organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,5-Di­methyl­phen­yl)succinamic acid monohydrate

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 21 June 2011; accepted 25 June 2011; online 2 July 2011)

In the title compound, C12H15NO3·H2O, the conformation of the N—H bond in the amide segment is syn to the ortho-methyl group and anti to the meta-methyl group in the benzene ring. Further, the conformations of the amide O and the carbonyl O atom of the acid segment are anti to the adjacent methyl­ene H atoms. The C=O and O—H bonds of the acid group are syn to one another. The structure shows an inter­esting hydrogen-bonding pattern with the water mol­ecule forming hydrogen bonds with three different mol­ecules of the compound. In the crystal, mol­ecules are packed into infinite chains through inter­molecular O—H⋯O and N—H⋯O hydrogen bonds.

Related literature

For our studies of the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Gowda et al. (1999[Gowda, B. T., Bhat, D. K., Fuess, H. & Weiss, A. (1999). Z. Naturforsch. Teil A, 54, 261-267.], 2000[Gowda, B. T., Kumar, B. H. A. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 721-728.], 2010a[Gowda, B. T., Foro, S., Saraswathi, B. S. & Fuess, H. (2010a). Acta Cryst. E66, o394.],b[Gowda, B. T., Foro, S., Saraswathi, B. S. & Fuess, H. (2010b). Acta Cryst. E66, o908.]); Saraswathi et al. (2011[Saraswathi, B. S., Foro, S., Gowda, B. T. & Fuess, H. (2011). Acta Cryst. E67, o236.]). For modes of inter­linking carb­oxy­lic acids by hydrogen bonds, see: Leiserowitz (1976[Leiserowitz, L. (1976). Acta Cryst. B32, 775-802.]). For packing of mol­ecules involving dimeric hydrogen-bonding associations of each carboxyl group with a centrosymmetrically related neighbor, see: Jagannathan et al. (1994[Jagannathan, N. R., Rajan, S. S. & Subramanian, E. (1994). J. Chem. Crystallogr. 24, 75-78.]).

[Scheme 1]

Experimental

Crystal data
  • C12H15NO3·H2O

  • Mr = 239.27

  • Monoclinic, P 21 /c

  • a = 22.012 (4) Å

  • b = 6.051 (1) Å

  • c = 9.558 (2) Å

  • β = 95.90 (1)°

  • V = 1266.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.24 × 0.08 × 0.04 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.978, Tmax = 0.996

  • 4503 measured reflections

  • 2293 independent reflections

  • 964 reflections with I > 2σ(I)

  • Rint = 0.075

Refinement
  • R[F2 > 2σ(F2)] = 0.099

  • wR(F2) = 0.147

  • S = 1.08

  • 2293 reflections

  • 168 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.85 (2) 2.10 (2) 2.914 (4) 161 (4)
O2—H2O⋯O4ii 0.83 (2) 1.81 (2) 2.621 (5) 164 (5)
O4—H41⋯O3 0.84 (2) 2.01 (2) 2.831 (5) 168 (5)
O4—H42⋯O3iii 0.83 (2) 2.07 (2) 2.882 (5) 166 (5)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x+1, -y, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The amide and sulfonamide molecules are important constituents of many biologically important compounds. As a part of our studies of the substituent effects on the structures and other aspects of this class of compounds (Gowda et al., 1999, 2000, 2010a,b; Saraswathi et al., 2011), in the present work, the crystal structure of N-(2,5-dimethylphenyl)-succinamic acid monohydrate (I) has been determined (Fig. 1). The conformation of the N—H bond in the amide segment is syn to the ortho–methyl group and anti to the meta–methyl group in the benzene ring, similar to the syn conformation observed between the amide hydrogen and the ortho-methyl group in N-(2-methylphenyl)succinamic acid (II) (Gowda et al., 2010b) and the anti conformation observed between the amide hydrogen and the meta-methyl group in the benzene ring of N-(3-methylphenyl)succinamic acid (III) (Gowda et al., 2010a). The conformation of the amide oxygen and the carbonyl oxygen of the acid segment are anti to each other. Further, the conformations of these are anti to the adjacent methylene H-atoms. The CO and O—H bonds of the acid group are in syn position to each other, similar to that observed in (II) and (III).

The structure shows interesting H–bond pattern with water molecule forming H–bonding with three different molecules of the compound. Intermolecular O—H···O and N—H···O hydrogen bonds pack the molecules into infinite chains in the structure (Table 1, Fig.2). The modes of interlinking carboxylic acids by hydrogen bonds is described elsewhere (Leiserowitz, 1976). The packing of molecules involving dimeric hydrogen bonded association of each carboxyl group with a centrosymmetrically related neighbor has also been observed (Jagannathan et al., 1994).

Related literature top

For our studies of the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Gowda et al. (1999, 2000, 2010a,b); Saraswathi et al. (2011). For the modes of interlinking carboxylic acids by hydrogen bonds, see: Leiserowitz (1976). For packing of molecules involving dimeric hydrogen-bonding associations of each carboxyl group with a centrosymmetrically related neighbor, see: Jagannathan et al. (1994).

Experimental top

A solution of succinic anhydride (0.01 mole) in toluene (25 ml) was treated dropwise with the solution of 2,5-dimethylaniline (0.01 mole) also in toluene (20 ml) with constant stirring. The resulting mixture was stirred for about one hour and set aside for an additional hour at room temperature for completion of the reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 2,5-dimethylaniline. The resulting title compound was filtered under suction and washed thoroughly with water to remove the unreacted succinic anhydride and succinic acid. It was recrystallized to constant melting point from ethanol. The purity of the compound was checked and characterized by its infrared and NMR spectra.

Colorless needle like single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement top

The H atoms of the NH gorup and the water molecule were located in a difference map and their position refined with N—H = 0.86 (2) Å and O—H = 0.82 (2) Å. The other H atoms were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93 Å, methyl C—H = 0.96 Å and methylene C—H = 0.97 Å,,. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme and with displacement ellipsoids drawn at the 50% probability level. A hydrogen bond is drawn as a dashed line.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonds shown as dashed lines.
N-(2,5-Dimethylphenyl)succinamic acid monohydrate top
Crystal data top
C12H15NO3·H2OF(000) = 512
Mr = 239.27Dx = 1.255 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 663 reflections
a = 22.012 (4) Åθ = 2.8–27.7°
b = 6.051 (1) ŵ = 0.09 mm1
c = 9.558 (2) ÅT = 293 K
β = 95.90 (1)°Needle, colourless
V = 1266.3 (4) Å30.24 × 0.08 × 0.04 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2293 independent reflections
Radiation source: fine-focus sealed tube964 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
Rotation method data acquisition using ω scansθmax = 25.3°, θmin = 2.8°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 2626
Tmin = 0.978, Tmax = 0.996k = 76
4503 measured reflectionsl = 118
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.099Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0275P)2 + 1.0954P]
where P = (Fo2 + 2Fc2)/3
2293 reflections(Δ/σ)max = 0.004
168 parametersΔρmax = 0.20 e Å3
4 restraintsΔρmin = 0.22 e Å3
Crystal data top
C12H15NO3·H2OV = 1266.3 (4) Å3
Mr = 239.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 22.012 (4) ŵ = 0.09 mm1
b = 6.051 (1) ÅT = 293 K
c = 9.558 (2) Å0.24 × 0.08 × 0.04 mm
β = 95.90 (1)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2293 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
964 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.996Rint = 0.075
4503 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0994 restraints
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.20 e Å3
2293 reflectionsΔρmin = 0.22 e Å3
168 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1917 (2)0.0833 (9)0.5880 (4)0.0380 (13)
C20.1742 (2)0.1196 (9)0.6356 (5)0.0437 (14)
C30.1180 (3)0.2041 (9)0.5786 (5)0.0550 (15)
H30.10490.34020.60910.066*
C40.0817 (2)0.0882 (10)0.4772 (6)0.0584 (17)
H40.04470.14870.44000.070*
C50.0990 (2)0.1137 (10)0.4304 (5)0.0464 (15)
C60.1550 (2)0.2008 (8)0.4869 (4)0.0404 (13)
H60.16780.33770.45680.048*
C70.2891 (2)0.2840 (9)0.5756 (4)0.0392 (13)
C80.3462 (2)0.3619 (9)0.6640 (4)0.0439 (14)
H8A0.33520.41450.75380.053*
H8B0.37380.23770.68200.053*
C90.3788 (2)0.5434 (8)0.5942 (5)0.0474 (14)
H9A0.34900.65250.55780.057*
H9B0.40690.61560.66460.057*
C100.4137 (2)0.4669 (10)0.4765 (5)0.0387 (13)
C110.2134 (2)0.2482 (9)0.7455 (5)0.0652 (17)
H11A0.21350.17580.83490.078*
H11B0.25440.25600.71980.078*
H11C0.19730.39490.75180.078*
C120.0596 (2)0.2444 (10)0.3213 (5)0.0719 (19)
H12A0.02040.17430.30340.086*
H12B0.07890.25030.23580.086*
H12C0.05430.39180.35530.086*
N10.24841 (18)0.1758 (7)0.6459 (3)0.0431 (11)
H1N0.2554 (19)0.147 (7)0.733 (2)0.052*
O10.28284 (14)0.3146 (6)0.4485 (3)0.0590 (12)
O20.41537 (16)0.6192 (6)0.3788 (3)0.0571 (11)
H2O0.436 (2)0.562 (8)0.321 (4)0.068*
O30.43953 (15)0.2910 (6)0.4737 (3)0.0516 (10)
O40.48537 (18)0.0138 (6)0.6831 (4)0.0569 (11)
H410.472 (2)0.090 (6)0.631 (4)0.068*
H420.505 (2)0.111 (6)0.647 (5)0.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.042 (4)0.043 (4)0.031 (3)0.007 (3)0.008 (2)0.001 (3)
C20.048 (4)0.045 (4)0.040 (3)0.002 (3)0.012 (3)0.002 (3)
C30.060 (4)0.043 (4)0.066 (4)0.009 (4)0.023 (3)0.003 (3)
C40.045 (4)0.066 (5)0.064 (4)0.014 (4)0.005 (3)0.010 (4)
C50.036 (3)0.062 (5)0.041 (3)0.005 (3)0.002 (3)0.006 (3)
C60.042 (3)0.045 (4)0.034 (3)0.003 (3)0.004 (2)0.001 (3)
C70.034 (3)0.052 (4)0.031 (3)0.003 (3)0.001 (2)0.000 (3)
C80.035 (3)0.067 (4)0.030 (2)0.001 (3)0.002 (2)0.003 (3)
C90.044 (3)0.057 (4)0.041 (3)0.005 (3)0.008 (2)0.008 (3)
C100.030 (3)0.054 (4)0.030 (3)0.005 (3)0.004 (2)0.001 (3)
C110.068 (4)0.059 (4)0.071 (4)0.011 (4)0.017 (3)0.012 (3)
C120.042 (4)0.109 (5)0.062 (3)0.010 (4)0.006 (3)0.003 (4)
N10.045 (3)0.057 (3)0.028 (2)0.011 (3)0.003 (2)0.009 (2)
O10.048 (2)0.104 (3)0.0241 (17)0.010 (2)0.0010 (14)0.005 (2)
O20.066 (3)0.058 (3)0.051 (2)0.009 (2)0.0200 (18)0.010 (2)
O30.055 (2)0.056 (3)0.045 (2)0.012 (2)0.0104 (17)0.005 (2)
O40.069 (3)0.056 (3)0.048 (2)0.015 (2)0.019 (2)0.0068 (19)
Geometric parameters (Å, º) top
C1—C21.378 (6)C8—H8B0.9700
C1—C61.389 (6)C9—C101.499 (6)
C1—N11.427 (6)C9—H9A0.9700
C2—C31.396 (7)C9—H9B0.9700
C2—C111.506 (6)C10—O31.208 (6)
C3—C41.382 (7)C10—O21.315 (6)
C3—H30.9300C11—H11A0.9600
C4—C51.368 (7)C11—H11B0.9600
C4—H40.9300C11—H11C0.9600
C5—C61.397 (6)C12—H12A0.9600
C5—C121.511 (6)C12—H12B0.9600
C6—H60.9300C12—H12C0.9600
C7—O11.223 (4)N1—H1N0.852 (18)
C7—N11.344 (5)O2—H2O0.830 (19)
C7—C81.516 (6)O4—H410.836 (19)
C8—C91.504 (6)O4—H420.827 (19)
C8—H8A0.9700
C2—C1—C6121.6 (5)C10—C9—C8114.3 (4)
C2—C1—N1119.0 (5)C10—C9—H9A108.7
C6—C1—N1119.5 (5)C8—C9—H9A108.7
C1—C2—C3117.6 (5)C10—C9—H9B108.7
C1—C2—C11122.1 (5)C8—C9—H9B108.7
C3—C2—C11120.3 (5)H9A—C9—H9B107.6
C4—C3—C2120.9 (5)O3—C10—O2123.6 (5)
C4—C3—H3119.6O3—C10—C9124.5 (5)
C2—C3—H3119.6O2—C10—C9111.8 (5)
C5—C4—C3121.5 (5)C2—C11—H11A109.5
C5—C4—H4119.3C2—C11—H11B109.5
C3—C4—H4119.3H11A—C11—H11B109.5
C4—C5—C6118.3 (5)C2—C11—H11C109.5
C4—C5—C12122.3 (5)H11A—C11—H11C109.5
C6—C5—C12119.4 (5)H11B—C11—H11C109.5
C1—C6—C5120.1 (5)C5—C12—H12A109.5
C1—C6—H6119.9C5—C12—H12B109.5
C5—C6—H6119.9H12A—C12—H12B109.5
O1—C7—N1123.9 (4)C5—C12—H12C109.5
O1—C7—C8120.6 (4)H12A—C12—H12C109.5
N1—C7—C8115.5 (4)H12B—C12—H12C109.5
C9—C8—C7112.7 (4)C7—N1—C1126.8 (4)
C9—C8—H8A109.1C7—N1—H1N122 (3)
C7—C8—H8A109.1C1—N1—H1N111 (3)
C9—C8—H8B109.1C10—O2—H2O104 (4)
C7—C8—H8B109.1H41—O4—H42117 (5)
H8A—C8—H8B107.8
C6—C1—C2—C30.1 (7)C4—C5—C6—C10.0 (7)
N1—C1—C2—C3179.0 (4)C12—C5—C6—C1179.6 (4)
C6—C1—C2—C11179.8 (4)O1—C7—C8—C921.9 (7)
N1—C1—C2—C110.9 (7)N1—C7—C8—C9160.2 (4)
C1—C2—C3—C40.4 (7)C7—C8—C9—C1075.3 (5)
C11—C2—C3—C4179.7 (4)C8—C9—C10—O334.4 (7)
C2—C3—C4—C50.7 (8)C8—C9—C10—O2148.7 (4)
C3—C4—C5—C60.5 (7)O1—C7—N1—C11.3 (8)
C3—C4—C5—C12179.1 (5)C8—C7—N1—C1179.1 (5)
C2—C1—C6—C50.3 (7)C2—C1—N1—C7139.5 (5)
N1—C1—C6—C5179.2 (4)C6—C1—N1—C741.6 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.85 (2)2.10 (2)2.914 (4)161 (4)
O2—H2O···O4ii0.83 (2)1.81 (2)2.621 (5)164 (5)
O4—H41···O30.84 (2)2.01 (2)2.831 (5)168 (5)
O4—H42···O3iii0.83 (2)2.07 (2)2.882 (5)166 (5)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC12H15NO3·H2O
Mr239.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)22.012 (4), 6.051 (1), 9.558 (2)
β (°) 95.90 (1)
V3)1266.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.24 × 0.08 × 0.04
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.978, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
4503, 2293, 964
Rint0.075
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.099, 0.147, 1.08
No. of reflections2293
No. of parameters168
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.22

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.852 (18)2.10 (2)2.914 (4)161 (4)
O2—H2O···O4ii0.830 (19)1.81 (2)2.621 (5)164 (5)
O4—H41···O30.836 (19)2.01 (2)2.831 (5)168 (5)
O4—H42···O3iii0.827 (19)2.07 (2)2.882 (5)166 (5)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x+1, y, z+1.
 

Acknowledgements

BSS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

References

First citationGowda, B. T., Bhat, D. K., Fuess, H. & Weiss, A. (1999). Z. Naturforsch. Teil A, 54, 261–267.  CAS Google Scholar
First citationGowda, B. T., Foro, S., Saraswathi, B. S. & Fuess, H. (2010a). Acta Cryst. E66, o394.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Saraswathi, B. S. & Fuess, H. (2010b). Acta Cryst. E66, o908.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Kumar, B. H. A. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 721–728.  CAS Google Scholar
First citationJagannathan, N. R., Rajan, S. S. & Subramanian, E. (1994). J. Chem. Crystallogr. 24, 75–78.  CSD CrossRef CAS Web of Science Google Scholar
First citationLeiserowitz, L. (1976). Acta Cryst. B32, 775–802.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSaraswathi, B. S., Foro, S., Gowda, B. T. & Fuess, H. (2011). Acta Cryst. E67, o236.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds