organic compounds
3,8-Dimethylacenaphthylene-1,2-dione
aSchool of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling 408100, Chongqing, People's Republic of China
*Correspondence e-mail: lhshuhua@yahoo.com.cn
In the title compound, C14H10O2, the acenaphthenequinone core is essentially planar, with an r.m.s. deviation of 0.0140 Å. In the crystal, molecules are connected by π–π stacking interactions [centroid–centroid distances = 3.766 (3), 3.839 (3) and 3.857 (3) Å], forming columns parallel to the a axis.
Related literature
For the synthesis and applications of corannulene (systematic name: dibenzo[ghi,mno]fluoranthene) and its derivatives, see: Wu & Siegel (2006); Tsefrikas & Scott (2006); Sygula (2011); Zabula et al. (2011); Barth & Lawton (1966); Scott et al. (1997). For the synthesis of the title compound, see: Guillermet et al. (2009); Seiders et al. (1999); Mori et al. (2007). For the structure of related compounds, see: Abdourazak et al. (1994); Mochida & Yoza (2010).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Agilent, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.
Supporting information
10.1107/S1600536811028479/rz2626sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811028479/rz2626Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811028479/rz2626Isup3.cml
To a mixture of aluminium tribromide (10 g, 37.5 mmol) in CH2Cl2 (200 ml) was added dropwise a solution of 2,7-dimethylnaphthalene (2.6 g, 16.6 mmol) and oxalylchloride (2.2 ml, 26.0 mmol) in CH2Cl2 (150 ml) at about 253 K over 15 min. The mixture was stirred vigously at 253 K for additional 6 h and then quenched carefully by pouring into 500 ml ice water. After 30 min, the organic layer was washed with water, dried over MgSO4, filtered and evaporated. The residue was dissolved in a minimal amount of CH2Cl2 and eluted with CH2Cl2/hexane (1:1 v/v) though an alumina column to give the title compound as a bright yellow solid (1.26 g, 37% yield, m.p. 478–480 K). Bright yellow single crystals suitable for X-ray diffraction were obtained at room temperature by slow evaporation of a CH2Cl2 solution over a period of several days.
All H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(C) for methyl H atoms.
Data collection: CrysAlis PRO (Agilent, 2010); cell
CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C14H10O2 | Z = 2 |
Mr = 210.22 | F(000) = 220 |
Triclinic, P1 | Dx = 1.331 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.7107 Å |
a = 7.5415 (8) Å | Cell parameters from 1026 reflections |
b = 8.5562 (11) Å | θ = 2.9–29.4° |
c = 9.8925 (12) Å | µ = 0.09 mm−1 |
α = 67.891 (11)° | T = 293 K |
β = 88.310 (9)° | Block, yellow |
γ = 63.998 (11)° | 0.42 × 0.35 × 0.35 mm |
V = 524.45 (13) Å3 |
Agilent Xcalibur Eos diffractometer | 1844 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 1247 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
ω scans | θmax = 25.0°, θmin = 2.9° |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) | h = −8→8 |
Tmin = 0.964, Tmax = 1.000 | k = −9→10 |
3865 measured reflections | l = −11→11 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.052 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.148 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0592P)2 + 0.102P] where P = (Fo2 + 2Fc2)/3 |
1844 reflections | (Δ/σ)max < 0.001 |
147 parameters | Δρmax = 0.17 e Å−3 |
0 restraints | Δρmin = −0.17 e Å−3 |
C14H10O2 | γ = 63.998 (11)° |
Mr = 210.22 | V = 524.45 (13) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.5415 (8) Å | Mo Kα radiation |
b = 8.5562 (11) Å | µ = 0.09 mm−1 |
c = 9.8925 (12) Å | T = 293 K |
α = 67.891 (11)° | 0.42 × 0.35 × 0.35 mm |
β = 88.310 (9)° |
Agilent Xcalibur Eos diffractometer | 1844 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) | 1247 reflections with I > 2σ(I) |
Tmin = 0.964, Tmax = 1.000 | Rint = 0.021 |
3865 measured reflections |
R[F2 > 2σ(F2)] = 0.052 | 0 restraints |
wR(F2) = 0.148 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.17 e Å−3 |
1844 reflections | Δρmin = −0.17 e Å−3 |
147 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.7750 (3) | 0.0525 (3) | 1.0053 (3) | 0.0920 (7) | |
O2 | 0.7510 (3) | 0.2516 (3) | 0.6896 (3) | 0.0968 (8) | |
C1 | 0.7662 (3) | 0.2086 (3) | 0.9497 (3) | 0.0640 (8) | |
C2 | 0.7529 (3) | 0.3165 (4) | 0.7793 (3) | 0.0652 (7) | |
C3 | 0.7426 (3) | 0.4999 (3) | 0.7582 (3) | 0.0507 (6) | |
C4 | 0.7488 (3) | 0.5024 (3) | 0.8994 (2) | 0.0425 (5) | |
C5 | 0.7647 (3) | 0.3356 (3) | 1.0170 (3) | 0.0480 (6) | |
C6 | 0.7721 (3) | 0.3212 (3) | 1.1597 (3) | 0.0545 (7) | |
C7 | 0.7594 (3) | 0.4792 (4) | 1.1814 (3) | 0.0584 (7) | |
H7 | 0.7629 | 0.4727 | 1.2774 | 0.070* | |
C8 | 0.7422 (3) | 0.6419 (3) | 1.0686 (3) | 0.0531 (6) | |
H8 | 0.7337 | 0.7421 | 1.0895 | 0.064* | |
C9 | 0.7374 (3) | 0.6586 (3) | 0.9216 (3) | 0.0446 (6) | |
C10 | 0.7241 (3) | 0.8142 (3) | 0.7938 (3) | 0.0547 (6) | |
H10 | 0.7177 | 0.9209 | 0.8026 | 0.066* | |
C11 | 0.7205 (4) | 0.8089 (4) | 0.6583 (3) | 0.0616 (7) | |
H11 | 0.7125 | 0.9134 | 0.5769 | 0.074* | |
C12 | 0.7283 (3) | 0.6538 (4) | 0.6344 (3) | 0.0592 (7) | |
C13 | 0.7965 (4) | 0.1452 (4) | 1.2891 (3) | 0.0820 (9) | |
H13A | 0.7773 | 0.1705 | 1.3765 | 0.123* | |
H13B | 0.9284 | 0.0439 | 1.3032 | 0.123* | |
H13C | 0.6992 | 0.1088 | 1.2703 | 0.123* | |
C14 | 0.7185 (5) | 0.6599 (5) | 0.4806 (3) | 0.0916 (10) | |
H14A | 0.7763 | 0.7373 | 0.4208 | 0.137* | |
H14B | 0.5815 | 0.7129 | 0.4380 | 0.137* | |
H14C | 0.7915 | 0.5333 | 0.4849 | 0.137* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0767 (13) | 0.0459 (11) | 0.160 (2) | −0.0320 (10) | 0.0113 (13) | −0.0430 (12) |
O2 | 0.0918 (15) | 0.0941 (15) | 0.1333 (19) | −0.0328 (12) | 0.0040 (13) | −0.0859 (16) |
C1 | 0.0407 (13) | 0.0435 (14) | 0.112 (2) | −0.0185 (11) | 0.0053 (14) | −0.0368 (15) |
C2 | 0.0447 (14) | 0.0609 (16) | 0.102 (2) | −0.0178 (12) | 0.0048 (13) | −0.0525 (17) |
C3 | 0.0407 (12) | 0.0524 (14) | 0.0655 (16) | −0.0182 (11) | 0.0054 (11) | −0.0340 (13) |
C4 | 0.0320 (11) | 0.0403 (12) | 0.0601 (15) | −0.0167 (9) | 0.0068 (10) | −0.0251 (11) |
C5 | 0.0362 (12) | 0.0374 (12) | 0.0707 (17) | −0.0182 (10) | 0.0073 (11) | −0.0204 (12) |
C6 | 0.0374 (13) | 0.0507 (14) | 0.0635 (17) | −0.0185 (11) | 0.0077 (11) | −0.0134 (12) |
C7 | 0.0515 (14) | 0.0681 (17) | 0.0553 (16) | −0.0239 (13) | 0.0090 (12) | −0.0292 (14) |
C8 | 0.0517 (14) | 0.0504 (14) | 0.0665 (17) | −0.0219 (12) | 0.0078 (12) | −0.0345 (13) |
C9 | 0.0379 (11) | 0.0395 (12) | 0.0596 (15) | −0.0178 (9) | 0.0055 (10) | −0.0233 (11) |
C10 | 0.0543 (14) | 0.0414 (13) | 0.0690 (18) | −0.0252 (11) | 0.0020 (12) | −0.0186 (12) |
C11 | 0.0575 (15) | 0.0549 (15) | 0.0617 (18) | −0.0273 (13) | 0.0039 (12) | −0.0108 (13) |
C12 | 0.0447 (14) | 0.0706 (17) | 0.0581 (16) | −0.0205 (12) | 0.0043 (11) | −0.0289 (14) |
C13 | 0.0662 (18) | 0.0680 (18) | 0.080 (2) | −0.0287 (15) | 0.0118 (15) | −0.0004 (16) |
C14 | 0.087 (2) | 0.114 (3) | 0.064 (2) | −0.031 (2) | 0.0055 (16) | −0.0442 (19) |
O1—C1 | 1.209 (3) | C8—H8 | 0.9300 |
O2—C2 | 1.214 (3) | C8—C9 | 1.407 (3) |
C1—C2 | 1.569 (4) | C9—C10 | 1.416 (3) |
C1—C5 | 1.468 (3) | C10—H10 | 0.9300 |
C2—C3 | 1.470 (3) | C10—C11 | 1.360 (3) |
C3—C4 | 1.407 (3) | C11—H11 | 0.9300 |
C3—C12 | 1.384 (3) | C11—C12 | 1.410 (3) |
C4—C5 | 1.419 (3) | C12—C14 | 1.506 (4) |
C4—C9 | 1.401 (3) | C13—H13A | 0.9600 |
C5—C6 | 1.370 (3) | C13—H13B | 0.9600 |
C6—C7 | 1.410 (3) | C13—H13C | 0.9600 |
C6—C13 | 1.504 (3) | C14—H14A | 0.9600 |
C7—H7 | 0.9300 | C14—H14B | 0.9600 |
C7—C8 | 1.372 (3) | C14—H14C | 0.9600 |
O1—C1—C2 | 123.5 (2) | C4—C9—C8 | 116.2 (2) |
O1—C1—C5 | 130.6 (3) | C4—C9—C10 | 116.3 (2) |
C5—C1—C2 | 105.9 (2) | C8—C9—C10 | 127.5 (2) |
O2—C2—C1 | 123.5 (2) | C9—C10—H10 | 119.7 |
O2—C2—C3 | 130.3 (3) | C11—C10—C9 | 120.5 (2) |
C3—C2—C1 | 106.2 (2) | C11—C10—H10 | 119.7 |
C4—C3—C2 | 106.6 (2) | C10—C11—H11 | 118.2 |
C12—C3—C2 | 133.0 (2) | C10—C11—C12 | 123.6 (2) |
C12—C3—C4 | 120.4 (2) | C12—C11—H11 | 118.2 |
C3—C4—C5 | 114.79 (19) | C3—C12—C11 | 116.6 (2) |
C9—C4—C3 | 122.5 (2) | C3—C12—C14 | 122.7 (2) |
C9—C4—C5 | 122.7 (2) | C11—C12—C14 | 120.7 (3) |
C4—C5—C1 | 106.5 (2) | C6—C13—H13A | 109.5 |
C6—C5—C1 | 133.3 (2) | C6—C13—H13B | 109.5 |
C6—C5—C4 | 120.2 (2) | C6—C13—H13C | 109.5 |
C5—C6—C7 | 116.9 (2) | H13A—C13—H13B | 109.5 |
C5—C6—C13 | 122.5 (2) | H13A—C13—H13C | 109.5 |
C7—C6—C13 | 120.6 (2) | H13B—C13—H13C | 109.5 |
C6—C7—H7 | 118.3 | C12—C14—H14A | 109.5 |
C8—C7—C6 | 123.5 (2) | C12—C14—H14B | 109.5 |
C8—C7—H7 | 118.3 | C12—C14—H14C | 109.5 |
C7—C8—H8 | 119.7 | H14A—C14—H14B | 109.5 |
C7—C8—C9 | 120.5 (2) | H14A—C14—H14C | 109.5 |
C9—C8—H8 | 119.7 | H14B—C14—H14C | 109.5 |
O1—C1—C2—O2 | −0.2 (4) | C4—C3—C12—C14 | −179.2 (2) |
O1—C1—C2—C3 | 179.3 (2) | C4—C5—C6—C7 | 1.2 (3) |
O1—C1—C5—C4 | −179.0 (2) | C4—C5—C6—C13 | −177.7 (2) |
O1—C1—C5—C6 | −0.1 (4) | C4—C9—C10—C11 | 0.7 (3) |
O2—C2—C3—C4 | 179.5 (3) | C5—C1—C2—O2 | 179.9 (2) |
O2—C2—C3—C12 | −0.2 (4) | C5—C1—C2—C3 | −0.5 (2) |
C1—C2—C3—C4 | 0.0 (2) | C5—C4—C9—C8 | −0.1 (3) |
C1—C2—C3—C12 | −179.7 (2) | C5—C4—C9—C10 | 179.39 (18) |
C1—C5—C6—C7 | −177.6 (2) | C5—C6—C7—C8 | −0.6 (3) |
C1—C5—C6—C13 | 3.5 (4) | C6—C7—C8—C9 | −0.4 (3) |
C2—C1—C5—C4 | 0.8 (2) | C7—C8—C9—C4 | 0.7 (3) |
C2—C1—C5—C6 | 179.7 (2) | C7—C8—C9—C10 | −178.7 (2) |
C2—C3—C4—C5 | 0.6 (2) | C8—C9—C10—C11 | −179.8 (2) |
C2—C3—C4—C9 | −178.55 (18) | C9—C4—C5—C1 | 178.21 (18) |
C2—C3—C12—C11 | 179.6 (2) | C9—C4—C5—C6 | −0.9 (3) |
C2—C3—C12—C14 | 0.4 (4) | C9—C10—C11—C12 | 0.4 (4) |
C3—C4—C5—C1 | −1.0 (2) | C10—C11—C12—C3 | −0.7 (4) |
C3—C4—C5—C6 | 179.97 (18) | C10—C11—C12—C14 | 178.5 (2) |
C3—C4—C9—C8 | 178.99 (19) | C12—C3—C4—C5 | −179.64 (19) |
C3—C4—C9—C10 | −1.5 (3) | C12—C3—C4—C9 | 1.2 (3) |
C4—C3—C12—C11 | 0.0 (3) | C13—C6—C7—C8 | 178.3 (2) |
Experimental details
Crystal data | |
Chemical formula | C14H10O2 |
Mr | 210.22 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 7.5415 (8), 8.5562 (11), 9.8925 (12) |
α, β, γ (°) | 67.891 (11), 88.310 (9), 63.998 (11) |
V (Å3) | 524.45 (13) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.42 × 0.35 × 0.35 |
Data collection | |
Diffractometer | Agilent Xcalibur Eos diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2010) |
Tmin, Tmax | 0.964, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3865, 1844, 1247 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.052, 0.148, 1.09 |
No. of reflections | 1844 |
No. of parameters | 147 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.17, −0.17 |
Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).
Acknowledgements
This work was supported by the FLKJ (No. 2010ABA1014).
References
Abdourazak, A. H., Marcinow, Z., Folsom, H. E., Fronczek, F. R., Sygula, R., Sygula, A. & Rabideau, P. W. (1994). Tetrahedron Lett. 35, 3857–3860. CSD CrossRef CAS Web of Science Google Scholar
Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Barth, W. E. & Lawton, R. G. (1966). J. Am. Chem. Soc. 88, 380–381. CrossRef CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Guillermet, O., Niemi, E., Nagarajan, S., Bouju, X., Martrou, D., Gourdon, A. & Gauthier, S. (2009). Angew. Chem. Int. Ed. 48, 1970–1973. Web of Science CrossRef CAS Google Scholar
Mochida, T. & Yoza, K. (2010). J. Organomet. Chem. 695, 1749–1752. Web of Science CSD CrossRef CAS Google Scholar
Mori, T., Grimme, S. & Inoue, Y. (2007). J. Org. Chem. 72, 6998–7010. Web of Science CSD CrossRef PubMed CAS Google Scholar
Scott, L. T., Cheng, P. C., Hashemi, M. M., Bratcher, M. S., Meyer, D. T. & Warren, H. B. (1997). J. Am. Chem. Soc. 119, 10963–10968. CrossRef CAS Web of Science Google Scholar
Seiders, T. J., Elliott, E. L., Grube, G. H. & Siegel, J. S. (1999). J. Am. Chem. Soc. 121, 7804–7813. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sygula, A. (2011). Eur. J. Org. Chem. 22, 1611–1625. Web of Science CrossRef Google Scholar
Tsefrikas, V. M. & Scott, L. T. (2006). Chem. Rev. 106, 4868–4884. Web of Science CrossRef PubMed CAS Google Scholar
Wu, Y. T. & Siegel, J. S. (2006). Chem. Rev. 106, 4843–4867. Web of Science CrossRef PubMed CAS Google Scholar
Zabula, A. V., Spisak, S. N., Filatov, A. S., Rogachev, A. Y. & Petrukhina, M. A. (2011). Angew. Chem. Int. Ed. 50, 2971–2974. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Corannulene (IUPAC name: dibenzo[ghi,mno]fluoranthene) and its derivatives have triggered intense interest due to their unusual bowl-formed structure (Wu & Siegel, 2006; Tsefrikas & Scott, 2006). Recently, a number of novel corannulene derivatives with excellent optical properties have been reported (Sygula, 2011; Zabula et al., 2011). Up to now, different synthetic methods have been reported (Barth & Lawton, 1966; Scott et al., 1997). The title compound, the synthesis of which has been reported in literatures (Guillermet et al., 2009; Seiders et al., 1999; Mori et al., 2007), is an important intermediate in synthesizing corannulene and its derivatives. Based on the importance of the relationship between structures and properties, the crystal structure of the title compound is reported herein.
The title molecule (Fig. 1) possesses a pseudo-mirror plane and is substantially planar, with a r.m.s. deviation of 0.0140 Å and maximum displacement of 0.026 (3) Å for atom C8. The dihedral angles between the C1–C5 five membered ring and the C3–C4/C9–C12 and C4–C9 benzene rings are 1.42 (9) and 0.81 (9)°, respectively. The C13–C6–C5–C1, C13–C6–C7–C8, C14–C12–C3–C2 and C14–C12–C11-C10 torsion angles are 3.6 (5), 178.4 (3), 0.4 (5) and 178.5 (4)°, respectively. As already observed in related compounds (Abdourazak et al., 1994; Mochida & Yoza, 2010), the C1–C2 bond length (1.569 (4) Å) is remarkably longer than expected for a C(sp2)– C(sp2) bond, and the bond angles involving the carbonyl groups ( O1—C1—C5 = 130.6 (3)°, O1—C1—C2 = 123.5 (2)°, C6—C5—C1 = 133.3 (2)°) are larger than the ideal value of 120°. In the crystal (Fig. 2), molecules are linked into columns parallel to the a axis by π–π stacking interactions [Cg1···Cg2i = 3.766 (3) Å; Cg2···Cg2i = 3.839 (3) Å; Cg2···Cg2ii = 3.857 (3) Å; Cg1 and Cg2 are the centroids of the C3–C4/C9–C12 and C4–C9 rings, respectively. Symmetry codes: (i) 2-x, 1-y, 2-z; (ii) 1-x, 1-y, 2-z].