.8
C2—N1—C4110.0 (3)C22—C23—C18121.1 (6)
C2—N1—C17114.0 (3)C22—C23—H23A119.5
C4—N1—C17113.0 (3)C18—C23—H23A119.5
C39—N3—C35119.5 (4)C37—C38—C39118.3 (6)
C39—N3—Cu1127.0 (4)C37—C38—H38A120.8
C35—N3—Cu1113.3 (3)C39—C38—H38A120.8
N1—C4—P2114.5 (3)C15—C14—C13120.3 (5)
N1—C4—H4A108.6C15—C14—H14A119.9
P2—C4—H4A108.6C13—C14—H14A119.9
N1—C4—H4B108.6C21—C22—C23119.4 (6)
P2—C4—H4B108.6C21—C22—H22A120.3
H4A—C4—H4B107.6C23—C22—H22A120.3
N1—C17—P3109.8 (3)C8—C7—C6119.2 (6)
N1—C17—H17A109.7C8—C7—H7A120.4
P3—C17—H17A109.7C6—C7—H7A120.4
N1—C17—H17B109.7N3—C39—C38121.9 (6)
P3—C17—H17B109.7N3—C39—H39A119.1
H17A—C17—H17B108.2C38—C39—H39A119.1
C1—C2—C3118.7 (4)C36—C37—C38120.7 (6)
C1—C2—N1118.3 (3)C36—C37—H37A119.7
C3—C2—N1123.0 (4)C38—C37—H37A119.7
C16—C11—C12118.9 (4)C32—C31—C30119.2 (6)
C16—C11—P2118.3 (3)C32—C31—H31A120.4
C12—C11—P2122.8 (3)C30—C31—H31A120.4
C34—N2—C30118.3 (4)C31—C32—C33119.2 (6)
C34—N2—Cu1114.3 (3)C31—C32—H32A120.4
C30—N2—Cu1127.3 (3)C33—C32—H32A120.4
N3—C35—C36120.7 (5)C2—C1—C3i121.1 (4)
N3—C35—C34116.4 (4)C2—C1—H1A119.4
C36—C35—C34122.9 (5)C3i—C1—H1A119.4
C1i—C3—C2120.2 (4)C21—C20—C19120.7 (6)
C1i—C3—H3A119.9C21—C20—H20A119.6
C2—C3—H3A119.9C19—C20—H20A119.6
C6—C5—C10117.7 (5)F2—B—F4119.4 (8)
C6—C5—P2119.6 (4)F2—B—F3117.5 (7)
C10—C5—P2122.2 (4)F4—B—F3117.2 (8)
C11—C16—C15120.9 (5)F2—B—F1B72.0 (10)
C11—C16—H16A119.6F4—B—F1B82.9 (12)
C15—C16—H16A119.6F3—B—F1B91.4 (11)
N2—C34—C33120.7 (5)F2—B—F1A101.1 (10)
N2—C34—C35115.2 (4)F4—B—F1A98.0 (7)
C33—C34—C35124.1 (5)F3—B—F1A95.0 (8)
C19—C18—C23117.6 (5)F1B—B—F1A172.3 (12)
C19—C18—P3120.2 (4)B—F1B—F249.0 (7)
C23—C18—P3122.2 (4)C25—C24—C29115.7 (5)
C9—C10—C5121.2 (5)C25—C24—P3118.8 (5)
C9—C10—H10A119.4C29—C24—P3125.5 (4)
C5—C10—H10A119.4C28—C29—C24123.6 (7)
C37—C36—C35118.8 (6)C28—C29—H29A118.2
C37—C36—H36A120.6C24—C29—H29A118.2
C35—C36—H36A120.6C27—C28—C29117.6 (8)
C11—C12—C13119.8 (5)C27—C28—H28A121.2
C11—C12—H12A120.1C29—C28—H28A121.2
C13—C12—H12A120.1C24—C25—C26122.1 (7)
C14—C15—C16119.8 (5)C24—C25—H25A119.0
C14—C15—H15A120.1C26—C25—H25A119.0
C16—C15—H15A120.1C26—C27—C28121.6 (7)
C32—C33—C34120.2 (5)C26—C27—H27A119.2
C32—C33—H33A119.9C28—C27—H27A119.2
C34—C33—H33A119.9C27—C26—C25119.1 (7)
C14—C13—C12120.4 (5)C27—C26—H26A120.4
C14—C13—H13A119.8C25—C26—H26A120.4
C12—C13—H13A119.8B—F2—F1B59.0 (7)
N3—Cu1—P2—C1178.8 (2)N3—C35—C34—N24.4 (6)
N2—Cu1—P2—C1113.3 (2)C36—C35—C34—N2174.9 (5)
P3—Cu1—P2—C11136.12 (17)N3—C35—C34—C33176.4 (5)
N3—Cu1—P2—C541.8 (2)C36—C35—C34—C334.3 (8)
N2—Cu1—P2—C5133.93 (19)C24—P3—C18—C19119.0 (4)
P3—Cu1—P2—C5103.28 (16)C17—P3—C18—C19133.0 (4)
N3—Cu1—P2—C4160.8 (2)Cu1—P3—C18—C1910.9 (5)
N2—Cu1—P2—C4107.1 (2)C24—P3—C18—C2360.7 (5)
P3—Cu1—P2—C415.65 (17)C17—P3—C18—C2347.3 (5)
N3—Cu1—P3—C1845.1 (2)Cu1—P3—C18—C23169.4 (4)
N2—Cu1—P3—C18141.1 (2)C6—C5—C10—C90.5 (7)
P2—Cu1—P3—C1894.16 (17)P2—C5—C10—C9172.3 (4)
N3—Cu1—P3—C2480.8 (2)N3—C35—C36—C370.8 (8)
N2—Cu1—P3—C2415.2 (2)C34—C35—C36—C37178.5 (5)
P2—Cu1—P3—C24139.95 (18)C16—C11—C12—C130.8 (8)
N3—Cu1—P3—C17165.1 (2)P2—C11—C12—C13179.5 (4)
N2—Cu1—P3—C1798.96 (19)C11—C16—C15—C141.4 (8)
P2—Cu1—P3—C1725.82 (16)N2—C34—C33—C322.6 (8)
N2—Cu1—N3—C39176.7 (4)C35—C34—C33—C32176.6 (5)
P3—Cu1—N3—C3971.9 (4)C11—C12—C13—C141.8 (9)
P2—Cu1—N3—C3962.7 (4)C5—C10—C9—C80.2 (8)
N2—Cu1—N3—C351.2 (3)C10—C5—C6—C70.8 (7)
P3—Cu1—N3—C35112.6 (3)P2—C5—C6—C7172.8 (4)
P2—Cu1—N3—C35112.8 (3)C23—C18—C19—C200.3 (8)
C2—N1—C4—P2155.1 (3)P3—C18—C19—C20179.4 (5)
C17—N1—C4—P276.2 (4)C10—C9—C8—C70.1 (9)
C11—P2—C4—N1165.4 (3)C34—N2—C30—C310.2 (8)
C5—P2—C4—N186.6 (3)Cu1—N2—C30—C31179.4 (4)
Cu1—P2—C4—N135.5 (4)C19—C18—C23—C220.0 (8)
C2—N1—C17—P3141.3 (3)P3—C18—C23—C22179.7 (5)
C4—N1—C17—P392.1 (4)C16—C15—C14—C130.4 (8)
C18—P3—C17—N172.4 (3)C12—C13—C14—C151.2 (9)
C24—P3—C17—N1179.9 (3)C20—C21—C22—C231.0 (11)
Cu1—P3—C17—N160.2 (3)C18—C23—C22—C210.4 (10)
C4—N1—C2—C183.7 (5)C9—C8—C7—C60.4 (9)
C17—N1—C2—C1148.1 (4)C5—C6—C7—C80.7 (9)
C4—N1—C2—C393.6 (4)C35—N3—C39—C380.2 (8)
C17—N1—C2—C334.6 (5)Cu1—N3—C39—C38175.1 (4)
C5—P2—C11—C1695.6 (4)C37—C38—C39—N30.1 (9)
C4—P2—C11—C16154.5 (4)C35—C36—C37—C381.0 (10)
Cu1—P2—C11—C1629.0 (4)C39—C38—C37—C360.7 (10)
C5—P2—C11—C1283.1 (4)N2—C30—C31—C321.5 (10)
C4—P2—C11—C1226.8 (5)C30—C31—C32—C330.8 (10)
Cu1—P2—C11—C12152.3 (4)C34—C33—C32—C311.2 (10)
N3—Cu1—N2—C341.2 (3)C3—C2—C1—C3i0.7 (7)
P3—Cu1—N2—C34126.6 (3)N1—C2—C1—C3i178.0 (4)
P2—Cu1—N2—C34116.2 (3)C22—C21—C20—C191.3 (12)
N3—Cu1—N2—C30179.5 (4)C18—C19—C20—C210.9 (11)
P3—Cu1—N2—C3052.7 (4)F4—B—F1B—F2124.1 (7)
P2—Cu1—N2—C3064.5 (4)F3—B—F1B—F2118.6 (7)
C39—N3—C35—C360.2 (7)C18—P3—C24—C2584.1 (6)
Cu1—N3—C35—C36176.1 (4)C17—P3—C24—C25168.7 (6)
C39—N3—C35—C34179.1 (4)Cu1—P3—C24—C2552.4 (6)
Cu1—N3—C35—C343.3 (5)C18—P3—C24—C2998.9 (5)
C1—C2—C3—C1i0.7 (7)C17—P3—C24—C298.4 (6)
N1—C2—C3—C1i177.9 (4)Cu1—P3—C24—C29124.7 (5)
C11—P2—C5—C6179.6 (4)C25—C24—C29—C282.7 (11)
C4—P2—C5—C673.0 (4)P3—C24—C29—C28179.8 (6)
Cu1—P2—C5—C649.8 (4)C24—C29—C28—C274.4 (12)
C11—P2—C5—C107.9 (4)C29—C24—C25—C262.3 (12)
C4—P2—C5—C10115.3 (4)P3—C24—C25—C26179.6 (8)
Cu1—P2—C5—C10121.8 (3)C29—C28—C27—C265.7 (14)
C12—C11—C16—C150.8 (7)C28—C27—C26—C255.5 (16)
P2—C11—C16—C15178.0 (4)C24—C25—C26—C273.8 (16)
C30—N2—C34—C331.9 (7)F4—B—F2—F1B70.6 (13)
Cu1—N2—C34—C33177.5 (4)F3—B—F2—F1B81.9 (13)
C30—N2—C34—C35177.4 (4)F1A—B—F2—F1B176.5 (12)
Cu1—N2—C34—C353.3 (5)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20A···F1Bi0.932.433.36 (2)171
C30—H30A···F2ii0.932.313.216 (9)164
C33—H33A···F3iii0.932.423.319 (8)161
Symmetry codes: (i) x+1, y, z+1; (ii) x1/2, y+1/2, z+1/2; (iii) x1, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(C10H8N2)2(C58H52N2P4)](BF4)2
Mr1513.96
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.912 (6), 20.472 (10), 17.938 (10)
β (°) 91.630 (7)
V3)3638 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.74
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaky Mercury CCD
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.866, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
31355, 6395, 4944
Rint0.070
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.173, 1.02
No. of reflections6395
No. of parameters451
No. of restraints11
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.48

Computer programs: CrystalClear-SM Expert (Rigaku, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20A···F1Bi0.932.433.36 (2)171
C30—H30A···F2ii0.932.313.216 (9)164
C33—H33A···F3iii0.932.423.319 (8)161
Symmetry codes: (i) x+1, y, z+1; (ii) x1/2, y+1/2, z+1/2; (iii) x1, y, z+1.
 

References

First citationChan, W.-H., Peng, S.-M. & Che, C.-M. (1998). J. Chem. Soc. Dalton Trans. pp. 2867–2872.  Web of Science CSD CrossRef Google Scholar
First citationChen, Y., Chen, J.-S., Gan, X. & Fu, W.-F. (2009). Inorg. Chim. Acta, 362, 2492–2498.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLinfoot, C. L., Richardson, P., Hewat, T. E., Moudam, O., Forde, M. M., Collins, A., White, F. & Robertson, N. (2010). Dalton Trans. 39, 8945–8956.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku (2009). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, L., Feng, J.-K., Ren, A.-M., Zhang, M., Ma, Y.-G. & Liu, X.-D. (2005). Eur. J. Inorg. Chem. pp. 1867–1879.  CSD CrossRef Google Scholar
First citationZhang, Q., Ding, J., Cheng, Y., Wang, L., Xie, Z., Jing, X. & Wang, F. (2007). Adv. Funct. Mater. 17, 2983–2990.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds