organic compounds
[2,7-Dimethoxy-8-(2-naphthoyl)naphthalen-1-yl](naphthalen-2-yl)methanone
aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, 2-24-16 Naka-machi, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp
The molecule of the title compound, C34H24O4, possesses crystallographically imposed twofold C2 symmetry. The two 2-naphthoyl groups at the 1- and 8-positions of the central naphthalene ring are aligned almost antiparallel [5.21 (5)°]. The dihedral angle between the central 2,7-dimethoxynaphthalene unit and the terminal naphthyl groups is 75.13 (4)°. In the crystal, weak C—H⋯O hydrogen bonds and π–π stacking interactions [centroid–centroid and interplanar distances are 3.6486 (8) and 3.3734 (5) Å, respectively] are observed.
Related literature
For the electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene giving aroylated naphthalene compounds, see: Okamoto & Yonezawa (2009). For the structures of closely related compounds, see: Hijikata et al. (2010); Muto et al. (2010); Nakaema et al. (2008); Nishijima et al. (2010).
Experimental
Crystal data
|
Refinement
|
Data collection: PROCESS-AUTO (Rigaku, 1998); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536811028054/rz2628sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811028054/rz2628Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811028054/rz2628Isup3.cml
To a solution of 2-naphthoyl chloride (629.1 mg, 3.3 mmol) and TiCl4 (1802.0 mg, 9.5 mmol) in CH2Cl2 (2.5 ml), 2,7-dimethoxynaphthalene (188.2 mg, 1.0 mmol) was added. The reaction mixture was stirred at r.t. for 3 h, then poured into ice-cold water (10 ml) and the aqueous layer was extracted with CHCl3 (5 ml × 3). The combined organic extracts were washed with 2 M aqueous NaOH (20 ml × 3) followed by washing with brine (20 ml × 3). The organic layer was dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give a cake (72% yield). The crude product was purified by recrystallization from acetone (22% isolated yield). Furthermore, the isolated product was crystallized from acetone to give single crystals suitable for X-ray amalysis.
Spectroscopic data: 1H NMR (300 MHz, CDCl3) δ 3.67 (6H, s), 7.26 (2H, d, J = 9.0 Hz), 7.37 (2H, t, J = 7.5 Hz), 7.45 (2H, t, J = 7.5 Hz), 7.68–7.77 (8H, m), 8.03 (2H, d, J = 9.0 Hz), 8.09 (2H, brs) p.p.m.; 13C NMR (75 MHz, CDCl3) δ 56.47, 111.38, 121.73, 124.75, 125.64, 125.92, 127.54, 127.60, 127.83, 129.62, 130.16, 131.11, 132.17, 132.40, 135.50, 136.05, 156.52, 196.66 p.p.m.; IR (KBr):1660(C=O), 1624(Ar), 1510(Ar), 1258(OMe) cm-1; HRMS (m/z):[M + H]+ calcd. for C34H25O4, 497.1753; found, 497.1751; m.p. = 505.0–506.0 K
All H atoms were found in a difference Fourier map and were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 Å (methyl), and with Uiso(H) = 1.2Ueq(C).
Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C34H24O4 | F(000) = 1040 |
Mr = 496.53 | Dx = 1.333 Mg m−3 |
Monoclinic, C2/c | Melting point = 505.0–506.0 K |
Hall symbol: -C 2yc | Mo Kα radiation, λ = 0.71075 Å |
a = 12.8325 (5) Å | Cell parameters from 14952 reflections |
b = 12.2459 (4) Å | θ = 3.2–27.4° |
c = 15.8798 (6) Å | µ = 0.09 mm−1 |
β = 97.618 (1)° | T = 193 K |
V = 2473.41 (16) Å3 | Block, colorless |
Z = 4 | 0.50 × 0.20 × 0.20 mm |
Rigaku R-AXIS RAPID diffractometer | 2832 independent reflections |
Radiation source: rotating anode | 2370 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
Detector resolution: 10.00 pixels mm-1 | θmax = 27.4°, θmin = 3.2° |
ω scans | h = −16→16 |
Absorption correction: numerical (NUMABS; Higashi, 1999) | k = −15→15 |
Tmin = 0.958, Tmax = 0.983 | l = −20→20 |
19645 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.037 | H-atom parameters constrained |
wR(F2) = 0.115 | w = 1/[σ2(Fo2) + (0.059P)2 + 1.0486P] where P = (Fo2 + 2Fc2)/3 |
S = 1.11 | (Δ/σ)max < 0.001 |
2832 reflections | Δρmax = 0.28 e Å−3 |
175 parameters | Δρmin = −0.18 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0039 (6) |
C34H24O4 | V = 2473.41 (16) Å3 |
Mr = 496.53 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 12.8325 (5) Å | µ = 0.09 mm−1 |
b = 12.2459 (4) Å | T = 193 K |
c = 15.8798 (6) Å | 0.50 × 0.20 × 0.20 mm |
β = 97.618 (1)° |
Rigaku R-AXIS RAPID diffractometer | 2832 independent reflections |
Absorption correction: numerical (NUMABS; Higashi, 1999) | 2370 reflections with I > 2σ(I) |
Tmin = 0.958, Tmax = 0.983 | Rint = 0.022 |
19645 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.115 | H-atom parameters constrained |
S = 1.11 | Δρmax = 0.28 e Å−3 |
2832 reflections | Δρmin = −0.18 e Å−3 |
175 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.61538 (7) | −0.01315 (7) | 0.20166 (5) | 0.0321 (2) | |
O2 | 0.77075 (7) | 0.14496 (8) | 0.34570 (7) | 0.0453 (3) | |
C1 | 0.59528 (9) | 0.14332 (9) | 0.28387 (7) | 0.0255 (2) | |
C2 | 0.68212 (9) | 0.20368 (10) | 0.31776 (8) | 0.0325 (3) | |
C3 | 0.68048 (11) | 0.31884 (11) | 0.31852 (9) | 0.0389 (3) | |
H3 | 0.7405 | 0.3590 | 0.3426 | 0.047* | |
C4 | 0.59161 (11) | 0.37129 (10) | 0.28429 (8) | 0.0374 (3) | |
H4 | 0.5910 | 0.4489 | 0.2834 | 0.045* | |
C5 | 0.5000 | 0.31424 (13) | 0.2500 | 0.0299 (3) | |
C6 | 0.5000 | 0.19760 (12) | 0.2500 | 0.0243 (3) | |
C7 | 0.61088 (8) | 0.02168 (9) | 0.27324 (7) | 0.0245 (2) | |
C8 | 0.61793 (8) | −0.05224 (9) | 0.34796 (7) | 0.0254 (2) | |
C9 | 0.62457 (9) | −0.16296 (9) | 0.33478 (7) | 0.0272 (3) | |
H9 | 0.6299 | −0.1895 | 0.2793 | 0.033* | |
C10 | 0.62360 (9) | −0.23787 (9) | 0.40247 (7) | 0.0273 (3) | |
C11 | 0.62992 (11) | −0.35233 (10) | 0.39025 (8) | 0.0351 (3) | |
H11 | 0.6371 | −0.3803 | 0.3355 | 0.042* | |
C12 | 0.62582 (11) | −0.42292 (11) | 0.45670 (9) | 0.0401 (3) | |
H12 | 0.6293 | −0.4994 | 0.4476 | 0.048* | |
C13 | 0.61644 (11) | −0.38257 (11) | 0.53837 (9) | 0.0392 (3) | |
H13 | 0.6133 | −0.4321 | 0.5840 | 0.047* | |
C14 | 0.61188 (10) | −0.27273 (12) | 0.55253 (8) | 0.0360 (3) | |
H14 | 0.6063 | −0.2466 | 0.6081 | 0.043* | |
C15 | 0.61532 (9) | −0.19709 (10) | 0.48511 (7) | 0.0281 (3) | |
C16 | 0.61118 (10) | −0.08247 (10) | 0.49767 (7) | 0.0316 (3) | |
H16 | 0.6079 | −0.0544 | 0.5530 | 0.038* | |
C17 | 0.61192 (9) | −0.01221 (10) | 0.43099 (7) | 0.0295 (3) | |
H17 | 0.6084 | 0.0643 | 0.4403 | 0.035* | |
C18 | 0.85102 (12) | 0.19798 (14) | 0.40216 (10) | 0.0513 (4) | |
H18A | 0.9065 | 0.1454 | 0.4217 | 0.062* | |
H18B | 0.8208 | 0.2268 | 0.4511 | 0.062* | |
H18C | 0.8808 | 0.2581 | 0.3724 | 0.062* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0388 (5) | 0.0320 (4) | 0.0255 (4) | 0.0067 (4) | 0.0041 (3) | 0.0003 (3) |
O2 | 0.0253 (5) | 0.0440 (5) | 0.0631 (6) | −0.0035 (4) | −0.0073 (4) | −0.0025 (5) |
C1 | 0.0250 (5) | 0.0252 (5) | 0.0265 (5) | −0.0019 (4) | 0.0042 (4) | 0.0006 (4) |
C2 | 0.0275 (6) | 0.0333 (6) | 0.0364 (6) | −0.0044 (5) | 0.0030 (5) | −0.0011 (5) |
C3 | 0.0376 (7) | 0.0343 (7) | 0.0442 (7) | −0.0140 (5) | 0.0035 (6) | −0.0053 (5) |
C4 | 0.0492 (8) | 0.0230 (6) | 0.0408 (7) | −0.0078 (5) | 0.0087 (6) | −0.0024 (5) |
C5 | 0.0376 (9) | 0.0231 (8) | 0.0300 (8) | 0.000 | 0.0077 (7) | 0.000 |
C6 | 0.0280 (8) | 0.0216 (7) | 0.0238 (7) | 0.000 | 0.0056 (6) | 0.000 |
C7 | 0.0194 (5) | 0.0265 (5) | 0.0272 (5) | 0.0011 (4) | 0.0014 (4) | 0.0000 (4) |
C8 | 0.0220 (5) | 0.0276 (6) | 0.0260 (5) | 0.0026 (4) | 0.0014 (4) | 0.0002 (4) |
C9 | 0.0272 (5) | 0.0300 (6) | 0.0242 (5) | 0.0017 (4) | 0.0024 (4) | −0.0018 (4) |
C10 | 0.0244 (5) | 0.0278 (6) | 0.0292 (6) | 0.0008 (4) | 0.0016 (4) | 0.0010 (4) |
C11 | 0.0415 (7) | 0.0289 (6) | 0.0346 (6) | −0.0008 (5) | 0.0040 (5) | −0.0009 (5) |
C12 | 0.0431 (7) | 0.0299 (6) | 0.0465 (8) | −0.0007 (5) | 0.0026 (6) | 0.0058 (5) |
C13 | 0.0375 (7) | 0.0413 (7) | 0.0383 (7) | −0.0023 (5) | 0.0029 (5) | 0.0140 (5) |
C14 | 0.0330 (6) | 0.0460 (7) | 0.0294 (6) | 0.0007 (5) | 0.0052 (5) | 0.0063 (5) |
C15 | 0.0231 (5) | 0.0348 (6) | 0.0263 (5) | 0.0023 (4) | 0.0024 (4) | 0.0018 (5) |
C16 | 0.0331 (6) | 0.0374 (6) | 0.0242 (5) | 0.0048 (5) | 0.0040 (4) | −0.0031 (5) |
C17 | 0.0303 (6) | 0.0291 (6) | 0.0286 (6) | 0.0048 (4) | 0.0021 (4) | −0.0037 (5) |
C18 | 0.0336 (7) | 0.0641 (10) | 0.0521 (8) | −0.0117 (7) | −0.0094 (6) | 0.0046 (7) |
O1—C7 | 1.2226 (13) | C9—H9 | 0.9500 |
O2—C2 | 1.3689 (15) | C10—C11 | 1.4187 (16) |
O2—C18 | 1.4288 (17) | C10—C15 | 1.4212 (16) |
C1—C2 | 1.3851 (16) | C11—C12 | 1.3706 (18) |
C1—C6 | 1.4324 (13) | C11—H11 | 0.9500 |
C1—C7 | 1.5154 (15) | C12—C13 | 1.408 (2) |
C2—C3 | 1.4106 (18) | C12—H12 | 0.9500 |
C3—C4 | 1.358 (2) | C13—C14 | 1.366 (2) |
C3—H3 | 0.9500 | C13—H13 | 0.9500 |
C4—C5 | 1.4131 (15) | C14—C15 | 1.4209 (17) |
C4—H4 | 0.9500 | C14—H14 | 0.9500 |
C5—C4i | 1.4131 (15) | C15—C16 | 1.4197 (17) |
C5—C6 | 1.428 (2) | C16—C17 | 1.3653 (17) |
C6—C1i | 1.4324 (13) | C16—H16 | 0.9500 |
C7—C8 | 1.4856 (15) | C17—H17 | 0.9500 |
C8—C9 | 1.3762 (16) | C18—H18A | 0.9800 |
C8—C17 | 1.4184 (15) | C18—H18B | 0.9800 |
C9—C10 | 1.4144 (16) | C18—H18C | 0.9800 |
C2—O2—C18 | 117.62 (11) | C9—C10—C15 | 118.88 (10) |
C2—C1—C6 | 120.06 (11) | C11—C10—C15 | 119.09 (11) |
C2—C1—C7 | 117.16 (10) | C12—C11—C10 | 120.61 (12) |
C6—C1—C7 | 122.22 (10) | C12—C11—H11 | 119.7 |
O2—C2—C1 | 115.90 (11) | C10—C11—H11 | 119.7 |
O2—C2—C3 | 122.35 (11) | C11—C12—C13 | 120.30 (12) |
C1—C2—C3 | 121.65 (11) | C11—C12—H12 | 119.8 |
C4—C3—C2 | 118.83 (11) | C13—C12—H12 | 119.9 |
C4—C3—H3 | 120.6 | C14—C13—C12 | 120.53 (12) |
C2—C3—H3 | 120.6 | C14—C13—H13 | 119.7 |
C3—C4—C5 | 122.14 (12) | C12—C13—H13 | 119.7 |
C3—C4—H4 | 118.9 | C13—C14—C15 | 120.76 (12) |
C5—C4—H4 | 118.9 | C13—C14—H14 | 119.6 |
C4—C5—C4i | 120.74 (16) | C15—C14—H14 | 119.6 |
C4—C5—C6 | 119.63 (8) | C16—C15—C14 | 122.22 (11) |
C4i—C5—C6 | 119.63 (8) | C16—C15—C10 | 119.08 (10) |
C5—C6—C1i | 117.65 (7) | C14—C15—C10 | 118.70 (11) |
C5—C6—C1 | 117.65 (7) | C17—C16—C15 | 120.65 (11) |
C1i—C6—C1 | 124.70 (14) | C17—C16—H16 | 119.7 |
O1—C7—C8 | 121.64 (10) | C15—C16—H16 | 119.7 |
O1—C7—C1 | 118.01 (10) | C16—C17—C8 | 120.66 (11) |
C8—C7—C1 | 120.33 (9) | C16—C17—H17 | 119.7 |
C9—C8—C17 | 119.60 (10) | C8—C17—H17 | 119.7 |
C9—C8—C7 | 118.51 (10) | O2—C18—H18A | 109.5 |
C17—C8—C7 | 121.79 (10) | O2—C18—H18B | 109.5 |
C8—C9—C10 | 121.10 (10) | H18A—C18—H18B | 109.5 |
C8—C9—H9 | 119.5 | O2—C18—H18C | 109.5 |
C10—C9—H9 | 119.5 | H18A—C18—H18C | 109.5 |
C9—C10—C11 | 122.03 (11) | H18B—C18—H18C | 109.5 |
C18—O2—C2—C1 | −162.39 (12) | C1—C7—C8—C9 | 175.44 (10) |
C18—O2—C2—C3 | 21.28 (19) | O1—C7—C8—C17 | −179.51 (11) |
C6—C1—C2—O2 | −177.66 (9) | C1—C7—C8—C17 | −0.90 (16) |
C7—C1—C2—O2 | −6.05 (15) | C17—C8—C9—C10 | 1.16 (17) |
C6—C1—C2—C3 | −1.30 (17) | C7—C8—C9—C10 | −175.26 (10) |
C7—C1—C2—C3 | 170.30 (11) | C8—C9—C10—C11 | 179.74 (11) |
O2—C2—C3—C4 | 175.46 (12) | C8—C9—C10—C15 | 0.17 (17) |
C1—C2—C3—C4 | −0.7 (2) | C9—C10—C11—C12 | −178.16 (12) |
C2—C3—C4—C5 | 1.68 (19) | C15—C10—C11—C12 | 1.41 (19) |
C3—C4—C5—C4i | 179.28 (14) | C10—C11—C12—C13 | −0.7 (2) |
C3—C4—C5—C6 | −0.72 (14) | C11—C12—C13—C14 | −0.3 (2) |
C4—C5—C6—C1i | 178.78 (8) | C12—C13—C14—C15 | 0.7 (2) |
C4i—C5—C6—C1i | −1.22 (8) | C13—C14—C15—C16 | −179.74 (12) |
C4—C5—C6—C1 | −1.22 (8) | C13—C14—C15—C10 | 0.01 (18) |
C4i—C5—C6—C1 | 178.78 (8) | C9—C10—C15—C16 | −1.71 (17) |
C2—C1—C6—C5 | 2.20 (11) | C11—C10—C15—C16 | 178.71 (11) |
C7—C1—C6—C5 | −168.97 (7) | C9—C10—C15—C14 | 178.54 (10) |
C2—C1—C6—C1i | −177.80 (11) | C11—C10—C15—C14 | −1.04 (17) |
C7—C1—C6—C1i | 11.03 (7) | C14—C15—C16—C17 | −178.29 (11) |
C2—C1—C7—O1 | −104.62 (13) | C10—C15—C16—C17 | 1.97 (17) |
C6—C1—C7—O1 | 66.79 (13) | C15—C16—C17—C8 | −0.65 (18) |
C2—C1—C7—C8 | 76.72 (13) | C9—C8—C17—C16 | −0.93 (17) |
C6—C1—C7—C8 | −111.87 (11) | C7—C8—C17—C16 | 175.37 (10) |
O1—C7—C8—C9 | −3.17 (16) |
Symmetry code: (i) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3ii—H3ii···O1 | 0.95 | 2.59 | 3.3795 (17) | 141 |
C16iii—H16iii···O1 | 0.95 | 2.49 | 3.4382 (14) | 175 |
Symmetry codes: (ii) −x+3/2, y−1/2, −z+1/2; (iii) x, −y, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C34H24O4 |
Mr | 496.53 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 193 |
a, b, c (Å) | 12.8325 (5), 12.2459 (4), 15.8798 (6) |
β (°) | 97.618 (1) |
V (Å3) | 2473.41 (16) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.50 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID diffractometer |
Absorption correction | Numerical (NUMABS; Higashi, 1999) |
Tmin, Tmax | 0.958, 0.983 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 19645, 2832, 2370 |
Rint | 0.022 |
(sin θ/λ)max (Å−1) | 0.648 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.115, 1.11 |
No. of reflections | 2832 |
No. of parameters | 175 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.28, −0.18 |
Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).
D—H···A | D—H | H···A | D···A | D—H···A |
C3i—H3i···O1 | 0.95 | 2.59 | 3.3795 (17) | 141 |
C16ii—H16ii···O1 | 0.95 | 2.49 | 3.4382 (14) | 175 |
Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) x, −y, z−1/2. |
Acknowledgements
The authors express their gratitude to Master Atsushi Nagasawa and Mr Kotaro Kataoka, Department of Organic and Polymer Materials Chemistry, Graduate School, Tokyo University of Agriculture & Technology, and Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture & Technology, for technical advice.
References
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
Hijikata, D., Takada, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2902–o2903. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Muto, T., Kato, Y., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2752. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nishijima, T., Kataoka, K., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2904–o2905. Web of Science CSD CrossRef IUCr Journals Google Scholar
Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915. Web of Science CrossRef CAS Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the course of our study on electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have been found to be formed regioselectively with the aid of suitable acidic mediators (Okamoto & Yonezawa, 2009). We have reported the X-ray crystal structures of 1,8-diaroylated 2,7-dimethoxynaphthalenes such as 1,8-dibenzoyl-2,7-dimethoxynaphthalene (Nakaema et al., 2008), 1,8-bis(4-methylbenzoyl)-2,7-dimethoxynaphthalene (Muto et al., 2010) and 1,8-bis(4-aminobenzoyl)-2,7-dimethoxynaphthalene (Nishijima et al., 2010). The aromatic rings in these types of molecules are generally assembled with non-coplanar configuration. In these compounds, two aroyl groups tend to attach in nearly perpendicular manner and orient in opposite direction. Recently, the crystal structure of 2,7-dimethoxy-1,8-bis(4-phenoxybenzoyl)naphthalene has been clarified as syn-conformation, where two phenoxybenzoyl groups are oriented in the same direction (Hijikata et al., 2010). As a part of our continuous studies on the molecular structures of homologous aroylated 2,7-dimethoxynaphthalene molecules, the X-ray crystal structure of the title compound, (I), bis(2-naphthoylated) 2,7-dimethoxynaphthalene, is discussed in this article.
An ORTEPIII (Burnett & Johnson, 1996) plot of the title compound is displayed in Fig. 1. The molecule of (I) lies across a crystallographic 2-fold axis so that the asymmetric unit contains one-half of the molecule. Thus, the two terminal naphthoyl groups are situated in anti orientation. The dihedral angle between the central 2,7-dimethoxynaphthalene ring (C1–C6 and C1i–C4i) and the terminal naphthyl groups (C8–C17) is 75.13 (4)°. The torsion angles of the central 2,7-dimethoxynaphthalene moiety (C1–C6 and C1i–C4i) and the terminal naphthyl group (C8–C17) with the carbonyl group (C7–O1) are -66.78 (14) [C6—C1—C7—O1] and -179.50 (11)° [O1—C7—C8—C17], respectively.
In the crystal, an oxygen atom of the carbonyl group form two types of intermolecular C—H···O hydrogen bonds with the naphthalene ring hydrogen of the central 2,7-dimethoxynaphthalene moiety [C3—H3···O1 = 2.59 Å] and that of the terminal naphthoyl group [C16—H16···O1 = 2.49 Å], respectively (Table 1 and Fig. 2). Furthermore, an intermolecular π—π stacking interaction is observed between naphthalene rings of the terminal naphthoyl group (C8–C17) with that of the adjacent molecule along the a axis [centroid—centroid and interplanar distances are 3.6486 (8) and 3.3734 (5) Å, respectively] (Fig. 3).