organic compounds
3-Allyl-6-bromo-1H-imidazo[4,5-b]pyridin-2(3H)-one
aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'Immouzzer, BP 2202 Fès, Morocco, bDepartamento de Quimica Inorganica & Organica, ESTCE, Universitat Jaume I, E-12080 Castellon, Spain, cInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany, and dLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: s_dahmani12@yahoo.fr
In the molecule of the title compound, C9H8BrN3O, the fused-ring system is almost planar, the largest deviation from the mean plane being 0.008 (3) Å. The plane through the atoms forming the allyl group is roughly perpendicular to the imidazo[4,5-b]pyridin-2-one system, as indicated by the dihedral angle between them of 70.28 (11)°. In the crystal, each molecule is linked to its symmetry equivalent about the center of inversion by a pair of strong N—H⋯O hydrogen bond, forming inversion dimers.
Related literature
For background to the biological activity of imidazopyridines, see: Chen & Dost (1992); Cappelli et al. (2006); Weier et al. (1993, 1994); Kulkarni & Newman (2007). For background to their pharmacological activity, see: Bavetsias et al. (2007, 2010).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1997); cell SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536811025037/sj5172sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811025037/sj5172Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811025037/sj5172Isup3.cml
To a stirred solution of 6-bromo-1,3-dihydro-imidazo[4,5 - b-]pyridin-2-one (0.2 g; 93.4 mmol), K2CO3 (0.38 g; 2.8 mmol), and tetra n-butyl ammonium bromide (0.03 g; 9.34 10–5 mol)in DMF, allyllbromide (0.097 ml; 1.12 mmol) was added dropwise. Later the mixture was heated under reflux for 24 h. After completion of reaction (monitored by TLC), the salt was filtered and the solvent was removed under reduced pressure. The resulting residue was purified by
on silica gel using (ethylacetate/hexane) (1/1) as The crystals were obtained by dissolving 80 mg of product in 4 mL of methanol at about 353 K, followed by a slow evaporation of the solvent.H atoms were located in a difference map and treated as riding with C—H = 0.93 Å, 0.97, Å, and 0.86 Å for aromatic, methylene and –NH * respectively. All H atoms had Uiso(H) = 1.2 Ueq (aromatic, methylene, –NH).
Data collection: SMART (Bruker, 1997); cell
SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).C9H8BrN3O | Z = 2 |
Mr = 254.09 | F(000) = 252 |
Triclinic, P1 | Dx = 1.701 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 4.5138 (5) Å | Cell parameters from 2019 reflections |
b = 9.7750 (9) Å | θ = 1.8–26.4° |
c = 11.5717 (11) Å | µ = 4.11 mm−1 |
α = 78.748 (2)° | T = 571 K |
β = 82.526 (3)° | Fiber, colourless |
γ = 86.038 (2)° | 0.60 × 0.19 × 0.04 mm |
V = 496.00 (9) Å3 |
Bruker CCD three-circle diffractometer | 2019 independent reflections |
Radiation source: fine-focus sealed tube | 1683 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
ω scans | θmax = 26.4°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −5→5 |
Tmin = 0.192, Tmax = 0.850 | k = −12→11 |
3086 measured reflections | l = −12→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.127 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0649P)2 + 0.1269P] where P = (Fo2 + 2Fc2)/3 |
2019 reflections | (Δ/σ)max < 0.001 |
127 parameters | Δρmax = 0.89 e Å−3 |
0 restraints | Δρmin = −0.82 e Å−3 |
C9H8BrN3O | γ = 86.038 (2)° |
Mr = 254.09 | V = 496.00 (9) Å3 |
Triclinic, P1 | Z = 2 |
a = 4.5138 (5) Å | Mo Kα radiation |
b = 9.7750 (9) Å | µ = 4.11 mm−1 |
c = 11.5717 (11) Å | T = 571 K |
α = 78.748 (2)° | 0.60 × 0.19 × 0.04 mm |
β = 82.526 (3)° |
Bruker CCD three-circle diffractometer | 2019 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1683 reflections with I > 2σ(I) |
Tmin = 0.192, Tmax = 0.850 | Rint = 0.026 |
3086 measured reflections |
R[F2 > 2σ(F2)] = 0.046 | 0 restraints |
wR(F2) = 0.127 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.89 e Å−3 |
2019 reflections | Δρmin = −0.82 e Å−3 |
127 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.99854 (9) | −0.03225 (4) | 0.83292 (4) | 0.0624 (2) | |
N1 | 0.3023 (6) | 0.4132 (3) | 0.9218 (3) | 0.0429 (6) | |
H1 | 0.1781 | 0.3823 | 0.9827 | 0.052* | |
C1 | 0.3081 (8) | 0.5487 (4) | 0.8627 (3) | 0.0438 (7) | |
O1 | 0.1416 (6) | 0.6472 (3) | 0.8854 (2) | 0.0545 (6) | |
N2 | 0.5408 (7) | 0.5549 (3) | 0.7722 (3) | 0.0463 (7) | |
C2 | 0.6765 (8) | 0.4238 (4) | 0.7739 (3) | 0.0448 (8) | |
N3 | 0.9047 (7) | 0.3902 (3) | 0.7003 (3) | 0.0536 (7) | |
C3 | 0.9924 (8) | 0.2536 (4) | 0.7221 (4) | 0.0537 (9) | |
H3 | 1.1527 | 0.2227 | 0.6733 | 0.064* | |
C4 | 0.8551 (8) | 0.1578 (4) | 0.8137 (3) | 0.0474 (8) | |
C5 | 0.6169 (8) | 0.1954 (3) | 0.8914 (3) | 0.0446 (7) | |
H5 | 0.5260 | 0.1316 | 0.9541 | 0.054* | |
C6 | 0.5261 (7) | 0.3327 (3) | 0.8692 (3) | 0.0400 (7) | |
C7 | 0.6297 (9) | 0.6836 (4) | 0.6904 (4) | 0.0577 (10) | |
H7A | 0.8450 | 0.6793 | 0.6698 | 0.069* | |
H7B | 0.5786 | 0.7622 | 0.7302 | 0.069* | |
C8 | 0.4822 (12) | 0.7071 (5) | 0.5791 (4) | 0.0727 (13) | |
H8 | 0.4856 | 0.6330 | 0.5393 | 0.087* | |
C9 | 0.3510 (13) | 0.8229 (7) | 0.5349 (5) | 0.0923 (17) | |
H9A | 0.3435 | 0.8991 | 0.5725 | 0.111* | |
H9B | 0.2637 | 0.8304 | 0.4653 | 0.111* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0653 (3) | 0.0414 (3) | 0.0810 (4) | 0.01520 (18) | −0.0026 (2) | −0.0228 (2) |
N1 | 0.0438 (15) | 0.0317 (14) | 0.0475 (15) | 0.0066 (11) | 0.0071 (11) | −0.0044 (11) |
C1 | 0.0459 (18) | 0.0326 (17) | 0.0504 (19) | 0.0017 (14) | −0.0002 (14) | −0.0063 (14) |
O1 | 0.0569 (15) | 0.0348 (13) | 0.0660 (16) | 0.0104 (11) | 0.0037 (12) | −0.0068 (11) |
N2 | 0.0450 (15) | 0.0336 (14) | 0.0549 (17) | 0.0030 (12) | 0.0027 (13) | −0.0028 (12) |
C2 | 0.0404 (17) | 0.0413 (18) | 0.0519 (19) | 0.0003 (14) | −0.0030 (14) | −0.0091 (15) |
N3 | 0.0468 (16) | 0.0506 (18) | 0.0585 (18) | 0.0027 (13) | 0.0070 (13) | −0.0084 (14) |
C3 | 0.0443 (19) | 0.056 (2) | 0.060 (2) | 0.0073 (16) | 0.0025 (16) | −0.0189 (18) |
C4 | 0.0459 (18) | 0.0427 (18) | 0.056 (2) | 0.0057 (14) | −0.0047 (15) | −0.0181 (15) |
C5 | 0.0457 (18) | 0.0352 (17) | 0.0512 (19) | 0.0023 (14) | −0.0001 (14) | −0.0089 (14) |
C6 | 0.0383 (16) | 0.0344 (16) | 0.0464 (18) | 0.0013 (13) | −0.0010 (13) | −0.0095 (13) |
C7 | 0.051 (2) | 0.042 (2) | 0.072 (2) | −0.0067 (16) | 0.0028 (18) | 0.0043 (17) |
C8 | 0.101 (4) | 0.058 (3) | 0.051 (2) | −0.010 (2) | 0.009 (2) | 0.000 (2) |
C9 | 0.094 (4) | 0.102 (5) | 0.068 (3) | −0.005 (3) | −0.007 (3) | 0.014 (3) |
Br1—C4 | 1.905 (4) | C3—H3 | 0.9300 |
N1—C1 | 1.367 (4) | C4—C5 | 1.387 (5) |
N1—C6 | 1.388 (4) | C5—C6 | 1.361 (5) |
N1—H1 | 0.8600 | C5—H5 | 0.9300 |
C1—O1 | 1.228 (4) | C7—C8 | 1.498 (7) |
C1—N2 | 1.379 (5) | C7—H7A | 0.9700 |
N2—C2 | 1.380 (5) | C7—H7B | 0.9700 |
N2—C7 | 1.465 (5) | C8—C9 | 1.286 (8) |
C2—N3 | 1.315 (5) | C8—H8 | 0.9300 |
C2—C6 | 1.406 (5) | C9—H9A | 0.9300 |
N3—C3 | 1.351 (5) | C9—H9B | 0.9300 |
C3—C4 | 1.381 (6) | ||
C1—N1—C6 | 110.1 (3) | C6—C5—C4 | 115.0 (3) |
C1—N1—H1 | 124.9 | C6—C5—H5 | 122.5 |
C6—N1—H1 | 124.9 | C4—C5—H5 | 122.5 |
O1—C1—N1 | 127.3 (3) | C5—C6—N1 | 134.3 (3) |
O1—C1—N2 | 126.0 (3) | C5—C6—C2 | 119.5 (3) |
N1—C1—N2 | 106.8 (3) | N1—C6—C2 | 106.3 (3) |
C1—N2—C2 | 109.5 (3) | N2—C7—C8 | 112.6 (3) |
C1—N2—C7 | 124.0 (3) | N2—C7—H7A | 109.1 |
C2—N2—C7 | 126.4 (3) | C8—C7—H7A | 109.1 |
N3—C2—N2 | 126.4 (3) | N2—C7—H7B | 109.1 |
N3—C2—C6 | 126.3 (3) | C8—C7—H7B | 109.1 |
N2—C2—C6 | 107.3 (3) | H7A—C7—H7B | 107.8 |
C2—N3—C3 | 114.0 (3) | C9—C8—C7 | 124.4 (5) |
N3—C3—C4 | 123.0 (3) | C9—C8—H8 | 117.8 |
N3—C3—H3 | 118.5 | C7—C8—H8 | 117.8 |
C4—C3—H3 | 118.5 | C8—C9—H9A | 120.0 |
C3—C4—C5 | 122.2 (3) | C8—C9—H9B | 120.0 |
C3—C4—Br1 | 118.6 (3) | H9A—C9—H9B | 120.0 |
C5—C4—Br1 | 119.2 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.86 | 1.95 | 2.798 (4) | 168 |
Symmetry code: (i) −x, −y+1, −z+2. |
Experimental details
Crystal data | |
Chemical formula | C9H8BrN3O |
Mr | 254.09 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 571 |
a, b, c (Å) | 4.5138 (5), 9.7750 (9), 11.5717 (11) |
α, β, γ (°) | 78.748 (2), 82.526 (3), 86.038 (2) |
V (Å3) | 496.00 (9) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 4.11 |
Crystal size (mm) | 0.60 × 0.19 × 0.04 |
Data collection | |
Diffractometer | Bruker CCD three-circle diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.192, 0.850 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3086, 2019, 1683 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.046, 0.127, 1.09 |
No. of reflections | 2019 |
No. of parameters | 127 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.89, −0.82 |
Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.86 | 1.95 | 2.798 (4) | 168 |
Symmetry code: (i) −x, −y+1, −z+2. |
References
Bavetsias, V., Large, J. M., Sun, C., Bouloc, N., Kosmopoulou, M., Matteucci, M., Wilsher, N. E., Martins, V., Reynisson, J., Atrash, B., Faisal, A., Urban, F., Valenti, M. & Brandon, A. H. (2010). J. Med. Chem. 53, 5213–5228. Web of Science CrossRef CAS PubMed Google Scholar
Bavetsias, V., Sun, C., Bouloc, N., Reynisson, J., Workman, P., Linardopoulos, S. & McDonald, E. (2007). Bioorg. Med. Chem. 17, 6567–6571. Web of Science CrossRef CAS Google Scholar
Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cappelli, A., Mohr, G. P., Giuliani, G., Galeazzi, S., Anzini, M., Mennuni, L., Ferrari, F., Macoves, F., Krienrath, E. M., Langer, T., Valoti, M., Giorgi, G. & Vomero, S. (2006). J. Med. Chem. 49, 6451–6464. Web of Science CSD CrossRef PubMed CAS Google Scholar
Chen, S. T. & Dost, G. (1992). (Merck) US Patent 5 132 216. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Kulkarni, S. S. & Newman, A. H. (2007). Bioorg. Med. Chem. Lett. 17, 2987–2991. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Weier, R. M., Khanna, I. K., Lentz, K., Stealey, M. A. & Julien, J. (1994). (Searle) US Patent 5 359 073. Google Scholar
Weier, R. M., Khanna, I. K., Stealey, M. A. & Julien, J. (1993). US Patent 5 262 426. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Imidazopyridine molecules are important pharmacophores, which have proven to be useful for a number of biologically relevant targets. The compounds derived from the imidazopyridine system have recently been evaluated as antagonists of various biological receptors, including angiotensin-II (Chen & Dost 1992; Cappelli et al., 2006), platelet activating factor (Weier et al., (1993, 1994), and metabotropic glutamate subtype V (Kulkarni & Newman, 2007). Recently, a series of imidazo[4,5-b] pyridine derivatives as orally bioavailable Aurora A inhibitors with excellent potencies were reported (Bavetsias et al., 2007, 2010). Hence, the synthesis of imidazo [4,5-b]pyridine derivatives is currently of great interest. Despite the importance of these intermediates, the methodology available for the synthesis was generally target-specific and restrictive in its scope.
Here, we wish to report a novel route leading to 3-allyl-6-bromo-1,3-dihydro- imidazo[4,5-b]pyridin-2-one. We have checked the action of allyllbromide towards 6-bromo-1,3-dihydro-imidazo[4,5 - b-]pyridin-2- one using K2CO3 as a base (scheme 1).
The two fused five and six-membered rings building the molecule are nearly planar with the maximum deviation of 0.008 (3)Å from C1 (Fig. 1). The dihedral angle between the imidazo[4,5-b]pyridin-2-one system and the plane through the atoms forming the allyl group is about 70.28 (11)°. The allyl group is nearly perpendicular to the imidazo[4,5-b]pyridin-2-one system and the torsion angle N2–C7–C8–C9 is in the range of -131.6 (5)°. In the crystal, each molecule is linked to its symmetry equivalent about an inversion center by a strong N—H···O hydrogen bond to form a pseudo dimers as shown in Fig.2 and Table 1.