organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o1916-o1917

Redetermination and absolute configuration of pruniflorone M monohydrate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cResearch Unit of Natural Products Utilization, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 23 June 2011; accepted 27 June 2011; online 6 July 2011)

The title xanthone known as pruniflorone M (systematic name: (2R)-5,10-dihy­droxy-2-hy­droxy­methyl-1,1-dimethyl-1H-furo[2,3-c]xanthen-6-one), crystallized in a monohydrate form, C18H16O6·H2O. It was isolated from the green fruits of Cratoxylum formosum ssp. pruniflorum. The structure of the title compound has been reported previously [Boonnak et al. (2010[Boonnak, N., Khamthip, A., Karalai, C., Chantrapromma, S., Ponglimanont, C., Kanjana-Opas, A., Tewtrakul, S., Chantrapromma, K., Fun, H.-K. & Kato, S. (2010). Aust. J. Chem. 63, 1550-1556.]). Aust. J. Chem. 63, 1550–1556], but we report here the absolute configuration determined using Cu Kα radiation. There are two crystallograpically independent mol­ecules in the asymmetric unit, which differ slightly in the bond angles. The hy­droxy­methyl substituents at position 2 of the furan rings of both pruniflorone M mol­ecules adopt R configurations. In both mol­ecules, the three rings of the xanthone skeleton are approximately coplanar, with an r.m.s. deviation of 0.0124 (2) Å for one mol­ecule and 0.0289 (2) Å for the other, and the furan ring adopts an envelope conformation. In the crystal, mol­ecules of pruniflorone M and water are linked into a two-dimensional network by O—H⋯O hydrogen bonds and weak C—H⋯O inter­actions. The crystal structure is further consolidated by ππ inter­actions with centroid–centroid distances in the range 3.5987 (13)–3.7498 (14) Å. Short C⋯C [3.378 (3) Å] and O⋯O [2.918 (3) Å] contacts are also observed.

Related literature

For details of hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) and for ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For background to xanthones and their biological activity, see: Boonnak, Karalai et al. (2007[Boonnak, N., Karalai, C., Chantrapromma, S., Ponglimanont, C., Kanjana-Opas, A., Chantrapromma, K. & Fun, H.-K. (2007). Can. J. Chem. 85, 341-345.]); Boonnak et al. (2009[Boonnak, N., Karalai, C., Chantrapromma, S., Ponglimanont, C., Fun, H.-K., Kanjana-Opas, A., Chantrapromma, K. & Kato, S. (2009). Tetrahedron, 65, 3003-3013.], 2010[Boonnak, N., Khamthip, A., Karalai, C., Chantrapromma, S., Ponglimanont, C., Kanjana-Opas, A., Tewtrakul, S., Chantrapromma, K., Fun, H.-K. & Kato, S. (2010). Aust. J. Chem. 63, 1550-1556.]); Hay et al. (2008[Hay, A. E., Merza, J., Landreau, A., Litaudon, M., Pagniez, F., Pape, P. L. & Richomme, P. (2008). Fitoterapia, 79, 42-46.]); Marques et al. (2000[Marques, V. L. L., Oliveira, F. M. D., Conserva, L. M., Brito, R. G. L. & Guilhon, G. M. S. P. (2000). Phytochemistry, 55, 815-818.]); Molinar-Toribio et al. (2006[Molinar-Toribio, E., González, J., Ortega-Barría, E., Capson, T. L., Coley, P. D., Kursar, T. A., McPhail, K. & Cubilla-Rios, L. (2006). Pharm. Biol. 44, 550-553.]); Phongpaichit et al. (1994[Phongpaichit, S., Nilrat, L., Tharavichitkul, P., Bunchoo, S., Chuaprapaisilp, T. & Wiriyachitra, P. (1994). Songklanakarin J. Sci. Technol. 16, 399-405.]); Yu et al. (2007[Yu, L., Zhao, M., Yang, B., Zhao, Q. & Jiang, Y. (2007). Food Chem. 104, 176-181.]). For related structures, see: Boonnak et al. (2006[Boonnak, N., Chantrapromma, S. & Fun, H.-K. (2006). Acta Cryst. E62, o2034-o2036.]); Boonnak, Fun et al. (2007[Boonnak, N., Fun, H.-K., Chantrapromma, S. & Karalai, C. (2007). Acta Cryst. E63, o3958-o3959.]). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16O6·H2O

  • Mr = 346.32

  • Orthorhombic, P 21 21 21

  • a = 9.8887 (3) Å

  • b = 15.6028 (4) Å

  • c = 20.4857 (5) Å

  • V = 3160.77 (15) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.95 mm−1

  • T = 100 K

  • 0.54 × 0.17 × 0.10 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.627, Tmax = 0.913

  • 13449 measured reflections

  • 4981 independent reflections

  • 4753 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.120

  • S = 1.02

  • 4981 reflections

  • 456 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2102 Friedel pairs

  • Flack parameter: 0.06 (19)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3A—H3OA⋯O2A 0.98 1.62 2.530 (3) 152
O4A—H4OA⋯O1WA 0.92 1.75 2.672 (3) 175
O6A—H6OA⋯O4Bi 0.82 2.12 2.918 (3) 165
O3B—H3OB⋯O2B 1.06 1.57 2.529 (3) 148
O4B—H4OB⋯O1WB 1.02 1.62 2.639 (3) 175
O6B—H6OB⋯O4Aii 0.82 2.25 3.059 (4) 167
O1WA—H1WA⋯O3Aiii 0.83 2.06 2.889 (3) 173
O1WA—H2WA⋯O6B 0.92 1.84 2.737 (5) 165
O1WB—H1WB⋯O6A 0.89 1.86 2.691 (3) 153
O1WB—H2WB⋯O3Biv 0.82 2.06 2.868 (3) 164
C16B—H16C⋯O2Bv 0.96 2.46 3.389 (3) 163
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Xanthones are secondary metabolites of several plants and exhibit considerable biological activities such as antibacterial, antioxidant, antiprotozoal, cytotoxic and nitric oxide inhibitory activities (Boonnak, Karalai et al. 2007; Boonnak et al. 2009, 2010; Hay et al. 2008; Marques et al. 2000; Molinar-Toribio et al., 2006; Phongpaichit et al., 1994; Yu et al., 2007). During the course of our research on the chemical constituents and bioactive compounds from the green fruits of Cratoxylum formosum ssp. pruniflorum, which were collected from Pha Yao province in the northern part of Thailand, the title xanthone (I) known as pruniflorone M (Boonnak et al., 2010) was isolated. The previous report showed that (I) possess nitric oxide inhibitory activity (Boonnak et al., 2010). The absolute configuration of (I) was determined by making use of the anomalous scattering of Cu Kα X-radiation with the Flack parameter being refined to 0.06 (19). We report herein the crystal structure of (I).

There are two crystallograpically independent molecules A and B in the asymmetric unit of (I), C18H16O6.H2O, (Fig. 1) with the same conformation but with slight differences in bond angles. In the structure of (I), the three ring system [C1–C13/O1] is essentially planar with r.m.s. deviations of 0.0124 (2) Å for molecule A [0.0289 (2) Å for molecule B] from the plane through 14 non-hydrogen atoms of the three rings. The O3 and O4 hydroxy O atoms lie close to this plane with deviations +0.038 (2) for O3 and +0.004 (2) Å for O4 for molecule A [the corresponding values are +0.043 (2) and -0.024 (2) Å for molecule B]. The furan ring (C3–C4/C14–C15/O5) is in an envelope conformation with the puckering atom C15 of 0.148 (3) Å, and puckering parameter Q = 0.239 (2) Å and ϕ = 132.0 (6)° (Cremer & Pople, 1975) for molecule A and the corresponding values are 0.134 (3) Å, 0.213 (3) Å and ϕ = 137.8 (7)° for molecule B. The orientation of the hydroxymethyl moiety at atom C15 can be indicated by the torsion angle of C14–C15–C16–O6 = -73.3 (3)° for molecule A [165.0 (3)° for molecule B]. Intramolecular O3A—H3OA···O2A and O3B—H3OB..O2B hydrogen bonds (Table 1) generate S(6) ring motifs (Bernstein et al., 1995). The bond distances in (I) are within normal ranges (Allen et al., 1987) and comparable to the related structures (Boonnak et al., 2006; Boonnak, Fun et al., 2007). The hydroxymethyl substituents at position 2 (on atoms C15A and C15B ) of the furan rings of both pruniflorone M molecules adopt R configurations.

In the crystal packing of (I) (Fig. 2), the molecules of pruniflorone M and water are linked into a two dimensional network by O—H···O hydrogen bonds and weak C—H···O interactions (Table 1). π···π interactions were also observed with centroid···centroid distances: Cg1···Cg5v = 3.7453 (13) Å; Cg1···Cg6vi = 3.6847 (13) Å; Cg2···Cg4vi = 3.7189 (12) Å; Cg2···Cg6vi = 3.6940 (14) Å; Cg3···Cg4v = 3.5987 (13) Å and Cg3···Cg5v = 3.7498 (14) Å; Cg1, Cg2, Cg3, Cg4, Cg5 and Cg6 are the centroids of C9A–C13A/O1A, C1A–C4A/C11A–C12A, C5A–C9A/C13A, C9B–C13B/O1B, C1B–C4B/C11B–C12B and C5B–C9B/C13B rings, respectively. C···Cv[3.378 (3) Å; ] and O···Oi[2.918 (3) Å short contacts were also observed; [symmetry codes: (i) -1/2+x, 3/2-y, 1-z; (v) 3/2-x, 1-y, 1/2+z and (vi) 1/2-x, 1-y, 1/2-z].

Related literature top

For details of hydrogen-bond motifs, see: Bernstein et al. (1995) and for ring conformations, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987). For background to xanthones and their biological activity, see: Boonnak, Karalai et al. (2007); Boonnak et al. (2009, 2010); Hay et al. (2008); Marques et al. (2000); Molinar-Toribio et al. (2006); Phongpaichit et al. (1994); Yu et al. (2007). For related structures, see: Boonnak et al. (2006); Boonnak, Fun et al. (2007). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986).

Experimental top

The green fruits of C. formosum ssp. pruniflorum (5.00 kg) were extracted with CH2Cl2 (2x20 L, for a week) successively at room temperature and were further evaporated under reduced pressure to afford the crude CH2Cl2 extracts (31.42 g). The crude extract was further subjected to QCC (Quick Column Chromatography) on silica gel using hexane as a first eluent and then increasing the polarity with acetone to give 14 fractions (F1-F14). Fraction F10 was separated by QCC eluting with a gradient of acetone-hexane to give 17 subfractions (F10A-F10Q). Subfractions F10N was further separated by CC and eluted with a gradient of EtOAc-hexane to give 8 subfractions (F10N1-F10N8). Subfraction F10N2 was further separated by CC and eluted with CHCl3 to give the title compound as yellow powder (28.0 mg). Yellow block-shaped single crystals of the title compound suitable for x-ray structure determination were recrystallized from CHCl3 by the slow evaporation of the solvent at room temperature after several days, Mp. 508-510 K.

Refinement top

All H atoms were placed in calculated positions with (O—H) = 0.82-1.06 Å for OH, (C—H) = 0.93 for aromatic and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 1.34 Å from O6B and the deepest hole is located at 0.51 Å from O6B. 2102 Friedel pairs were used to determine the absolute configuration. There is no pseudo-symmetry observed in the crystal structure.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The crystal packing of (I) viewed along the c axis, showing two dimensional network. Hydrogen bonds are shown as dashed lines.
(2R)-5,10-Dihydroxy-2-hydroxymethyl-1,1-dimethyl-1H- furo[2,3-c]xanthen-6-one monohydrate top
Crystal data top
C18H16O6·H2ODx = 1.456 Mg m3
Mr = 346.32Melting point = 508–510 K
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2abCell parameters from 4981 reflections
a = 9.8887 (3) Åθ = 5.3–63.5°
b = 15.6028 (4) ŵ = 0.95 mm1
c = 20.4857 (5) ÅT = 100 K
V = 3160.77 (15) Å3Block, yellow
Z = 80.54 × 0.17 × 0.10 mm
F(000) = 1456
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
4981 independent reflections
Radiation source: sealed tube4753 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 63.5°, θmin = 5.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 711
Tmin = 0.627, Tmax = 0.913k = 1818
13449 measured reflectionsl = 2323
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0751P)2 + 0.9688P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
4981 reflectionsΔρmax = 0.56 e Å3
456 parametersΔρmin = 0.23 e Å3
0 restraintsAbsolute structure: Flack (1983), 2102 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (19)
Crystal data top
C18H16O6·H2OV = 3160.77 (15) Å3
Mr = 346.32Z = 8
Orthorhombic, P212121Cu Kα radiation
a = 9.8887 (3) ŵ = 0.95 mm1
b = 15.6028 (4) ÅT = 100 K
c = 20.4857 (5) Å0.54 × 0.17 × 0.10 mm
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
4981 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4753 reflections with I > 2σ(I)
Tmin = 0.627, Tmax = 0.913Rint = 0.021
13449 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.120Δρmax = 0.56 e Å3
S = 1.02Δρmin = 0.23 e Å3
4981 reflectionsAbsolute structure: Flack (1983), 2102 Friedel pairs
456 parametersAbsolute structure parameter: 0.06 (19)
0 restraints
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.40973 (17)0.43207 (10)0.67334 (7)0.0370 (4)
O2A0.3650 (2)0.44183 (12)0.87235 (8)0.0512 (5)
O3A0.18470 (19)0.55552 (12)0.85896 (8)0.0483 (4)
H3OA0.24440.51180.87810.072*
O4A0.58566 (19)0.32867 (12)0.61541 (8)0.0484 (4)
H4OA0.64490.28690.60190.062 (9)*
O5A0.06909 (18)0.63151 (11)0.64104 (8)0.0444 (4)
O6A0.1454 (2)0.74151 (11)0.54195 (9)0.0551 (5)
H6OA0.09520.76970.56550.083*
C1A0.2000 (2)0.54898 (15)0.79348 (11)0.0357 (5)
C2A0.1201 (2)0.59682 (17)0.75260 (11)0.0381 (5)
H2A0.05380.63340.76880.046*
C3A0.1426 (2)0.58815 (14)0.68612 (11)0.0353 (5)
C4A0.2403 (2)0.53548 (14)0.65853 (11)0.0339 (5)
C5A0.5798 (2)0.32706 (15)0.68149 (11)0.0378 (5)
C6A0.6618 (3)0.27595 (16)0.71967 (13)0.0426 (6)
H6A0.72490.24040.69970.051*
C7A0.6521 (3)0.27649 (16)0.78758 (13)0.0460 (6)
H7A0.70880.24180.81230.055*
C8A0.5592 (3)0.32806 (16)0.81792 (12)0.0428 (6)
H8A0.55190.32750.86320.051*
C9A0.4758 (3)0.38129 (15)0.78110 (11)0.0375 (5)
C10A0.3778 (2)0.43875 (15)0.81172 (11)0.0374 (5)
C11A0.2983 (2)0.49098 (15)0.76823 (11)0.0341 (5)
C12A0.3168 (2)0.48597 (14)0.70018 (11)0.0336 (5)
C13A0.4870 (2)0.38085 (15)0.71280 (11)0.0345 (5)
C14A0.2429 (2)0.54925 (16)0.58514 (11)0.0376 (5)
C15A0.1020 (3)0.59373 (16)0.57746 (11)0.0409 (5)
H15A0.03550.54850.56910.049*
C16A0.0818 (3)0.66176 (16)0.52624 (12)0.0476 (6)
H16A0.11760.64110.48510.057*
H16B0.01440.67140.52050.057*
C17A0.3638 (3)0.6064 (2)0.56656 (13)0.0528 (7)
H17A0.44660.57700.57640.079*
H17B0.35980.65890.59100.079*
H17C0.36040.61900.52070.079*
C18A0.2474 (3)0.46718 (18)0.54526 (13)0.0535 (7)
H18A0.33260.43910.55200.080*
H18B0.23700.48070.49980.080*
H18C0.17540.42990.55880.080*
O1B0.59342 (16)0.57000 (10)0.32981 (7)0.0359 (4)
O2B0.64340 (19)0.55237 (12)0.13115 (7)0.0489 (4)
O3B0.82577 (19)0.44097 (12)0.14837 (8)0.0470 (4)
H3OB0.75920.48410.12490.070*
O4B0.42557 (18)0.67981 (11)0.38433 (7)0.0433 (4)
H4OB0.35100.72050.39970.065*
O5B0.9092 (2)0.35711 (12)0.36836 (9)0.0535 (5)
O6B0.9636 (4)0.2762 (3)0.49615 (14)0.1384 (16)
H6OB0.99410.25490.46260.208*
C1B0.8046 (2)0.44754 (15)0.21360 (11)0.0356 (5)
C2B0.8789 (3)0.39760 (16)0.25614 (11)0.0395 (5)
H2B0.94610.36060.24150.047*
C3B0.8480 (3)0.40551 (15)0.32155 (11)0.0386 (5)
C4B0.7515 (2)0.46058 (14)0.34767 (11)0.0353 (5)
C5B0.4287 (2)0.67673 (14)0.31800 (11)0.0348 (5)
C6B0.3467 (3)0.72657 (16)0.27867 (13)0.0444 (6)
H6B0.28480.76400.29750.053*
C7B0.3563 (3)0.72109 (17)0.21084 (13)0.0496 (7)
H7B0.29960.75450.18500.059*
C8B0.4466 (3)0.66814 (16)0.18191 (12)0.0437 (6)
H8B0.45340.66630.13670.052*
C9B0.5303 (2)0.61584 (15)0.22073 (11)0.0348 (5)
C10B0.6281 (2)0.55735 (15)0.19175 (10)0.0359 (5)
C11B0.7058 (2)0.50642 (15)0.23627 (11)0.0336 (5)
C12B0.6838 (2)0.51255 (14)0.30405 (11)0.0313 (5)
C13B0.5192 (2)0.61998 (14)0.28842 (11)0.0328 (5)
C14B0.7477 (2)0.45210 (16)0.42106 (11)0.0396 (5)
C15B0.8276 (3)0.36851 (19)0.42911 (13)0.0539 (7)
H15B0.76230.32140.43120.065*
C16B0.9217 (3)0.35831 (15)0.48366 (10)0.0792 (11)
H16C0.88320.38180.52290.095*
H16D1.00590.38750.47450.095*
C17B0.8116 (3)0.53045 (15)0.45315 (10)0.0629 (8)
H17D0.90280.53690.43790.094*
H17E0.81190.52310.49970.094*
H17F0.76040.58060.44210.094*
C18B0.6051 (3)0.4398 (2)0.44913 (14)0.0662 (8)
H18D0.55590.49270.44600.099*
H18E0.61150.42300.49410.099*
H18F0.55880.39610.42490.099*
O1WA0.7567 (3)0.21065 (14)0.56948 (11)0.0822 (8)
H1WA0.77410.16390.58690.123*
H2WA0.82430.22440.54070.123*
O1WB0.2432 (2)0.79095 (14)0.42531 (11)0.0745 (7)
H1WB0.19430.78890.46200.112*
H2WB0.20870.83280.40720.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0379 (9)0.0434 (8)0.0296 (8)0.0054 (8)0.0003 (7)0.0028 (7)
O2A0.0608 (11)0.0647 (11)0.0282 (8)0.0099 (10)0.0001 (8)0.0017 (8)
O3A0.0581 (11)0.0559 (10)0.0308 (8)0.0056 (9)0.0069 (8)0.0025 (8)
O4A0.0507 (10)0.0568 (10)0.0378 (9)0.0077 (9)0.0027 (8)0.0010 (8)
O5A0.0495 (10)0.0472 (9)0.0366 (8)0.0105 (8)0.0005 (7)0.0036 (7)
O6A0.0697 (13)0.0465 (9)0.0491 (10)0.0035 (9)0.0140 (9)0.0032 (8)
C1A0.0389 (12)0.0386 (12)0.0297 (11)0.0064 (10)0.0026 (9)0.0022 (10)
C2A0.0401 (13)0.0396 (12)0.0346 (12)0.0005 (11)0.0056 (10)0.0039 (9)
C3A0.0337 (12)0.0364 (11)0.0358 (12)0.0034 (10)0.0022 (10)0.0030 (10)
C4A0.0358 (12)0.0363 (11)0.0296 (12)0.0027 (10)0.0005 (9)0.0001 (9)
C5A0.0377 (13)0.0385 (11)0.0371 (12)0.0047 (11)0.0006 (10)0.0021 (10)
C6A0.0409 (14)0.0387 (12)0.0482 (14)0.0029 (12)0.0041 (11)0.0003 (11)
C7A0.0492 (15)0.0405 (13)0.0484 (14)0.0062 (13)0.0079 (12)0.0060 (11)
C8A0.0475 (15)0.0425 (12)0.0385 (13)0.0009 (12)0.0093 (11)0.0020 (11)
C9A0.0388 (13)0.0396 (13)0.0341 (12)0.0045 (11)0.0034 (10)0.0017 (10)
C10A0.0368 (13)0.0439 (12)0.0314 (11)0.0035 (11)0.0024 (10)0.0024 (10)
C11A0.0351 (12)0.0376 (11)0.0297 (11)0.0067 (10)0.0005 (9)0.0001 (10)
C12A0.0315 (12)0.0353 (11)0.0341 (12)0.0043 (10)0.0012 (10)0.0033 (9)
C13A0.0332 (12)0.0358 (12)0.0344 (11)0.0043 (10)0.0036 (9)0.0013 (9)
C14A0.0408 (13)0.0441 (12)0.0279 (11)0.0001 (11)0.0011 (9)0.0020 (10)
C15A0.0407 (13)0.0451 (12)0.0370 (12)0.0020 (11)0.0020 (10)0.0000 (10)
C16A0.0545 (15)0.0507 (14)0.0378 (13)0.0056 (13)0.0074 (12)0.0036 (11)
C17A0.0467 (15)0.0684 (17)0.0435 (14)0.0061 (14)0.0012 (12)0.0105 (13)
C18A0.0688 (19)0.0559 (15)0.0358 (13)0.0049 (14)0.0066 (12)0.0031 (11)
O1B0.0369 (9)0.0433 (8)0.0274 (7)0.0066 (7)0.0002 (6)0.0002 (7)
O2B0.0573 (11)0.0624 (11)0.0269 (8)0.0038 (10)0.0001 (8)0.0015 (8)
O3B0.0565 (11)0.0537 (10)0.0307 (8)0.0019 (9)0.0080 (8)0.0073 (8)
O4B0.0482 (10)0.0480 (9)0.0339 (8)0.0089 (8)0.0033 (8)0.0014 (7)
O5B0.0621 (12)0.0578 (11)0.0407 (9)0.0249 (10)0.0030 (9)0.0005 (8)
O6B0.152 (3)0.180 (3)0.0829 (18)0.119 (3)0.0523 (19)0.066 (2)
C1B0.0375 (12)0.0370 (11)0.0323 (11)0.0074 (10)0.0037 (10)0.0076 (9)
C2B0.0393 (13)0.0366 (11)0.0426 (13)0.0030 (11)0.0017 (11)0.0058 (10)
C3B0.0419 (13)0.0361 (11)0.0379 (12)0.0043 (10)0.0042 (11)0.0019 (10)
C4B0.0383 (12)0.0343 (11)0.0333 (12)0.0002 (10)0.0021 (9)0.0045 (9)
C5B0.0361 (12)0.0348 (11)0.0336 (11)0.0027 (10)0.0001 (10)0.0009 (9)
C6B0.0457 (14)0.0386 (12)0.0488 (14)0.0061 (12)0.0013 (12)0.0004 (11)
C7B0.0560 (17)0.0451 (13)0.0476 (15)0.0068 (14)0.0128 (13)0.0047 (12)
C8B0.0521 (15)0.0474 (13)0.0315 (12)0.0016 (13)0.0073 (11)0.0034 (11)
C9B0.0359 (12)0.0366 (12)0.0320 (11)0.0040 (10)0.0048 (9)0.0002 (9)
C10B0.0375 (13)0.0421 (12)0.0280 (11)0.0084 (11)0.0000 (9)0.0020 (10)
C11B0.0328 (11)0.0370 (11)0.0310 (11)0.0046 (10)0.0012 (9)0.0028 (10)
C12B0.0306 (12)0.0325 (11)0.0307 (11)0.0011 (9)0.0015 (9)0.0022 (9)
C13B0.0309 (12)0.0319 (11)0.0355 (12)0.0020 (10)0.0030 (9)0.0024 (9)
C14B0.0434 (14)0.0447 (13)0.0308 (12)0.0000 (11)0.0027 (10)0.0013 (10)
C15B0.0582 (17)0.0585 (15)0.0449 (14)0.0020 (14)0.0059 (13)0.0060 (12)
C16B0.0600 (19)0.128 (3)0.0492 (17)0.033 (2)0.0001 (14)0.0274 (19)
C17B0.093 (2)0.0581 (16)0.0370 (14)0.0074 (17)0.0121 (15)0.0035 (12)
C18B0.0537 (17)0.098 (2)0.0468 (15)0.0024 (17)0.0042 (13)0.0220 (16)
O1WA0.117 (2)0.0625 (12)0.0666 (14)0.0365 (14)0.0257 (13)0.0038 (11)
O1WB0.0965 (18)0.0644 (12)0.0627 (14)0.0328 (13)0.0390 (12)0.0206 (11)
Geometric parameters (Å, º) top
O1A—C12A1.361 (3)O2B—C10B1.253 (3)
O1A—C13A1.370 (3)O3B—C1B1.356 (3)
O2A—C10A1.249 (3)O3B—H3OB1.0564
O3A—C1A1.354 (3)O4B—C5B1.360 (3)
O3A—H3OA0.9841O4B—H4OB1.0223
O4A—C5A1.355 (3)O5B—C3B1.363 (3)
O4A—H4OA0.9200O5B—C15B1.494 (3)
O5A—C3A1.356 (3)O6B—C16B1.371 (4)
O5A—C15A1.466 (3)O6B—H6OB0.8200
O6A—C16A1.431 (3)C1B—C2B1.381 (3)
O6A—H6OA0.8200C1B—C11B1.419 (3)
C1A—C2A1.372 (3)C2B—C3B1.380 (3)
C1A—C11A1.425 (4)C2B—H2B0.9300
C2A—C3A1.387 (3)C3B—C4B1.391 (3)
C2A—H2A0.9300C4B—C12B1.380 (3)
C3A—C4A1.389 (3)C4B—C14B1.510 (3)
C4A—C12A1.377 (3)C5B—C6B1.382 (3)
C4A—C14A1.519 (3)C5B—C13B1.397 (3)
C5A—C6A1.380 (3)C6B—C7B1.395 (4)
C5A—C13A1.399 (3)C6B—H6B0.9300
C6A—C7A1.394 (4)C7B—C8B1.353 (4)
C6A—H6A0.9300C7B—H7B0.9300
C7A—C8A1.370 (4)C8B—C9B1.408 (3)
C7A—H7A0.9300C8B—H8B0.9300
C8A—C9A1.392 (3)C9B—C13B1.393 (3)
C8A—H8A0.9300C9B—C10B1.457 (3)
C9A—C13A1.404 (3)C10B—C11B1.433 (3)
C9A—C10A1.462 (3)C11B—C12B1.409 (3)
C10A—C11A1.441 (3)C14B—C17B1.525 (3)
C11A—C12A1.408 (3)C14B—C15B1.534 (4)
C14A—C18A1.520 (3)C14B—C18B1.535 (4)
C14A—C17A1.539 (4)C15B—C16B1.463 (4)
C14A—C15A1.565 (3)C15B—H15B0.9800
C15A—C16A1.506 (3)C16B—H16C0.9633
C15A—H15A0.9800C16B—H16D0.9669
C16A—H16A0.9700C17B—H17D0.9600
C16A—H16B0.9700C17B—H17E0.9600
C17A—H17A0.9600C17B—H17F0.9600
C17A—H17B0.9600C18B—H18D0.9600
C17A—H17C0.9600C18B—H18E0.9600
C18A—H18A0.9600C18B—H18F0.9600
C18A—H18B0.9600O1WA—H1WA0.8300
C18A—H18C0.9600O1WA—H2WA0.9169
O1B—C13B1.366 (3)O1WB—H1WB0.8939
O1B—C12B1.371 (3)O1WB—H2WB0.8249
C12A—O1A—C13A119.90 (17)C1B—O3B—H3OB107.7
C1A—O3A—H3OA106.0C5B—O4B—H4OB110.2
C5A—O4A—H4OA108.4C3B—O5B—C15B106.26 (19)
C3A—O5A—C15A106.59 (18)C16B—O6B—H6OB109.5
C16A—O6A—H6OA109.5O3B—C1B—C2B119.8 (2)
O3A—C1A—C2A119.9 (2)O3B—C1B—C11B118.5 (2)
O3A—C1A—C11A118.9 (2)C2B—C1B—C11B121.7 (2)
C2A—C1A—C11A121.1 (2)C3B—C2B—C1B116.4 (2)
C1A—C2A—C3A117.0 (2)C3B—C2B—H2B121.8
C1A—C2A—H2A121.5C1B—C2B—H2B121.8
C3A—C2A—H2A121.5O5B—C3B—C2B122.4 (2)
O5A—C3A—C2A122.3 (2)O5B—C3B—C4B112.1 (2)
O5A—C3A—C4A113.02 (19)C2B—C3B—C4B125.5 (2)
C2A—C3A—C4A124.7 (2)C12B—C4B—C3B116.5 (2)
C12A—C4A—C3A117.5 (2)C12B—C4B—C14B133.2 (2)
C12A—C4A—C14A133.1 (2)C3B—C4B—C14B110.2 (2)
C3A—C4A—C14A109.32 (19)O4B—C5B—C6B123.3 (2)
O4A—C5A—C6A123.5 (2)O4B—C5B—C13B118.1 (2)
O4A—C5A—C13A118.3 (2)C6B—C5B—C13B118.6 (2)
C6A—C5A—C13A118.2 (2)C5B—C6B—C7B120.4 (2)
C5A—C6A—C7A121.4 (2)C5B—C6B—H6B119.8
C5A—C6A—H6A119.3C7B—C6B—H6B119.8
C7A—C6A—H6A119.3C8B—C7B—C6B121.2 (2)
C8A—C7A—C6A120.2 (2)C8B—C7B—H7B119.4
C8A—C7A—H7A119.9C6B—C7B—H7B119.4
C6A—C7A—H7A119.9C7B—C8B—C9B119.6 (2)
C7A—C8A—C9A120.1 (2)C7B—C8B—H8B120.2
C7A—C8A—H8A119.9C9B—C8B—H8B120.2
C9A—C8A—H8A119.9C13B—C9B—C8B119.3 (2)
C8A—C9A—C13A119.4 (2)C13B—C9B—C10B119.1 (2)
C8A—C9A—C10A121.7 (2)C8B—C9B—C10B121.6 (2)
C13A—C9A—C10A118.9 (2)O2B—C10B—C11B122.1 (2)
O2A—C10A—C11A122.5 (2)O2B—C10B—C9B121.5 (2)
O2A—C10A—C9A121.1 (2)C11B—C10B—C9B116.38 (19)
C11A—C10A—C9A116.32 (19)C12B—C11B—C1B118.2 (2)
C12A—C11A—C1A118.9 (2)C12B—C11B—C10B120.4 (2)
C12A—C11A—C10A120.6 (2)C1B—C11B—C10B121.3 (2)
C1A—C11A—C10A120.4 (2)O1B—C12B—C4B116.81 (19)
O1A—C12A—C4A117.8 (2)O1B—C12B—C11B121.63 (19)
O1A—C12A—C11A121.5 (2)C4B—C12B—C11B121.6 (2)
C4A—C12A—C11A120.7 (2)O1B—C13B—C9B123.3 (2)
O1A—C13A—C5A116.4 (2)O1B—C13B—C5B115.90 (19)
O1A—C13A—C9A122.8 (2)C9B—C13B—C5B120.8 (2)
C5A—C13A—C9A120.8 (2)C4B—C14B—C17B110.42 (19)
C4A—C14A—C18A114.4 (2)C4B—C14B—C15B99.73 (19)
C4A—C14A—C17A109.87 (19)C17B—C14B—C15B115.0 (2)
C18A—C14A—C17A109.4 (2)C4B—C14B—C18B114.0 (2)
C4A—C14A—C15A98.47 (18)C17B—C14B—C18B108.6 (2)
C18A—C14A—C15A110.2 (2)C15B—C14B—C18B109.1 (2)
C17A—C14A—C15A114.2 (2)C16B—C15B—O5B106.2 (2)
O5A—C15A—C16A107.8 (2)C16B—C15B—C14B120.1 (2)
O5A—C15A—C14A106.66 (19)O5B—C15B—C14B106.9 (2)
C16A—C15A—C14A120.1 (2)C16B—C15B—H15B107.7
O5A—C15A—H15A107.2O5B—C15B—H15B107.7
C16A—C15A—H15A107.2C14B—C15B—H15B107.7
C14A—C15A—H15A107.2O6B—C16B—C15B115.9 (3)
O6A—C16A—C15A113.4 (2)O6B—C16B—H16C108.7
O6A—C16A—H16A108.9C15B—C16B—H16C110.2
C15A—C16A—H16A108.9O6B—C16B—H16D102.5
O6A—C16A—H16B108.9C15B—C16B—H16D110.3
C15A—C16A—H16B108.9H16C—C16B—H16D108.9
H16A—C16A—H16B107.7C14B—C17B—H17D109.5
C14A—C17A—H17A109.5C14B—C17B—H17E109.5
C14A—C17A—H17B109.5H17D—C17B—H17E109.5
H17A—C17A—H17B109.5C14B—C17B—H17F109.5
C14A—C17A—H17C109.5H17D—C17B—H17F109.5
H17A—C17A—H17C109.5H17E—C17B—H17F109.5
H17B—C17A—H17C109.5C14B—C18B—H18D109.5
C14A—C18A—H18A109.5C14B—C18B—H18E109.5
C14A—C18A—H18B109.5H18D—C18B—H18E109.5
H18A—C18A—H18B109.5C14B—C18B—H18F109.5
C14A—C18A—H18C109.5H18D—C18B—H18F109.5
H18A—C18A—H18C109.5H18E—C18B—H18F109.5
H18B—C18A—H18C109.5H1WA—O1WA—H2WA109.3
C13B—O1B—C12B118.98 (17)H1WB—O1WB—H2WB100.6
O3A—C1A—C2A—C3A178.9 (2)O3B—C1B—C2B—C3B177.6 (2)
C11A—C1A—C2A—C3A2.1 (3)C11B—C1B—C2B—C3B2.6 (4)
C15A—O5A—C3A—C2A168.9 (2)C15B—O5B—C3B—C2B166.8 (3)
C15A—O5A—C3A—C4A11.1 (3)C15B—O5B—C3B—C4B11.9 (3)
C1A—C2A—C3A—O5A179.4 (2)C1B—C2B—C3B—O5B176.9 (2)
C1A—C2A—C3A—C4A0.6 (4)C1B—C2B—C3B—C4B1.6 (4)
O5A—C3A—C4A—C12A177.4 (2)O5B—C3B—C4B—C12B179.9 (2)
C2A—C3A—C4A—C12A2.6 (4)C2B—C3B—C4B—C12B1.5 (4)
O5A—C3A—C4A—C14A5.2 (3)O5B—C3B—C4B—C14B2.1 (3)
C2A—C3A—C4A—C14A174.8 (2)C2B—C3B—C4B—C14B179.2 (2)
O4A—C5A—C6A—C7A180.0 (2)O4B—C5B—C6B—C7B179.1 (2)
C13A—C5A—C6A—C7A0.9 (4)C13B—C5B—C6B—C7B1.1 (4)
C5A—C6A—C7A—C8A0.4 (4)C5B—C6B—C7B—C8B0.9 (4)
C6A—C7A—C8A—C9A1.1 (4)C6B—C7B—C8B—C9B1.7 (4)
C7A—C8A—C9A—C13A0.6 (4)C7B—C8B—C9B—C13B0.4 (4)
C7A—C8A—C9A—C10A178.5 (2)C7B—C8B—C9B—C10B179.5 (2)
C8A—C9A—C10A—O2A0.3 (4)C13B—C9B—C10B—O2B178.8 (2)
C13A—C9A—C10A—O2A179.4 (2)C8B—C9B—C10B—O2B1.3 (4)
C8A—C9A—C10A—C11A179.5 (2)C13B—C9B—C10B—C11B1.0 (3)
C13A—C9A—C10A—C11A0.4 (3)C8B—C9B—C10B—C11B179.0 (2)
O3A—C1A—C11A—C12A178.2 (2)O3B—C1B—C11B—C12B179.7 (2)
C2A—C1A—C11A—C12A2.8 (3)C2B—C1B—C11B—C12B0.5 (3)
O3A—C1A—C11A—C10A1.4 (3)O3B—C1B—C11B—C10B0.9 (3)
C2A—C1A—C11A—C10A177.6 (2)C2B—C1B—C11B—C10B179.3 (2)
O2A—C10A—C11A—C12A179.4 (2)O2B—C10B—C11B—C12B178.7 (2)
C9A—C10A—C11A—C12A0.4 (3)C9B—C10B—C11B—C12B1.5 (3)
O2A—C10A—C11A—C1A0.2 (4)O2B—C10B—C11B—C1B0.1 (4)
C9A—C10A—C11A—C1A180.0 (2)C9B—C10B—C11B—C1B179.7 (2)
C13A—O1A—C12A—C4A179.2 (2)C13B—O1B—C12B—C4B176.88 (19)
C13A—O1A—C12A—C11A0.4 (3)C13B—O1B—C12B—C11B2.7 (3)
C3A—C4A—C12A—O1A177.84 (19)C3B—C4B—C12B—O1B176.83 (19)
C14A—C4A—C12A—O1A5.5 (4)C14B—C4B—C12B—O1B0.3 (4)
C3A—C4A—C12A—C11A1.8 (3)C3B—C4B—C12B—C11B3.6 (3)
C14A—C4A—C12A—C11A174.9 (2)C14B—C4B—C12B—C11B179.2 (2)
C1A—C11A—C12A—O1A179.6 (2)C1B—C11B—C12B—O1B177.8 (2)
C10A—C11A—C12A—O1A0.0 (3)C10B—C11B—C12B—O1B3.4 (3)
C1A—C11A—C12A—C4A0.8 (3)C1B—C11B—C12B—C4B2.7 (3)
C10A—C11A—C12A—C4A179.6 (2)C10B—C11B—C12B—C4B176.1 (2)
C12A—O1A—C13A—C5A179.80 (19)C12B—O1B—C13B—C9B0.0 (3)
C12A—O1A—C13A—C9A0.4 (3)C12B—O1B—C13B—C5B179.70 (18)
O4A—C5A—C13A—O1A0.7 (3)C8B—C9B—C13B—O1B178.1 (2)
C6A—C5A—C13A—O1A178.5 (2)C10B—C9B—C13B—O1B1.8 (3)
O4A—C5A—C13A—C9A179.5 (2)C8B—C9B—C13B—C5B1.6 (3)
C6A—C5A—C13A—C9A1.4 (3)C10B—C9B—C13B—C5B178.5 (2)
C8A—C9A—C13A—O1A179.2 (2)O4B—C5B—C13B—O1B2.4 (3)
C10A—C9A—C13A—O1A0.0 (3)C6B—C5B—C13B—O1B177.4 (2)
C8A—C9A—C13A—C5A0.6 (3)O4B—C5B—C13B—C9B177.9 (2)
C10A—C9A—C13A—C5A179.8 (2)C6B—C5B—C13B—C9B2.3 (3)
C12A—C4A—C14A—C18A48.8 (4)C12B—C4B—C14B—C17B70.3 (3)
C3A—C4A—C14A—C18A134.4 (2)C3B—C4B—C14B—C17B106.9 (2)
C12A—C4A—C14A—C17A74.8 (3)C12B—C4B—C14B—C15B168.3 (3)
C3A—C4A—C14A—C17A102.1 (2)C3B—C4B—C14B—C15B14.4 (3)
C12A—C4A—C14A—C15A165.6 (3)C12B—C4B—C14B—C18B52.2 (4)
C3A—C4A—C14A—C15A17.5 (2)C3B—C4B—C14B—C18B130.5 (3)
C3A—O5A—C15A—C16A152.6 (2)C3B—O5B—C15B—C16B150.5 (2)
C3A—O5A—C15A—C14A22.4 (2)C3B—O5B—C15B—C14B21.1 (3)
C4A—C14A—C15A—O5A23.6 (2)C4B—C14B—C15B—C16B141.8 (2)
C18A—C14A—C15A—O5A143.6 (2)C17B—C14B—C15B—C16B23.8 (3)
C17A—C14A—C15A—O5A92.7 (2)C18B—C14B—C15B—C16B98.5 (3)
C4A—C14A—C15A—C16A146.4 (2)C4B—C14B—C15B—O5B20.9 (3)
C18A—C14A—C15A—C16A93.5 (3)C17B—C14B—C15B—O5B97.2 (3)
C17A—C14A—C15A—C16A30.1 (3)C18B—C14B—C15B—O5B140.6 (2)
O5A—C15A—C16A—O6A48.9 (3)O5B—C15B—C16B—O6B73.8 (3)
C14A—C15A—C16A—O6A73.3 (3)C14B—C15B—C16B—O6B165.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3A—H3OA···O2A0.981.622.530 (3)152
O4A—H4OA···O1WA0.921.752.672 (3)175
O6A—H6OA···O4Bi0.822.122.918 (3)165
O3B—H3OB···O2B1.061.572.529 (3)148
O4B—H4OB···O1WB1.021.622.639 (3)175
O6B—H6OB···O4Aii0.822.253.059 (4)167
O1WA—H1WA···O3Aiii0.832.062.889 (3)173
O1WA—H2WA···O6B0.921.842.737 (5)165
O1WB—H1WB···O6A0.891.862.691 (3)153
O1WB—H2WB···O3Biv0.822.062.868 (3)164
C16B—H16C···O2Bv0.962.463.389 (3)163
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+1/2, y+1/2, z+1; (iii) x+1, y1/2, z+3/2; (iv) x+1, y+1/2, z+1/2; (v) x+3/2, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H16O6·H2O
Mr346.32
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)9.8887 (3), 15.6028 (4), 20.4857 (5)
V3)3160.77 (15)
Z8
Radiation typeCu Kα
µ (mm1)0.95
Crystal size (mm)0.54 × 0.17 × 0.10
Data collection
DiffractometerBruker APEX DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.627, 0.913
No. of measured, independent and
observed [I > 2σ(I)] reflections
13449, 4981, 4753
Rint0.021
(sin θ/λ)max1)0.580
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.120, 1.02
No. of reflections4981
No. of parameters456
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.23
Absolute structureFlack (1983), 2102 Friedel pairs
Absolute structure parameter0.06 (19)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3A—H3OA···O2A0.981.622.530 (3)152
O4A—H4OA···O1WA0.921.752.672 (3)175
O6A—H6OA···O4Bi0.822.122.918 (3)165
O3B—H3OB···O2B1.061.572.529 (3)148
O4B—H4OB···O1WB1.021.622.639 (3)175
O6B—H6OB···O4Aii0.822.253.059 (4)167
O1WA—H1WA···O3Aiii0.832.062.889 (3)173
O1WA—H2WA···O6B0.921.842.737 (5)165
O1WB—H1WB···O6A0.891.862.691 (3)153
O1WB—H2WB···O3Biv0.822.062.868 (3)164
C16B—H16C···O2Bv0.962.463.389 (3)163
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+1/2, y+1/2, z+1; (iii) x+1, y1/2, z+3/2; (iv) x+1, y+1/2, z+1/2; (v) x+3/2, y+1, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

The authors thank the Thailand Research Fund (TRF) for research grant (RSA 5280033) and the Prince of Songkla University for financial support. The authors also thank the Koshinocorporation Group, Japan, and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBoonnak, N., Chantrapromma, S. & Fun, H.-K. (2006). Acta Cryst. E62, o2034–o2036.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBoonnak, N., Fun, H.-K., Chantrapromma, S. & Karalai, C. (2007). Acta Cryst. E63, o3958–o3959.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBoonnak, N., Karalai, C., Chantrapromma, S., Ponglimanont, C., Fun, H.-K., Kanjana-Opas, A., Chantrapromma, K. & Kato, S. (2009). Tetrahedron, 65, 3003–3013.  Web of Science CSD CrossRef CAS Google Scholar
First citationBoonnak, N., Karalai, C., Chantrapromma, S., Ponglimanont, C., Kanjana-Opas, A., Chantrapromma, K. & Fun, H.-K. (2007). Can. J. Chem. 85, 341–345.  Web of Science CrossRef CAS Google Scholar
First citationBoonnak, N., Khamthip, A., Karalai, C., Chantrapromma, S., Ponglimanont, C., Kanjana-Opas, A., Tewtrakul, S., Chantrapromma, K., Fun, H.-K. & Kato, S. (2010). Aust. J. Chem. 63, 1550–1556.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHay, A. E., Merza, J., Landreau, A., Litaudon, M., Pagniez, F., Pape, P. L. & Richomme, P. (2008). Fitoterapia, 79, 42–46.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMarques, V. L. L., Oliveira, F. M. D., Conserva, L. M., Brito, R. G. L. & Guilhon, G. M. S. P. (2000). Phytochemistry, 55, 815–818.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMolinar-Toribio, E., González, J., Ortega-Barría, E., Capson, T. L., Coley, P. D., Kursar, T. A., McPhail, K. & Cubilla-Rios, L. (2006). Pharm. Biol. 44, 550–553.  Web of Science CrossRef CAS Google Scholar
First citationPhongpaichit, S., Nilrat, L., Tharavichitkul, P., Bunchoo, S., Chuaprapaisilp, T. & Wiriyachitra, P. (1994). Songklanakarin J. Sci. Technol. 16, 399–405.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, L., Zhao, M., Yang, B., Zhao, Q. & Jiang, Y. (2007). Food Chem. 104, 176–181.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o1916-o1917
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds