organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,6-Di­chloro­phen­yl)succinamic acid

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 22 June 2011; accepted 25 June 2011; online 2 July 2011)

In the crystal of the title compound, C10H9Cl2NO3, the conformations of the amide O atom and the carbonyl O atom of the acid segment are anti to each other and to the H atoms on the adjacent –CH2 groups. The C=O and O—H bonds of the acid group are syn to one another. In the crystal, mol­ecules are packed into infinite chains through inter­molecular O—H⋯O and N—H⋯O hydrogen bonds.

Related literature

For our studies of the effect of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Bhat & Gowda (2000[Bhat, D. K. & Gowda, B. T. (2000). J. Indian Chem. Soc. 77, 279-284.]); Gowda et al. (2000[Gowda, B. T., Kumar, B. H. A. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 721-728.], 2009a[Gowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009a). Acta Cryst. E65, o399.],b[Gowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009b). Acta Cryst. E65, o466.]). For modes of inter­linking carb­oxy­lic acids by hydrogen bonds, see: Leiserowitz (1976[Leiserowitz, L. (1976). Acta Cryst. B32, 775-802.]). For packing of mol­ecules involving dimeric hydrogen-bonding associations of each carboxyl group with a centrosymmetrically related neighbor, see: Jagannathan et al. (1994[Jagannathan, N. R., Rajan, S. S. & Subramanian, E. (1994). J. Chem. Crystallogr. 24, 75-78.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9Cl2NO3

  • Mr = 262.08

  • Monoclinic, P 21 /n

  • a = 4.713 (1) Å

  • b = 11.963 (3) Å

  • c = 20.687 (4) Å

  • β = 94.64 (2)°

  • V = 1162.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.55 mm−1

  • T = 293 K

  • 0.48 × 0.06 × 0.04 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.779, Tmax = 0.978

  • 3912 measured reflections

  • 1965 independent reflections

  • 1189 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.119

  • wR(F2) = 0.222

  • S = 1.34

  • 1965 reflections

  • 145 parameters

  • 18 restraints

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.86 2.06 2.875 (9) 159
O2—H2O⋯O3ii 0.82 1.89 2.678 (11) 162
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y-1, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The amide moiety is an important constituent of many biologically important compounds. As part of our studies into the substituent effects on the structures and other aspects of this class of compounds (Bhat & Gowda, 2000; Gowda et al., 2000, 2009a,b), in the present work, the crystal structure of N-(2,6-dichlorophenyl)-succinamic acid (I) has been determined (Fig. 1). The conformation of the amide O atom and the carbonyl O atom of the acid segment are anti to each other and are also anti to the H atoms attached to the adjacent C atoms (Fig.1). Further, C=O and O—H bonds of the acid group are syn to each other, similar to that observed in N-(2-chlorophenyl)-succinamic acid (Gowda et al., 2009a) and N-(2,6-dimethylphenyl)-succinamic acid (Gowda et al., 2009b).

In the structure, the intermolecular O—H···O and N—H···O hydrogen bonds pack the molecules into infinite chains (Table 1, Fig.2).

The modes of interlinking carboxylic acids by hydrogen bonds is described elsewhere (Leiserowitz, 1976). The packing of molecules involving dimeric hydrogen bonded association of each carboxyl group with a centrosymmetrically related neighbor has also been observed (Jagannathan et al., 1994).

Related literature top

For our studies of the effect of substituents on the structures and other aspects of N-(aryl)-amides, see: Bhat & Gowda (2000); Gowda et al. (2000, 2009a,b). For modes of interlinking carboxylic acids by hydrogen bonds, see: Leiserowitz (1976). For packing of molecules involving dimeric hydrogen-bonding associations of each carboxyl group with a centrosymmetrically related neighbor, see: Jagannathan et al. (1994).

Experimental top

A solution of succinic anhydride (0.01 mole) in toluene (25 ml) was treated dropwise with the solution of 2,6-dichloroaniline (0.01 mole) also in toluene (20 ml) with constant stirring. The resulting mixture was stirred for about one hour and set aside for an additional hour at room temperature for completion of the reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 2,6-dichloroaniline. The resultant title compound was filtered under suction and washed thoroughly with water to remove the unreacted succinic anhydride and succinic acid. It was recrystallized to constant melting point from ethanol. The purity of the compound was checked and characterized by its infrared and NMR spectra.

Colorless needle like single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement top

The H atoms were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93 Å, methylene C—H = 0.97 Å, N—H = 0.86 Å and O—H = 0.82 Å, and were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

The crystals available for X-ray analysis were of rather poor quality and weak scatterers at high theta value with very low intensity, resulting in relatively high R values. The crystal has 37.1% weak reflections.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme and displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
N-(2,6-Dichlorophenyl)succinamic acid top
Crystal data top
C10H9Cl2NO3F(000) = 536
Mr = 262.08Dx = 1.497 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 777 reflections
a = 4.713 (1) Åθ = 3.0–27.7°
b = 11.963 (3) ŵ = 0.55 mm1
c = 20.687 (4) ÅT = 293 K
β = 94.64 (2)°Needle, colourless
V = 1162.5 (4) Å30.48 × 0.06 × 0.04 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
1965 independent reflections
Radiation source: fine-focus sealed tube1189 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Rotation method data acquisition using ω scansθmax = 25.2°, θmin = 3.4°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 55
Tmin = 0.779, Tmax = 0.978k = 1214
3912 measured reflectionsl = 1624
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.119Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.222H-atom parameters constrained
S = 1.34 w = 1/[σ2(Fo2) + (0.P)2 + 8.7677P]
where P = (Fo2 + 2Fc2)/3
1965 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.57 e Å3
18 restraintsΔρmin = 0.55 e Å3
Crystal data top
C10H9Cl2NO3V = 1162.5 (4) Å3
Mr = 262.08Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.713 (1) ŵ = 0.55 mm1
b = 11.963 (3) ÅT = 293 K
c = 20.687 (4) Å0.48 × 0.06 × 0.04 mm
β = 94.64 (2)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
1965 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1189 reflections with I > 2σ(I)
Tmin = 0.779, Tmax = 0.978Rint = 0.052
3912 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.11918 restraints
wR(F2) = 0.222H-atom parameters constrained
S = 1.34Δρmax = 0.57 e Å3
1965 reflectionsΔρmin = 0.55 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5925 (18)0.1082 (7)0.3449 (4)0.028 (2)
C20.4791 (19)0.1566 (8)0.2870 (5)0.039 (2)
C30.554 (2)0.2620 (8)0.2688 (5)0.049 (3)
H30.47120.29250.23040.059*
C40.749 (3)0.3227 (9)0.3068 (6)0.063 (4)
H40.80100.39380.29380.076*
C50.871 (2)0.2786 (9)0.3643 (6)0.058 (3)
H51.00640.31860.38990.069*
C60.785 (2)0.1730 (8)0.3832 (5)0.041 (3)
C70.6868 (18)0.0859 (7)0.3757 (4)0.027 (2)
C80.5518 (18)0.1883 (8)0.4030 (5)0.039 (2)
H8A0.37590.20430.37710.047*
H8B0.50350.17160.44670.047*
C90.7363 (19)0.2911 (7)0.4051 (4)0.034 (2)
H9A0.74870.31820.36130.041*
H9B0.92690.27110.42250.041*
C100.627 (2)0.3827 (8)0.4453 (5)0.044 (3)
N10.5076 (14)0.0022 (6)0.3650 (3)0.0312 (18)
H1N0.33080.00760.37090.037*
O10.9365 (12)0.0820 (5)0.3658 (3)0.0348 (16)
O20.738 (2)0.4776 (7)0.4371 (4)0.095 (3)
H2O0.64750.52550.45510.114*
O30.460 (2)0.3676 (7)0.4844 (4)0.089 (3)
Cl10.2395 (6)0.0781 (3)0.23715 (14)0.0625 (9)
Cl20.9252 (7)0.1234 (3)0.45814 (13)0.0621 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.024 (5)0.017 (5)0.046 (6)0.003 (4)0.012 (4)0.001 (4)
C20.033 (6)0.038 (6)0.047 (6)0.006 (5)0.007 (5)0.009 (5)
C30.061 (7)0.032 (6)0.059 (7)0.012 (6)0.026 (6)0.020 (6)
C40.074 (9)0.024 (6)0.096 (10)0.002 (6)0.030 (8)0.006 (7)
C50.062 (8)0.028 (6)0.083 (9)0.003 (6)0.009 (7)0.003 (6)
C60.045 (6)0.029 (6)0.051 (7)0.012 (5)0.017 (5)0.002 (5)
C70.023 (5)0.023 (5)0.035 (5)0.003 (4)0.000 (4)0.004 (4)
C80.025 (5)0.031 (6)0.059 (7)0.001 (4)0.000 (5)0.016 (5)
C90.032 (5)0.030 (5)0.042 (6)0.003 (4)0.013 (4)0.002 (4)
C100.048 (6)0.022 (5)0.065 (7)0.021 (5)0.025 (5)0.015 (5)
N10.019 (4)0.027 (4)0.049 (5)0.003 (3)0.010 (3)0.014 (3)
O10.018 (3)0.028 (4)0.059 (4)0.001 (3)0.011 (3)0.005 (3)
O20.119 (7)0.057 (5)0.120 (6)0.012 (5)0.075 (5)0.031 (5)
O30.112 (6)0.048 (5)0.116 (6)0.021 (5)0.068 (5)0.028 (5)
Cl10.0596 (18)0.063 (2)0.0619 (19)0.0017 (16)0.0145 (14)0.0092 (15)
Cl20.080 (2)0.0543 (18)0.0492 (17)0.0067 (16)0.0129 (15)0.0084 (15)
Geometric parameters (Å, º) top
C1—C61.392 (13)C7—N11.358 (10)
C1—C21.396 (12)C7—C81.511 (12)
C1—N11.402 (10)C8—C91.505 (12)
C2—C31.370 (13)C8—H8A0.9700
C2—Cl11.741 (10)C8—H8B0.9700
C3—C41.370 (15)C9—C101.491 (12)
C3—H30.9300C9—H9A0.9700
C4—C51.382 (15)C9—H9B0.9700
C4—H40.9300C10—O31.190 (11)
C5—C61.391 (14)C10—O21.266 (11)
C5—H50.9300N1—H1N0.8600
C6—Cl21.739 (10)O2—H2O0.8200
C7—O11.212 (9)
C6—C1—C2116.4 (8)N1—C7—C8114.5 (7)
C6—C1—N1121.6 (8)C7—C8—C9114.4 (7)
C2—C1—N1122.0 (8)C7—C8—H8A108.7
C3—C2—C1121.9 (10)C9—C8—H8A108.7
C3—C2—Cl1120.1 (8)C7—C8—H8B108.7
C1—C2—Cl1118.0 (7)C9—C8—H8B108.7
C2—C3—C4120.4 (11)H8A—C8—H8B107.6
C2—C3—H3119.8C10—C9—C8113.1 (7)
C4—C3—H3119.8C10—C9—H9A109.0
C3—C4—C5120.2 (11)C8—C9—H9A109.0
C3—C4—H4119.9C10—C9—H9B109.0
C5—C4—H4119.9C8—C9—H9B109.0
C4—C5—C6118.7 (11)H9A—C9—H9B107.8
C4—C5—H5120.7O3—C10—O2121.9 (9)
C6—C5—H5120.7O3—C10—C9123.1 (9)
C5—C6—C1122.4 (10)O2—C10—C9114.9 (8)
C5—C6—Cl2117.6 (9)C7—N1—C1124.2 (7)
C1—C6—Cl2120.0 (7)C7—N1—H1N117.9
O1—C7—N1122.9 (8)C1—N1—H1N117.9
O1—C7—C8122.6 (8)C10—O2—H2O109.5
C6—C1—C2—C30.2 (13)C2—C1—C6—Cl2176.8 (7)
N1—C1—C2—C3177.3 (8)N1—C1—C6—Cl20.4 (12)
C6—C1—C2—Cl1179.4 (7)O1—C7—C8—C911.0 (13)
N1—C1—C2—Cl13.4 (11)N1—C7—C8—C9170.9 (8)
C1—C2—C3—C41.5 (15)C7—C8—C9—C10167.1 (9)
Cl1—C2—C3—C4177.8 (8)C8—C9—C10—O318.2 (16)
C2—C3—C4—C50.9 (17)C8—C9—C10—O2165.2 (10)
C3—C4—C5—C61.3 (17)O1—C7—N1—C13.5 (14)
C4—C5—C6—C13.1 (15)C8—C7—N1—C1174.5 (8)
C4—C5—C6—Cl2176.2 (8)C6—C1—N1—C762.7 (12)
C2—C1—C6—C52.5 (13)C2—C1—N1—C7120.3 (10)
N1—C1—C6—C5179.6 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.062.875 (9)159
O2—H2O···O3ii0.821.892.678 (11)162
Symmetry codes: (i) x1, y, z; (ii) x+1, y1, z+1.

Experimental details

Crystal data
Chemical formulaC10H9Cl2NO3
Mr262.08
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)4.713 (1), 11.963 (3), 20.687 (4)
β (°) 94.64 (2)
V3)1162.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.55
Crystal size (mm)0.48 × 0.06 × 0.04
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.779, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
3912, 1965, 1189
Rint0.052
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.119, 0.222, 1.34
No. of reflections1965
No. of parameters145
No. of restraints18
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.55

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.062.875 (9)159
O2—H2O···O3ii0.821.892.678 (11)162
Symmetry codes: (i) x1, y, z; (ii) x+1, y1, z+1.
 

Acknowledgements

BSS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

References

First citationBhat, D. K. & Gowda, B. T. (2000). J. Indian Chem. Soc. 77, 279–284.  CAS Google Scholar
First citationGowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009a). Acta Cryst. E65, o399.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009b). Acta Cryst. E65, o466.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Kumar, B. H. A. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 721–728.  CAS Google Scholar
First citationJagannathan, N. R., Rajan, S. S. & Subramanian, E. (1994). J. Chem. Crystallogr. 24, 75–78.  CSD CrossRef CAS Web of Science Google Scholar
First citationLeiserowitz, L. (1976). Acta Cryst. B32, 775–802.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds