organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,8-Di­methyl­ace­naphthyl­ene-1,2-dione

aSchool of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling 408100, Chongqing, People's Republic of China
*Correspondence e-mail: lhshuhua@yahoo.com.cn

(Received 9 July 2011; accepted 15 July 2011; online 23 July 2011)

In the title compound, C14H10O2, the acenaphthene­quinone core is essentially planar, with an r.m.s. deviation of 0.0140 Å. In the crystal, mol­ecules are connected by ππ stacking inter­actions [centroid–centroid distances = 3.766 (3), 3.839 (3) and 3.857 (3) Å], forming columns parallel to the a axis.

Related literature

For the synthesis and applications of corannulene (systematic name: dibenzo[ghi,mno]fluoranthene) and its derivatives, see: Wu & Siegel (2006[Wu, Y. T. & Siegel, J. S. (2006). Chem. Rev. 106, 4843-4867.]); Tsefrikas & Scott (2006[Tsefrikas, V. M. & Scott, L. T. (2006). Chem. Rev. 106, 4868-4884.]); Sygula (2011[Sygula, A. (2011). Eur. J. Org. Chem. 22, 1611-1625.]); Zabula et al. (2011[Zabula, A. V., Spisak, S. N., Filatov, A. S., Rogachev, A. Y. & Petrukhina, M. A. (2011). Angew. Chem. Int. Ed. 50, 2971-2974.]); Barth & Lawton (1966[Barth, W. E. & Lawton, R. G. (1966). J. Am. Chem. Soc. 88, 380-381.]); Scott et al. (1997[Scott, L. T., Cheng, P. C., Hashemi, M. M., Bratcher, M. S., Meyer, D. T. & Warren, H. B. (1997). J. Am. Chem. Soc. 119, 10963-10968.]). For the synthesis of the title compound, see: Guillermet et al. (2009[Guillermet, O., Niemi, E., Nagarajan, S., Bouju, X., Martrou, D., Gourdon, A. & Gauthier, S. (2009). Angew. Chem. Int. Ed. 48, 1970-1973.]); Seiders et al. (1999[Seiders, T. J., Elliott, E. L., Grube, G. H. & Siegel, J. S. (1999). J. Am. Chem. Soc. 121, 7804-7813.]); Mori et al. (2007[Mori, T., Grimme, S. & Inoue, Y. (2007). J. Org. Chem. 72, 6998-7010.]). For the structure of related compounds, see: Abdourazak et al. (1994[Abdourazak, A. H., Marcinow, Z., Folsom, H. E., Fronczek, F. R., Sygula, R., Sygula, A. & Rabideau, P. W. (1994). Tetrahedron Lett. 35, 3857-3860.]); Mochida & Yoza (2010[Mochida, T. & Yoza, K. (2010). J. Organomet. Chem. 695, 1749-1752.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10O2

  • Mr = 210.22

  • Triclinic, [P \overline 1]

  • a = 7.5415 (8) Å

  • b = 8.5562 (11) Å

  • c = 9.8925 (12) Å

  • α = 67.891 (11)°

  • β = 88.310 (9)°

  • γ = 63.998 (11)°

  • V = 524.45 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.42 × 0.35 × 0.35 mm

Data collection
  • Agilent Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.964, Tmax = 1.000

  • 3865 measured reflections

  • 1844 independent reflections

  • 1247 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.148

  • S = 1.09

  • 1844 reflections

  • 147 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Corannulene (IUPAC name: dibenzo[ghi,mno]fluoranthene) and its derivatives have triggered intense interest due to their unusual bowl-formed structure (Wu & Siegel, 2006; Tsefrikas & Scott, 2006). Recently, a number of novel corannulene derivatives with excellent optical properties have been reported (Sygula, 2011; Zabula et al., 2011). Up to now, different synthetic methods have been reported (Barth & Lawton, 1966; Scott et al., 1997). The title compound, the synthesis of which has been reported in literatures (Guillermet et al., 2009; Seiders et al., 1999; Mori et al., 2007), is an important intermediate in synthesizing corannulene and its derivatives. Based on the importance of the relationship between structures and properties, the crystal structure of the title compound is reported herein.

The title molecule (Fig. 1) possesses a pseudo-mirror plane and is substantially planar, with a r.m.s. deviation of 0.0140 Å and maximum displacement of 0.026 (3) Å for atom C8. The dihedral angles between the C1–C5 five membered ring and the C3–C4/C9–C12 and C4–C9 benzene rings are 1.42 (9) and 0.81 (9)°, respectively. The C13–C6–C5–C1, C13–C6–C7–C8, C14–C12–C3–C2 and C14–C12–C11-C10 torsion angles are 3.6 (5), 178.4 (3), 0.4 (5) and 178.5 (4)°, respectively. As already observed in related compounds (Abdourazak et al., 1994; Mochida & Yoza, 2010), the C1–C2 bond length (1.569 (4) Å) is remarkably longer than expected for a C(sp2)– C(sp2) bond, and the bond angles involving the carbonyl groups ( O1—C1—C5 = 130.6 (3)°, O1—C1—C2 = 123.5 (2)°, C6—C5—C1 = 133.3 (2)°) are larger than the ideal value of 120°. In the crystal (Fig. 2), molecules are linked into columns parallel to the a axis by ππ stacking interactions [Cg1···Cg2i = 3.766 (3) Å; Cg2···Cg2i = 3.839 (3) Å; Cg2···Cg2ii = 3.857 (3) Å; Cg1 and Cg2 are the centroids of the C3–C4/C9–C12 and C4–C9 rings, respectively. Symmetry codes: (i) 2-x, 1-y, 2-z; (ii) 1-x, 1-y, 2-z].

Related literature top

For the synthesis and applications of corannulene (systematic name: dibenzo[ghi,mno]fluoranthene) and its derivatives, see: Wu & Siegel (2006); Tsefrikas & Scott (2006); Sygula (2011); Zabula et al. (2011); Barth & Lawton (1966); Scott et al. (1997). For the synthesis of the title compound, see: Guillermet et al. (2009); Seiders et al. (1999); Mori et al. (2007). For the structure of related compounds, see: Abdourazak et al. (1994); Mochida & Yoza (2010).

Experimental top

To a mixture of aluminium tribromide (10 g, 37.5 mmol) in CH2Cl2 (200 ml) was added dropwise a solution of 2,7-dimethylnaphthalene (2.6 g, 16.6 mmol) and oxalylchloride (2.2 ml, 26.0 mmol) in CH2Cl2 (150 ml) at about 253 K over 15 min. The mixture was stirred vigously at 253 K for additional 6 h and then quenched carefully by pouring into 500 ml ice water. After 30 min, the organic layer was washed with water, dried over MgSO4, filtered and evaporated. The residue was dissolved in a minimal amount of CH2Cl2 and eluted with CH2Cl2/hexane (1:1 v/v) though an alumina column to give the title compound as a bright yellow solid (1.26 g, 37% yield, m.p. 478–480 K). Bright yellow single crystals suitable for X-ray diffraction were obtained at room temperature by slow evaporation of a CH2Cl2 solution over a period of several days.

Refinement top

All H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
3,8-Dimethylacenaphthylene-1,2-dione top
Crystal data top
C14H10O2Z = 2
Mr = 210.22F(000) = 220
Triclinic, P1Dx = 1.331 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.7107 Å
a = 7.5415 (8) ÅCell parameters from 1026 reflections
b = 8.5562 (11) Åθ = 2.9–29.4°
c = 9.8925 (12) ŵ = 0.09 mm1
α = 67.891 (11)°T = 293 K
β = 88.310 (9)°Block, yellow
γ = 63.998 (11)°0.42 × 0.35 × 0.35 mm
V = 524.45 (13) Å3
Data collection top
Agilent Xcalibur Eos
diffractometer
1844 independent reflections
Radiation source: Enhance (Mo) X-ray Source1247 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 25.0°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
h = 88
Tmin = 0.964, Tmax = 1.000k = 910
3865 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0592P)2 + 0.102P]
where P = (Fo2 + 2Fc2)/3
1844 reflections(Δ/σ)max < 0.001
147 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C14H10O2γ = 63.998 (11)°
Mr = 210.22V = 524.45 (13) Å3
Triclinic, P1Z = 2
a = 7.5415 (8) ÅMo Kα radiation
b = 8.5562 (11) ŵ = 0.09 mm1
c = 9.8925 (12) ÅT = 293 K
α = 67.891 (11)°0.42 × 0.35 × 0.35 mm
β = 88.310 (9)°
Data collection top
Agilent Xcalibur Eos
diffractometer
1844 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
1247 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 1.000Rint = 0.021
3865 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.09Δρmax = 0.17 e Å3
1844 reflectionsΔρmin = 0.17 e Å3
147 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7750 (3)0.0525 (3)1.0053 (3)0.0920 (7)
O20.7510 (3)0.2516 (3)0.6896 (3)0.0968 (8)
C10.7662 (3)0.2086 (3)0.9497 (3)0.0640 (8)
C20.7529 (3)0.3165 (4)0.7793 (3)0.0652 (7)
C30.7426 (3)0.4999 (3)0.7582 (3)0.0507 (6)
C40.7488 (3)0.5024 (3)0.8994 (2)0.0425 (5)
C50.7647 (3)0.3356 (3)1.0170 (3)0.0480 (6)
C60.7721 (3)0.3212 (3)1.1597 (3)0.0545 (7)
C70.7594 (3)0.4792 (4)1.1814 (3)0.0584 (7)
H70.76290.47271.27740.070*
C80.7422 (3)0.6419 (3)1.0686 (3)0.0531 (6)
H80.73370.74211.08950.064*
C90.7374 (3)0.6586 (3)0.9216 (3)0.0446 (6)
C100.7241 (3)0.8142 (3)0.7938 (3)0.0547 (6)
H100.71770.92090.80260.066*
C110.7205 (4)0.8089 (4)0.6583 (3)0.0616 (7)
H110.71250.91340.57690.074*
C120.7283 (3)0.6538 (4)0.6344 (3)0.0592 (7)
C130.7965 (4)0.1452 (4)1.2891 (3)0.0820 (9)
H13A0.77730.17051.37650.123*
H13B0.92840.04391.30320.123*
H13C0.69920.10881.27030.123*
C140.7185 (5)0.6599 (5)0.4806 (3)0.0916 (10)
H14A0.77630.73730.42080.137*
H14B0.58150.71290.43800.137*
H14C0.79150.53330.48490.137*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0767 (13)0.0459 (11)0.160 (2)0.0320 (10)0.0113 (13)0.0430 (12)
O20.0918 (15)0.0941 (15)0.1333 (19)0.0328 (12)0.0040 (13)0.0859 (16)
C10.0407 (13)0.0435 (14)0.112 (2)0.0185 (11)0.0053 (14)0.0368 (15)
C20.0447 (14)0.0609 (16)0.102 (2)0.0178 (12)0.0048 (13)0.0525 (17)
C30.0407 (12)0.0524 (14)0.0655 (16)0.0182 (11)0.0054 (11)0.0340 (13)
C40.0320 (11)0.0403 (12)0.0601 (15)0.0167 (9)0.0068 (10)0.0251 (11)
C50.0362 (12)0.0374 (12)0.0707 (17)0.0182 (10)0.0073 (11)0.0204 (12)
C60.0374 (13)0.0507 (14)0.0635 (17)0.0185 (11)0.0077 (11)0.0134 (12)
C70.0515 (14)0.0681 (17)0.0553 (16)0.0239 (13)0.0090 (12)0.0292 (14)
C80.0517 (14)0.0504 (14)0.0665 (17)0.0219 (12)0.0078 (12)0.0345 (13)
C90.0379 (11)0.0395 (12)0.0596 (15)0.0178 (9)0.0055 (10)0.0233 (11)
C100.0543 (14)0.0414 (13)0.0690 (18)0.0252 (11)0.0020 (12)0.0186 (12)
C110.0575 (15)0.0549 (15)0.0617 (18)0.0273 (13)0.0039 (12)0.0108 (13)
C120.0447 (14)0.0706 (17)0.0581 (16)0.0205 (12)0.0043 (11)0.0289 (14)
C130.0662 (18)0.0680 (18)0.080 (2)0.0287 (15)0.0118 (15)0.0004 (16)
C140.087 (2)0.114 (3)0.064 (2)0.031 (2)0.0055 (16)0.0442 (19)
Geometric parameters (Å, º) top
O1—C11.209 (3)C8—H80.9300
O2—C21.214 (3)C8—C91.407 (3)
C1—C21.569 (4)C9—C101.416 (3)
C1—C51.468 (3)C10—H100.9300
C2—C31.470 (3)C10—C111.360 (3)
C3—C41.407 (3)C11—H110.9300
C3—C121.384 (3)C11—C121.410 (3)
C4—C51.419 (3)C12—C141.506 (4)
C4—C91.401 (3)C13—H13A0.9600
C5—C61.370 (3)C13—H13B0.9600
C6—C71.410 (3)C13—H13C0.9600
C6—C131.504 (3)C14—H14A0.9600
C7—H70.9300C14—H14B0.9600
C7—C81.372 (3)C14—H14C0.9600
O1—C1—C2123.5 (2)C4—C9—C8116.2 (2)
O1—C1—C5130.6 (3)C4—C9—C10116.3 (2)
C5—C1—C2105.9 (2)C8—C9—C10127.5 (2)
O2—C2—C1123.5 (2)C9—C10—H10119.7
O2—C2—C3130.3 (3)C11—C10—C9120.5 (2)
C3—C2—C1106.2 (2)C11—C10—H10119.7
C4—C3—C2106.6 (2)C10—C11—H11118.2
C12—C3—C2133.0 (2)C10—C11—C12123.6 (2)
C12—C3—C4120.4 (2)C12—C11—H11118.2
C3—C4—C5114.79 (19)C3—C12—C11116.6 (2)
C9—C4—C3122.5 (2)C3—C12—C14122.7 (2)
C9—C4—C5122.7 (2)C11—C12—C14120.7 (3)
C4—C5—C1106.5 (2)C6—C13—H13A109.5
C6—C5—C1133.3 (2)C6—C13—H13B109.5
C6—C5—C4120.2 (2)C6—C13—H13C109.5
C5—C6—C7116.9 (2)H13A—C13—H13B109.5
C5—C6—C13122.5 (2)H13A—C13—H13C109.5
C7—C6—C13120.6 (2)H13B—C13—H13C109.5
C6—C7—H7118.3C12—C14—H14A109.5
C8—C7—C6123.5 (2)C12—C14—H14B109.5
C8—C7—H7118.3C12—C14—H14C109.5
C7—C8—H8119.7H14A—C14—H14B109.5
C7—C8—C9120.5 (2)H14A—C14—H14C109.5
C9—C8—H8119.7H14B—C14—H14C109.5
O1—C1—C2—O20.2 (4)C4—C3—C12—C14179.2 (2)
O1—C1—C2—C3179.3 (2)C4—C5—C6—C71.2 (3)
O1—C1—C5—C4179.0 (2)C4—C5—C6—C13177.7 (2)
O1—C1—C5—C60.1 (4)C4—C9—C10—C110.7 (3)
O2—C2—C3—C4179.5 (3)C5—C1—C2—O2179.9 (2)
O2—C2—C3—C120.2 (4)C5—C1—C2—C30.5 (2)
C1—C2—C3—C40.0 (2)C5—C4—C9—C80.1 (3)
C1—C2—C3—C12179.7 (2)C5—C4—C9—C10179.39 (18)
C1—C5—C6—C7177.6 (2)C5—C6—C7—C80.6 (3)
C1—C5—C6—C133.5 (4)C6—C7—C8—C90.4 (3)
C2—C1—C5—C40.8 (2)C7—C8—C9—C40.7 (3)
C2—C1—C5—C6179.7 (2)C7—C8—C9—C10178.7 (2)
C2—C3—C4—C50.6 (2)C8—C9—C10—C11179.8 (2)
C2—C3—C4—C9178.55 (18)C9—C4—C5—C1178.21 (18)
C2—C3—C12—C11179.6 (2)C9—C4—C5—C60.9 (3)
C2—C3—C12—C140.4 (4)C9—C10—C11—C120.4 (4)
C3—C4—C5—C11.0 (2)C10—C11—C12—C30.7 (4)
C3—C4—C5—C6179.97 (18)C10—C11—C12—C14178.5 (2)
C3—C4—C9—C8178.99 (19)C12—C3—C4—C5179.64 (19)
C3—C4—C9—C101.5 (3)C12—C3—C4—C91.2 (3)
C4—C3—C12—C110.0 (3)C13—C6—C7—C8178.3 (2)

Experimental details

Crystal data
Chemical formulaC14H10O2
Mr210.22
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.5415 (8), 8.5562 (11), 9.8925 (12)
α, β, γ (°)67.891 (11), 88.310 (9), 63.998 (11)
V3)524.45 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.42 × 0.35 × 0.35
Data collection
DiffractometerAgilent Xcalibur Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.964, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
3865, 1844, 1247
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.148, 1.09
No. of reflections1844
No. of parameters147
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.17

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

 

Acknowledgements

This work was supported by the FLKJ (No. 2010ABA1014).

References

First citationAbdourazak, A. H., Marcinow, Z., Folsom, H. E., Fronczek, F. R., Sygula, R., Sygula, A. & Rabideau, P. W. (1994). Tetrahedron Lett. 35, 3857–3860.  CSD CrossRef CAS Web of Science Google Scholar
First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarth, W. E. & Lawton, R. G. (1966). J. Am. Chem. Soc. 88, 380–381.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGuillermet, O., Niemi, E., Nagarajan, S., Bouju, X., Martrou, D., Gourdon, A. & Gauthier, S. (2009). Angew. Chem. Int. Ed. 48, 1970–1973.  Web of Science CrossRef CAS Google Scholar
First citationMochida, T. & Yoza, K. (2010). J. Organomet. Chem. 695, 1749–1752.  Web of Science CSD CrossRef CAS Google Scholar
First citationMori, T., Grimme, S. & Inoue, Y. (2007). J. Org. Chem. 72, 6998–7010.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationScott, L. T., Cheng, P. C., Hashemi, M. M., Bratcher, M. S., Meyer, D. T. & Warren, H. B. (1997). J. Am. Chem. Soc. 119, 10963–10968.  CrossRef CAS Web of Science Google Scholar
First citationSeiders, T. J., Elliott, E. L., Grube, G. H. & Siegel, J. S. (1999). J. Am. Chem. Soc. 121, 7804–7813.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSygula, A. (2011). Eur. J. Org. Chem. 22, 1611–1625.  Web of Science CrossRef Google Scholar
First citationTsefrikas, V. M. & Scott, L. T. (2006). Chem. Rev. 106, 4868–4884.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWu, Y. T. & Siegel, J. S. (2006). Chem. Rev. 106, 4843–4867.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZabula, A. V., Spisak, S. N., Filatov, A. S., Rogachev, A. Y. & Petrukhina, M. A. (2011). Angew. Chem. Int. Ed. 50, 2971–2974.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds