organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[2,7-Dimeth­­oxy-8-(2-naphtho­yl)naphthalen-1-yl](naphthalen-2-yl)methanone

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, 2-24-16 Naka-machi, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp

(Received 12 July 2011; accepted 13 July 2011; online 23 July 2011)

The mol­ecule of the title compound, C34H24O4, possesses crystallographically imposed twofold C2 symmetry. The two 2-naphthoyl groups at the 1- and 8-positions of the central naphthalene ring are aligned almost anti­parallel [5.21 (5)°]. The dihedral angle between the central 2,7-dimeth­oxy­naphthalene unit and the terminal naphthyl groups is 75.13 (4)°. In the crystal, weak C—H⋯O hydrogen bonds and ππ stacking inter­actions [centroid–centroid and inter­planar distances are 3.6486 (8) and 3.3734 (5) Å, respectively] are observed.

Related literature

For the electrophilic aromatic aroylation of 2,7-dimeth­oxy­naphthalene giving aroylated naphthalene compounds, see: Okamoto & Yonezawa (2009[Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915.]). For the structures of closely related compounds, see: Hijikata et al. (2010[Hijikata, D., Takada, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2902-o2903.]); Muto et al. (2010[Muto, T., Kato, Y., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2752.]); Nakaema et al. (2008[Nakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807.]); Nishijima et al. (2010[Nishijima, T., Kataoka, K., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2904-o2905.]).

[Scheme 1]

Experimental

Crystal data
  • C34H24O4

  • Mr = 496.53

  • Monoclinic, C 2/c

  • a = 12.8325 (5) Å

  • b = 12.2459 (4) Å

  • c = 15.8798 (6) Å

  • β = 97.618 (1)°

  • V = 2473.41 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 193 K

  • 0.50 × 0.20 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.958, Tmax = 0.983

  • 19645 measured reflections

  • 2832 independent reflections

  • 2370 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.115

  • S = 1.11

  • 2832 reflections

  • 175 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3i—H3i⋯O1 0.95 2.59 3.3795 (17) 141
C16ii—H16ii⋯O1 0.95 2.49 3.4382 (14) 175
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y, z-{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the course of our study on electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have been found to be formed regioselectively with the aid of suitable acidic mediators (Okamoto & Yonezawa, 2009). We have reported the X-ray crystal structures of 1,8-diaroylated 2,7-dimethoxynaphthalenes such as 1,8-dibenzoyl-2,7-dimethoxynaphthalene (Nakaema et al., 2008), 1,8-bis(4-methylbenzoyl)-2,7-dimethoxynaphthalene (Muto et al., 2010) and 1,8-bis(4-aminobenzoyl)-2,7-dimethoxynaphthalene (Nishijima et al., 2010). The aromatic rings in these types of molecules are generally assembled with non-coplanar configuration. In these compounds, two aroyl groups tend to attach in nearly perpendicular manner and orient in opposite direction. Recently, the crystal structure of 2,7-dimethoxy-1,8-bis(4-phenoxybenzoyl)naphthalene has been clarified as syn-conformation, where two phenoxybenzoyl groups are oriented in the same direction (Hijikata et al., 2010). As a part of our continuous studies on the molecular structures of homologous aroylated 2,7-dimethoxynaphthalene molecules, the X-ray crystal structure of the title compound, (I), bis(2-naphthoylated) 2,7-dimethoxynaphthalene, is discussed in this article.

An ORTEPIII (Burnett & Johnson, 1996) plot of the title compound is displayed in Fig. 1. The molecule of (I) lies across a crystallographic 2-fold axis so that the asymmetric unit contains one-half of the molecule. Thus, the two terminal naphthoyl groups are situated in anti orientation. The dihedral angle between the central 2,7-dimethoxynaphthalene ring (C1–C6 and C1i–C4i) and the terminal naphthyl groups (C8–C17) is 75.13 (4)°. The torsion angles of the central 2,7-dimethoxynaphthalene moiety (C1–C6 and C1i–C4i) and the terminal naphthyl group (C8–C17) with the carbonyl group (C7–O1) are -66.78 (14) [C6—C1—C7—O1] and -179.50 (11)° [O1—C7—C8—C17], respectively.

In the crystal, an oxygen atom of the carbonyl group form two types of intermolecular C—H···O hydrogen bonds with the naphthalene ring hydrogen of the central 2,7-dimethoxynaphthalene moiety [C3—H3···O1 = 2.59 Å] and that of the terminal naphthoyl group [C16—H16···O1 = 2.49 Å], respectively (Table 1 and Fig. 2). Furthermore, an intermolecular ππ stacking interaction is observed between naphthalene rings of the terminal naphthoyl group (C8–C17) with that of the adjacent molecule along the a axis [centroid—centroid and interplanar distances are 3.6486 (8) and 3.3734 (5) Å, respectively] (Fig. 3).

Related literature top

For the electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene giving aroylated naphthalene compounds, see: Okamoto & Yonezawa (2009). For the structures of closely related compounds, see: Hijikata et al. (2010); Muto et al. (2010); Nakaema et al. (2008); Nishijima et al. (2010).

Experimental top

To a solution of 2-naphthoyl chloride (629.1 mg, 3.3 mmol) and TiCl4 (1802.0 mg, 9.5 mmol) in CH2Cl2 (2.5 ml), 2,7-dimethoxynaphthalene (188.2 mg, 1.0 mmol) was added. The reaction mixture was stirred at r.t. for 3 h, then poured into ice-cold water (10 ml) and the aqueous layer was extracted with CHCl3 (5 ml × 3). The combined organic extracts were washed with 2 M aqueous NaOH (20 ml × 3) followed by washing with brine (20 ml × 3). The organic layer was dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give a cake (72% yield). The crude product was purified by recrystallization from acetone (22% isolated yield). Furthermore, the isolated product was crystallized from acetone to give single crystals suitable for X-ray amalysis.

Spectroscopic data: 1H NMR (300 MHz, CDCl3) δ 3.67 (6H, s), 7.26 (2H, d, J = 9.0 Hz), 7.37 (2H, t, J = 7.5 Hz), 7.45 (2H, t, J = 7.5 Hz), 7.68–7.77 (8H, m), 8.03 (2H, d, J = 9.0 Hz), 8.09 (2H, brs) p.p.m.; 13C NMR (75 MHz, CDCl3) δ 56.47, 111.38, 121.73, 124.75, 125.64, 125.92, 127.54, 127.60, 127.83, 129.62, 130.16, 131.11, 132.17, 132.40, 135.50, 136.05, 156.52, 196.66 p.p.m.; IR (KBr):1660(C=O), 1624(Ar), 1510(Ar), 1258(OMe) cm-1; HRMS (m/z):[M + H]+ calcd. for C34H25O4, 497.1753; found, 497.1751; m.p. = 505.0–506.0 K

Refinement top

All H atoms were found in a difference Fourier map and were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 Å (methyl), and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I). Displacement ellipsoids are drawn at the 50% probability level. Symmetry code: (i) -x+1, y, -z+1/2.
[Figure 2] Fig. 2. A partial packing diagram of compound (I), showing the C3—H3···O1 (blue dashed lines) and C16—H16···O1 (red dashed lines) hydrogen interactions. Symmetry codes: (i) 1-x, y, 1/2-z; (ii) 3/2-x, 1/2+y 1/2-z; (iii) x, -y, 1/2+z; (iv) 1-x, -y, 1-z; (v) 3/2-x, 1/2-y, 1-z; (vi) 1/2+x, 1/2-y, 1/2+z; (vii) 1/2+x, 1/2+y, z.
[Figure 3] Fig. 3. Side view of the ππ stacking interactions (dashed lines). Cg4 is the centroid of the C10–C15 ring.
[2,7-Dimethoxy-8-(2-naphthoyl)naphthalen-1-yl](naphthalen-2-yl)methanone top
Crystal data top
C34H24O4F(000) = 1040
Mr = 496.53Dx = 1.333 Mg m3
Monoclinic, C2/cMelting point = 505.0–506.0 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71075 Å
a = 12.8325 (5) ÅCell parameters from 14952 reflections
b = 12.2459 (4) Åθ = 3.2–27.4°
c = 15.8798 (6) ŵ = 0.09 mm1
β = 97.618 (1)°T = 193 K
V = 2473.41 (16) Å3Block, colorless
Z = 40.50 × 0.20 × 0.20 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2832 independent reflections
Radiation source: rotating anode2370 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 10.00 pixels mm-1θmax = 27.4°, θmin = 3.2°
ω scansh = 1616
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 1515
Tmin = 0.958, Tmax = 0.983l = 2020
19645 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.059P)2 + 1.0486P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
2832 reflectionsΔρmax = 0.28 e Å3
175 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0039 (6)
Crystal data top
C34H24O4V = 2473.41 (16) Å3
Mr = 496.53Z = 4
Monoclinic, C2/cMo Kα radiation
a = 12.8325 (5) ŵ = 0.09 mm1
b = 12.2459 (4) ÅT = 193 K
c = 15.8798 (6) Å0.50 × 0.20 × 0.20 mm
β = 97.618 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2832 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
2370 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.983Rint = 0.022
19645 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.11Δρmax = 0.28 e Å3
2832 reflectionsΔρmin = 0.18 e Å3
175 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.61538 (7)0.01315 (7)0.20166 (5)0.0321 (2)
O20.77075 (7)0.14496 (8)0.34570 (7)0.0453 (3)
C10.59528 (9)0.14332 (9)0.28387 (7)0.0255 (2)
C20.68212 (9)0.20368 (10)0.31776 (8)0.0325 (3)
C30.68048 (11)0.31884 (11)0.31852 (9)0.0389 (3)
H30.74050.35900.34260.047*
C40.59161 (11)0.37129 (10)0.28429 (8)0.0374 (3)
H40.59100.44890.28340.045*
C50.50000.31424 (13)0.25000.0299 (3)
C60.50000.19760 (12)0.25000.0243 (3)
C70.61088 (8)0.02168 (9)0.27324 (7)0.0245 (2)
C80.61793 (8)0.05224 (9)0.34796 (7)0.0254 (2)
C90.62457 (9)0.16296 (9)0.33478 (7)0.0272 (3)
H90.62990.18950.27930.033*
C100.62360 (9)0.23787 (9)0.40247 (7)0.0273 (3)
C110.62992 (11)0.35233 (10)0.39025 (8)0.0351 (3)
H110.63710.38030.33550.042*
C120.62582 (11)0.42292 (11)0.45670 (9)0.0401 (3)
H120.62930.49940.44760.048*
C130.61644 (11)0.38257 (11)0.53837 (9)0.0392 (3)
H130.61330.43210.58400.047*
C140.61188 (10)0.27273 (12)0.55253 (8)0.0360 (3)
H140.60630.24660.60810.043*
C150.61532 (9)0.19709 (10)0.48511 (7)0.0281 (3)
C160.61118 (10)0.08247 (10)0.49767 (7)0.0316 (3)
H160.60790.05440.55300.038*
C170.61192 (9)0.01221 (10)0.43099 (7)0.0295 (3)
H170.60840.06430.44030.035*
C180.85102 (12)0.19798 (14)0.40216 (10)0.0513 (4)
H18A0.90650.14540.42170.062*
H18B0.82080.22680.45110.062*
H18C0.88080.25810.37240.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0388 (5)0.0320 (4)0.0255 (4)0.0067 (4)0.0041 (3)0.0003 (3)
O20.0253 (5)0.0440 (5)0.0631 (6)0.0035 (4)0.0073 (4)0.0025 (5)
C10.0250 (5)0.0252 (5)0.0265 (5)0.0019 (4)0.0042 (4)0.0006 (4)
C20.0275 (6)0.0333 (6)0.0364 (6)0.0044 (5)0.0030 (5)0.0011 (5)
C30.0376 (7)0.0343 (7)0.0442 (7)0.0140 (5)0.0035 (6)0.0053 (5)
C40.0492 (8)0.0230 (6)0.0408 (7)0.0078 (5)0.0087 (6)0.0024 (5)
C50.0376 (9)0.0231 (8)0.0300 (8)0.0000.0077 (7)0.000
C60.0280 (8)0.0216 (7)0.0238 (7)0.0000.0056 (6)0.000
C70.0194 (5)0.0265 (5)0.0272 (5)0.0011 (4)0.0014 (4)0.0000 (4)
C80.0220 (5)0.0276 (6)0.0260 (5)0.0026 (4)0.0014 (4)0.0002 (4)
C90.0272 (5)0.0300 (6)0.0242 (5)0.0017 (4)0.0024 (4)0.0018 (4)
C100.0244 (5)0.0278 (6)0.0292 (6)0.0008 (4)0.0016 (4)0.0010 (4)
C110.0415 (7)0.0289 (6)0.0346 (6)0.0008 (5)0.0040 (5)0.0009 (5)
C120.0431 (7)0.0299 (6)0.0465 (8)0.0007 (5)0.0026 (6)0.0058 (5)
C130.0375 (7)0.0413 (7)0.0383 (7)0.0023 (5)0.0029 (5)0.0140 (5)
C140.0330 (6)0.0460 (7)0.0294 (6)0.0007 (5)0.0052 (5)0.0063 (5)
C150.0231 (5)0.0348 (6)0.0263 (5)0.0023 (4)0.0024 (4)0.0018 (5)
C160.0331 (6)0.0374 (6)0.0242 (5)0.0048 (5)0.0040 (4)0.0031 (5)
C170.0303 (6)0.0291 (6)0.0286 (6)0.0048 (4)0.0021 (4)0.0037 (5)
C180.0336 (7)0.0641 (10)0.0521 (8)0.0117 (7)0.0094 (6)0.0046 (7)
Geometric parameters (Å, º) top
O1—C71.2226 (13)C9—H90.9500
O2—C21.3689 (15)C10—C111.4187 (16)
O2—C181.4288 (17)C10—C151.4212 (16)
C1—C21.3851 (16)C11—C121.3706 (18)
C1—C61.4324 (13)C11—H110.9500
C1—C71.5154 (15)C12—C131.408 (2)
C2—C31.4106 (18)C12—H120.9500
C3—C41.358 (2)C13—C141.366 (2)
C3—H30.9500C13—H130.9500
C4—C51.4131 (15)C14—C151.4209 (17)
C4—H40.9500C14—H140.9500
C5—C4i1.4131 (15)C15—C161.4197 (17)
C5—C61.428 (2)C16—C171.3653 (17)
C6—C1i1.4324 (13)C16—H160.9500
C7—C81.4856 (15)C17—H170.9500
C8—C91.3762 (16)C18—H18A0.9800
C8—C171.4184 (15)C18—H18B0.9800
C9—C101.4144 (16)C18—H18C0.9800
C2—O2—C18117.62 (11)C9—C10—C15118.88 (10)
C2—C1—C6120.06 (11)C11—C10—C15119.09 (11)
C2—C1—C7117.16 (10)C12—C11—C10120.61 (12)
C6—C1—C7122.22 (10)C12—C11—H11119.7
O2—C2—C1115.90 (11)C10—C11—H11119.7
O2—C2—C3122.35 (11)C11—C12—C13120.30 (12)
C1—C2—C3121.65 (11)C11—C12—H12119.8
C4—C3—C2118.83 (11)C13—C12—H12119.9
C4—C3—H3120.6C14—C13—C12120.53 (12)
C2—C3—H3120.6C14—C13—H13119.7
C3—C4—C5122.14 (12)C12—C13—H13119.7
C3—C4—H4118.9C13—C14—C15120.76 (12)
C5—C4—H4118.9C13—C14—H14119.6
C4—C5—C4i120.74 (16)C15—C14—H14119.6
C4—C5—C6119.63 (8)C16—C15—C14122.22 (11)
C4i—C5—C6119.63 (8)C16—C15—C10119.08 (10)
C5—C6—C1i117.65 (7)C14—C15—C10118.70 (11)
C5—C6—C1117.65 (7)C17—C16—C15120.65 (11)
C1i—C6—C1124.70 (14)C17—C16—H16119.7
O1—C7—C8121.64 (10)C15—C16—H16119.7
O1—C7—C1118.01 (10)C16—C17—C8120.66 (11)
C8—C7—C1120.33 (9)C16—C17—H17119.7
C9—C8—C17119.60 (10)C8—C17—H17119.7
C9—C8—C7118.51 (10)O2—C18—H18A109.5
C17—C8—C7121.79 (10)O2—C18—H18B109.5
C8—C9—C10121.10 (10)H18A—C18—H18B109.5
C8—C9—H9119.5O2—C18—H18C109.5
C10—C9—H9119.5H18A—C18—H18C109.5
C9—C10—C11122.03 (11)H18B—C18—H18C109.5
C18—O2—C2—C1162.39 (12)C1—C7—C8—C9175.44 (10)
C18—O2—C2—C321.28 (19)O1—C7—C8—C17179.51 (11)
C6—C1—C2—O2177.66 (9)C1—C7—C8—C170.90 (16)
C7—C1—C2—O26.05 (15)C17—C8—C9—C101.16 (17)
C6—C1—C2—C31.30 (17)C7—C8—C9—C10175.26 (10)
C7—C1—C2—C3170.30 (11)C8—C9—C10—C11179.74 (11)
O2—C2—C3—C4175.46 (12)C8—C9—C10—C150.17 (17)
C1—C2—C3—C40.7 (2)C9—C10—C11—C12178.16 (12)
C2—C3—C4—C51.68 (19)C15—C10—C11—C121.41 (19)
C3—C4—C5—C4i179.28 (14)C10—C11—C12—C130.7 (2)
C3—C4—C5—C60.72 (14)C11—C12—C13—C140.3 (2)
C4—C5—C6—C1i178.78 (8)C12—C13—C14—C150.7 (2)
C4i—C5—C6—C1i1.22 (8)C13—C14—C15—C16179.74 (12)
C4—C5—C6—C11.22 (8)C13—C14—C15—C100.01 (18)
C4i—C5—C6—C1178.78 (8)C9—C10—C15—C161.71 (17)
C2—C1—C6—C52.20 (11)C11—C10—C15—C16178.71 (11)
C7—C1—C6—C5168.97 (7)C9—C10—C15—C14178.54 (10)
C2—C1—C6—C1i177.80 (11)C11—C10—C15—C141.04 (17)
C7—C1—C6—C1i11.03 (7)C14—C15—C16—C17178.29 (11)
C2—C1—C7—O1104.62 (13)C10—C15—C16—C171.97 (17)
C6—C1—C7—O166.79 (13)C15—C16—C17—C80.65 (18)
C2—C1—C7—C876.72 (13)C9—C8—C17—C160.93 (17)
C6—C1—C7—C8111.87 (11)C7—C8—C17—C16175.37 (10)
O1—C7—C8—C93.17 (16)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3ii—H3ii···O10.952.593.3795 (17)141
C16iii—H16iii···O10.952.493.4382 (14)175
Symmetry codes: (ii) x+3/2, y1/2, z+1/2; (iii) x, y, z1/2.

Experimental details

Crystal data
Chemical formulaC34H24O4
Mr496.53
Crystal system, space groupMonoclinic, C2/c
Temperature (K)193
a, b, c (Å)12.8325 (5), 12.2459 (4), 15.8798 (6)
β (°) 97.618 (1)
V3)2473.41 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.50 × 0.20 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.958, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
19645, 2832, 2370
Rint0.022
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.115, 1.11
No. of reflections2832
No. of parameters175
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.18

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3i—H3i···O10.952.593.3795 (17)141
C16ii—H16ii···O10.952.493.4382 (14)175
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x, y, z1/2.
 

Acknowledgements

The authors express their gratitude to Master Atsushi Nagasawa and Mr Kotaro Kataoka, Department of Organic and Polymer Materials Chemistry, Graduate School, Tokyo University of Agriculture & Technology, and Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture & Technology, for technical advice.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHijikata, D., Takada, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2902–o2903.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMuto, T., Kato, Y., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2752.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNishijima, T., Kataoka, K., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2904–o2905.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds