organic compounds
Redetermination and
of pruniflorone M monohydrateaX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cResearch Unit of Natural Products Utilization, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand
*Correspondence e-mail: hkfun@usm.my
The title xanthone known as pruniflorone M (systematic name: (2R)-5,10-dihydroxy-2-hydroxymethyl-1,1-dimethyl-1H-furo[2,3-c]xanthen-6-one), crystallized in a monohydrate form, C18H16O6·H2O. It was isolated from the green fruits of Cratoxylum formosum ssp. pruniflorum. The structure of the title compound has been reported previously [Boonnak et al. (2010). Aust. J. Chem. 63, 1550–1556], but we report here the determined using Cu Kα radiation. There are two crystallograpically independent molecules in the which differ slightly in the bond angles. The hydroxymethyl substituents at position 2 of the furan rings of both pruniflorone M molecules adopt R configurations. In both molecules, the three rings of the xanthone skeleton are approximately coplanar, with an r.m.s. deviation of 0.0124 (2) Å for one molecule and 0.0289 (2) Å for the other, and the furan ring adopts an In the crystal, molecules of pruniflorone M and water are linked into a two-dimensional network by O—H⋯O hydrogen bonds and weak C—H⋯O interactions. The is further consolidated by π–π interactions with centroid–centroid distances in the range 3.5987 (13)–3.7498 (14) Å. Short C⋯C [3.378 (3) Å] and O⋯O [2.918 (3) Å] contacts are also observed.
Related literature
For details of hydrogen-bond motifs, see: Bernstein et al. (1995) and for ring conformations, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987). For background to xanthones and their biological activity, see: Boonnak, Karalai et al. (2007); Boonnak et al. (2009, 2010); Hay et al. (2008); Marques et al. (2000); Molinar-Toribio et al. (2006); Phongpaichit et al. (1994); Yu et al. (2007). For related structures, see: Boonnak et al. (2006); Boonnak, Fun et al. (2007). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536811025177/sj5174sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811025177/sj5174Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811025177/sj5174Isup3.cml
The green fruits of C. formosum ssp. pruniflorum (5.00 kg) were extracted with CH2Cl2 (2x20 L, for a week) successively at room temperature and were further evaporated under reduced pressure to afford the crude CH2Cl2 extracts (31.42 g). The crude extract was further subjected to QCC (Quick Column Chromatography) on silica gel using hexane as a first
and then increasing the polarity with acetone to give 14 fractions (F1-F14). Fraction F10 was separated by QCC eluting with a gradient of acetone-hexane to give 17 subfractions (F10A-F10Q). Subfractions F10N was further separated by CC and eluted with a gradient of EtOAc-hexane to give 8 subfractions (F10N1-F10N8). Subfraction F10N2 was further separated by CC and eluted with CHCl3 to give the title compound as yellow powder (28.0 mg). Yellow block-shaped single crystals of the title compound suitable for x-ray were recrystallized from CHCl3 by the slow evaporation of the solvent at room temperature after several days, Mp. 508-510 K.All H atoms were placed in calculated positions with (O—H) = 0.82-1.06 Å for OH, (C—H) = 0.93 for aromatic and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the
for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 1.34 Å from O6B and the deepest hole is located at 0.51 Å from O6B. 2102 Friedel pairs were used to determine the There is no pseudo-symmetry observed in the crystal structure.Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen bonds are shown as dashed lines. | |
Fig. 2. The crystal packing of (I) viewed along the c axis, showing two dimensional network. Hydrogen bonds are shown as dashed lines. |
C18H16O6·H2O | Dx = 1.456 Mg m−3 |
Mr = 346.32 | Melting point = 508–510 K |
Orthorhombic, P212121 | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 4981 reflections |
a = 9.8887 (3) Å | θ = 5.3–63.5° |
b = 15.6028 (4) Å | µ = 0.95 mm−1 |
c = 20.4857 (5) Å | T = 100 K |
V = 3160.77 (15) Å3 | Block, yellow |
Z = 8 | 0.54 × 0.17 × 0.10 mm |
F(000) = 1456 |
Bruker APEX DUO CCD area-detector diffractometer | 4981 independent reflections |
Radiation source: sealed tube | 4753 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
ϕ and ω scans | θmax = 63.5°, θmin = 5.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −7→11 |
Tmin = 0.627, Tmax = 0.913 | k = −18→18 |
13449 measured reflections | l = −23→23 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.043 | H-atom parameters constrained |
wR(F2) = 0.120 | w = 1/[σ2(Fo2) + (0.0751P)2 + 0.9688P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.001 |
4981 reflections | Δρmax = 0.56 e Å−3 |
456 parameters | Δρmin = −0.23 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 2102 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.06 (19) |
C18H16O6·H2O | V = 3160.77 (15) Å3 |
Mr = 346.32 | Z = 8 |
Orthorhombic, P212121 | Cu Kα radiation |
a = 9.8887 (3) Å | µ = 0.95 mm−1 |
b = 15.6028 (4) Å | T = 100 K |
c = 20.4857 (5) Å | 0.54 × 0.17 × 0.10 mm |
Bruker APEX DUO CCD area-detector diffractometer | 4981 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 4753 reflections with I > 2σ(I) |
Tmin = 0.627, Tmax = 0.913 | Rint = 0.021 |
13449 measured reflections |
R[F2 > 2σ(F2)] = 0.043 | H-atom parameters constrained |
wR(F2) = 0.120 | Δρmax = 0.56 e Å−3 |
S = 1.02 | Δρmin = −0.23 e Å−3 |
4981 reflections | Absolute structure: Flack (1983), 2102 Friedel pairs |
456 parameters | Absolute structure parameter: 0.06 (19) |
0 restraints |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1A | 0.40973 (17) | 0.43207 (10) | 0.67334 (7) | 0.0370 (4) | |
O2A | 0.3650 (2) | 0.44183 (12) | 0.87235 (8) | 0.0512 (5) | |
O3A | 0.18470 (19) | 0.55552 (12) | 0.85896 (8) | 0.0483 (4) | |
H3OA | 0.2444 | 0.5118 | 0.8781 | 0.072* | |
O4A | 0.58566 (19) | 0.32867 (12) | 0.61541 (8) | 0.0484 (4) | |
H4OA | 0.6449 | 0.2869 | 0.6019 | 0.062 (9)* | |
O5A | 0.06909 (18) | 0.63151 (11) | 0.64104 (8) | 0.0444 (4) | |
O6A | 0.1454 (2) | 0.74151 (11) | 0.54195 (9) | 0.0551 (5) | |
H6OA | 0.0952 | 0.7697 | 0.5655 | 0.083* | |
C1A | 0.2000 (2) | 0.54898 (15) | 0.79348 (11) | 0.0357 (5) | |
C2A | 0.1201 (2) | 0.59682 (17) | 0.75260 (11) | 0.0381 (5) | |
H2A | 0.0538 | 0.6334 | 0.7688 | 0.046* | |
C3A | 0.1426 (2) | 0.58815 (14) | 0.68612 (11) | 0.0353 (5) | |
C4A | 0.2403 (2) | 0.53548 (14) | 0.65853 (11) | 0.0339 (5) | |
C5A | 0.5798 (2) | 0.32706 (15) | 0.68149 (11) | 0.0378 (5) | |
C6A | 0.6618 (3) | 0.27595 (16) | 0.71967 (13) | 0.0426 (6) | |
H6A | 0.7249 | 0.2404 | 0.6997 | 0.051* | |
C7A | 0.6521 (3) | 0.27649 (16) | 0.78758 (13) | 0.0460 (6) | |
H7A | 0.7088 | 0.2418 | 0.8123 | 0.055* | |
C8A | 0.5592 (3) | 0.32806 (16) | 0.81792 (12) | 0.0428 (6) | |
H8A | 0.5519 | 0.3275 | 0.8632 | 0.051* | |
C9A | 0.4758 (3) | 0.38129 (15) | 0.78110 (11) | 0.0375 (5) | |
C10A | 0.3778 (2) | 0.43875 (15) | 0.81172 (11) | 0.0374 (5) | |
C11A | 0.2983 (2) | 0.49098 (15) | 0.76823 (11) | 0.0341 (5) | |
C12A | 0.3168 (2) | 0.48597 (14) | 0.70018 (11) | 0.0336 (5) | |
C13A | 0.4870 (2) | 0.38085 (15) | 0.71280 (11) | 0.0345 (5) | |
C14A | 0.2429 (2) | 0.54925 (16) | 0.58514 (11) | 0.0376 (5) | |
C15A | 0.1020 (3) | 0.59373 (16) | 0.57746 (11) | 0.0409 (5) | |
H15A | 0.0355 | 0.5485 | 0.5691 | 0.049* | |
C16A | 0.0818 (3) | 0.66176 (16) | 0.52624 (12) | 0.0476 (6) | |
H16A | 0.1176 | 0.6411 | 0.4851 | 0.057* | |
H16B | −0.0144 | 0.6714 | 0.5205 | 0.057* | |
C17A | 0.3638 (3) | 0.6064 (2) | 0.56656 (13) | 0.0528 (7) | |
H17A | 0.4466 | 0.5770 | 0.5764 | 0.079* | |
H17B | 0.3598 | 0.6589 | 0.5910 | 0.079* | |
H17C | 0.3604 | 0.6190 | 0.5207 | 0.079* | |
C18A | 0.2474 (3) | 0.46718 (18) | 0.54526 (13) | 0.0535 (7) | |
H18A | 0.3326 | 0.4391 | 0.5520 | 0.080* | |
H18B | 0.2370 | 0.4807 | 0.4998 | 0.080* | |
H18C | 0.1754 | 0.4299 | 0.5588 | 0.080* | |
O1B | 0.59342 (16) | 0.57000 (10) | 0.32981 (7) | 0.0359 (4) | |
O2B | 0.64340 (19) | 0.55237 (12) | 0.13115 (7) | 0.0489 (4) | |
O3B | 0.82577 (19) | 0.44097 (12) | 0.14837 (8) | 0.0470 (4) | |
H3OB | 0.7592 | 0.4841 | 0.1249 | 0.070* | |
O4B | 0.42557 (18) | 0.67981 (11) | 0.38433 (7) | 0.0433 (4) | |
H4OB | 0.3510 | 0.7205 | 0.3997 | 0.065* | |
O5B | 0.9092 (2) | 0.35711 (12) | 0.36836 (9) | 0.0535 (5) | |
O6B | 0.9636 (4) | 0.2762 (3) | 0.49615 (14) | 0.1384 (16) | |
H6OB | 0.9941 | 0.2549 | 0.4626 | 0.208* | |
C1B | 0.8046 (2) | 0.44754 (15) | 0.21360 (11) | 0.0356 (5) | |
C2B | 0.8789 (3) | 0.39760 (16) | 0.25614 (11) | 0.0395 (5) | |
H2B | 0.9461 | 0.3606 | 0.2415 | 0.047* | |
C3B | 0.8480 (3) | 0.40551 (15) | 0.32155 (11) | 0.0386 (5) | |
C4B | 0.7515 (2) | 0.46058 (14) | 0.34767 (11) | 0.0353 (5) | |
C5B | 0.4287 (2) | 0.67673 (14) | 0.31800 (11) | 0.0348 (5) | |
C6B | 0.3467 (3) | 0.72657 (16) | 0.27867 (13) | 0.0444 (6) | |
H6B | 0.2848 | 0.7640 | 0.2975 | 0.053* | |
C7B | 0.3563 (3) | 0.72109 (17) | 0.21084 (13) | 0.0496 (7) | |
H7B | 0.2996 | 0.7545 | 0.1850 | 0.059* | |
C8B | 0.4466 (3) | 0.66814 (16) | 0.18191 (12) | 0.0437 (6) | |
H8B | 0.4534 | 0.6663 | 0.1367 | 0.052* | |
C9B | 0.5303 (2) | 0.61584 (15) | 0.22073 (11) | 0.0348 (5) | |
C10B | 0.6281 (2) | 0.55735 (15) | 0.19175 (10) | 0.0359 (5) | |
C11B | 0.7058 (2) | 0.50642 (15) | 0.23627 (11) | 0.0336 (5) | |
C12B | 0.6838 (2) | 0.51255 (14) | 0.30405 (11) | 0.0313 (5) | |
C13B | 0.5192 (2) | 0.61998 (14) | 0.28842 (11) | 0.0328 (5) | |
C14B | 0.7477 (2) | 0.45210 (16) | 0.42106 (11) | 0.0396 (5) | |
C15B | 0.8276 (3) | 0.36851 (19) | 0.42911 (13) | 0.0539 (7) | |
H15B | 0.7623 | 0.3214 | 0.4312 | 0.065* | |
C16B | 0.9217 (3) | 0.35831 (15) | 0.48366 (10) | 0.0792 (11) | |
H16C | 0.8832 | 0.3818 | 0.5229 | 0.095* | |
H16D | 1.0059 | 0.3875 | 0.4745 | 0.095* | |
C17B | 0.8116 (3) | 0.53045 (15) | 0.45315 (10) | 0.0629 (8) | |
H17D | 0.9028 | 0.5369 | 0.4379 | 0.094* | |
H17E | 0.8119 | 0.5231 | 0.4997 | 0.094* | |
H17F | 0.7604 | 0.5806 | 0.4421 | 0.094* | |
C18B | 0.6051 (3) | 0.4398 (2) | 0.44913 (14) | 0.0662 (8) | |
H18D | 0.5559 | 0.4927 | 0.4460 | 0.099* | |
H18E | 0.6115 | 0.4230 | 0.4941 | 0.099* | |
H18F | 0.5588 | 0.3961 | 0.4249 | 0.099* | |
O1WA | 0.7567 (3) | 0.21065 (14) | 0.56948 (11) | 0.0822 (8) | |
H1WA | 0.7741 | 0.1639 | 0.5869 | 0.123* | |
H2WA | 0.8243 | 0.2244 | 0.5407 | 0.123* | |
O1WB | 0.2432 (2) | 0.79095 (14) | 0.42531 (11) | 0.0745 (7) | |
H1WB | 0.1943 | 0.7889 | 0.4620 | 0.112* | |
H2WB | 0.2087 | 0.8328 | 0.4072 | 0.112* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1A | 0.0379 (9) | 0.0434 (8) | 0.0296 (8) | 0.0054 (8) | 0.0003 (7) | 0.0028 (7) |
O2A | 0.0608 (11) | 0.0647 (11) | 0.0282 (8) | 0.0099 (10) | −0.0001 (8) | 0.0017 (8) |
O3A | 0.0581 (11) | 0.0559 (10) | 0.0308 (8) | 0.0056 (9) | 0.0069 (8) | −0.0025 (8) |
O4A | 0.0507 (10) | 0.0568 (10) | 0.0378 (9) | 0.0077 (9) | 0.0027 (8) | 0.0010 (8) |
O5A | 0.0495 (10) | 0.0472 (9) | 0.0366 (8) | 0.0105 (8) | −0.0005 (7) | 0.0036 (7) |
O6A | 0.0697 (13) | 0.0465 (9) | 0.0491 (10) | 0.0035 (9) | 0.0140 (9) | 0.0032 (8) |
C1A | 0.0389 (12) | 0.0386 (12) | 0.0297 (11) | −0.0064 (10) | 0.0026 (9) | −0.0022 (10) |
C2A | 0.0401 (13) | 0.0396 (12) | 0.0346 (12) | −0.0005 (11) | 0.0056 (10) | −0.0039 (9) |
C3A | 0.0337 (12) | 0.0364 (11) | 0.0358 (12) | −0.0034 (10) | −0.0022 (10) | 0.0030 (10) |
C4A | 0.0358 (12) | 0.0363 (11) | 0.0296 (12) | −0.0027 (10) | −0.0005 (9) | −0.0001 (9) |
C5A | 0.0377 (13) | 0.0385 (11) | 0.0371 (12) | −0.0047 (11) | 0.0006 (10) | 0.0021 (10) |
C6A | 0.0409 (14) | 0.0387 (12) | 0.0482 (14) | 0.0029 (12) | −0.0041 (11) | −0.0003 (11) |
C7A | 0.0492 (15) | 0.0405 (13) | 0.0484 (14) | 0.0062 (13) | −0.0079 (12) | 0.0060 (11) |
C8A | 0.0475 (15) | 0.0425 (12) | 0.0385 (13) | −0.0009 (12) | −0.0093 (11) | 0.0020 (11) |
C9A | 0.0388 (13) | 0.0396 (13) | 0.0341 (12) | −0.0045 (11) | −0.0034 (10) | 0.0017 (10) |
C10A | 0.0368 (13) | 0.0439 (12) | 0.0314 (11) | −0.0035 (11) | −0.0024 (10) | 0.0024 (10) |
C11A | 0.0351 (12) | 0.0376 (11) | 0.0297 (11) | −0.0067 (10) | 0.0005 (9) | 0.0001 (10) |
C12A | 0.0315 (12) | 0.0353 (11) | 0.0341 (12) | −0.0043 (10) | 0.0012 (10) | −0.0033 (9) |
C13A | 0.0332 (12) | 0.0358 (12) | 0.0344 (11) | −0.0043 (10) | −0.0036 (9) | 0.0013 (9) |
C14A | 0.0408 (13) | 0.0441 (12) | 0.0279 (11) | −0.0001 (11) | −0.0011 (9) | 0.0020 (10) |
C15A | 0.0407 (13) | 0.0451 (12) | 0.0370 (12) | −0.0020 (11) | −0.0020 (10) | 0.0000 (10) |
C16A | 0.0545 (15) | 0.0507 (14) | 0.0378 (13) | 0.0056 (13) | −0.0074 (12) | 0.0036 (11) |
C17A | 0.0467 (15) | 0.0684 (17) | 0.0435 (14) | −0.0061 (14) | 0.0012 (12) | 0.0105 (13) |
C18A | 0.0688 (19) | 0.0559 (15) | 0.0358 (13) | 0.0049 (14) | −0.0066 (12) | −0.0031 (11) |
O1B | 0.0369 (9) | 0.0433 (8) | 0.0274 (7) | 0.0066 (7) | 0.0002 (6) | −0.0002 (7) |
O2B | 0.0573 (11) | 0.0624 (11) | 0.0269 (8) | 0.0038 (10) | 0.0001 (8) | −0.0015 (8) |
O3B | 0.0565 (11) | 0.0537 (10) | 0.0307 (8) | 0.0019 (9) | 0.0080 (8) | −0.0073 (8) |
O4B | 0.0482 (10) | 0.0480 (9) | 0.0339 (8) | 0.0089 (8) | 0.0033 (8) | −0.0014 (7) |
O5B | 0.0621 (12) | 0.0578 (11) | 0.0407 (9) | 0.0249 (10) | −0.0030 (9) | 0.0005 (8) |
O6B | 0.152 (3) | 0.180 (3) | 0.0829 (18) | 0.119 (3) | 0.0523 (19) | 0.066 (2) |
C1B | 0.0375 (12) | 0.0370 (11) | 0.0323 (11) | −0.0074 (10) | 0.0037 (10) | −0.0076 (9) |
C2B | 0.0393 (13) | 0.0366 (11) | 0.0426 (13) | 0.0030 (11) | 0.0017 (11) | −0.0058 (10) |
C3B | 0.0419 (13) | 0.0361 (11) | 0.0379 (12) | 0.0043 (10) | −0.0042 (11) | −0.0019 (10) |
C4B | 0.0383 (12) | 0.0343 (11) | 0.0333 (12) | −0.0002 (10) | −0.0021 (9) | −0.0045 (9) |
C5B | 0.0361 (12) | 0.0348 (11) | 0.0336 (11) | −0.0027 (10) | −0.0001 (10) | −0.0009 (9) |
C6B | 0.0457 (14) | 0.0386 (12) | 0.0488 (14) | 0.0061 (12) | −0.0013 (12) | −0.0004 (11) |
C7B | 0.0560 (17) | 0.0451 (13) | 0.0476 (15) | 0.0068 (14) | −0.0128 (13) | 0.0047 (12) |
C8B | 0.0521 (15) | 0.0474 (13) | 0.0315 (12) | −0.0016 (13) | −0.0073 (11) | 0.0034 (11) |
C9B | 0.0359 (12) | 0.0366 (12) | 0.0320 (11) | −0.0040 (10) | −0.0048 (9) | 0.0002 (9) |
C10B | 0.0375 (13) | 0.0421 (12) | 0.0280 (11) | −0.0084 (11) | 0.0000 (9) | −0.0020 (10) |
C11B | 0.0328 (11) | 0.0370 (11) | 0.0310 (11) | −0.0046 (10) | −0.0012 (9) | −0.0028 (10) |
C12B | 0.0306 (12) | 0.0325 (11) | 0.0307 (11) | −0.0011 (9) | 0.0015 (9) | −0.0022 (9) |
C13B | 0.0309 (12) | 0.0319 (11) | 0.0355 (12) | −0.0020 (10) | −0.0030 (9) | 0.0024 (9) |
C14B | 0.0434 (14) | 0.0447 (13) | 0.0308 (12) | 0.0000 (11) | −0.0027 (10) | 0.0013 (10) |
C15B | 0.0582 (17) | 0.0585 (15) | 0.0449 (14) | 0.0020 (14) | 0.0059 (13) | 0.0060 (12) |
C16B | 0.0600 (19) | 0.128 (3) | 0.0492 (17) | 0.033 (2) | −0.0001 (14) | 0.0274 (19) |
C17B | 0.093 (2) | 0.0581 (16) | 0.0370 (14) | −0.0074 (17) | −0.0121 (15) | −0.0035 (12) |
C18B | 0.0537 (17) | 0.098 (2) | 0.0468 (15) | 0.0024 (17) | 0.0042 (13) | 0.0220 (16) |
O1WA | 0.117 (2) | 0.0625 (12) | 0.0666 (14) | 0.0365 (14) | 0.0257 (13) | 0.0038 (11) |
O1WB | 0.0965 (18) | 0.0644 (12) | 0.0627 (14) | 0.0328 (13) | 0.0390 (12) | 0.0206 (11) |
O1A—C12A | 1.361 (3) | O2B—C10B | 1.253 (3) |
O1A—C13A | 1.370 (3) | O3B—C1B | 1.356 (3) |
O2A—C10A | 1.249 (3) | O3B—H3OB | 1.0564 |
O3A—C1A | 1.354 (3) | O4B—C5B | 1.360 (3) |
O3A—H3OA | 0.9841 | O4B—H4OB | 1.0223 |
O4A—C5A | 1.355 (3) | O5B—C3B | 1.363 (3) |
O4A—H4OA | 0.9200 | O5B—C15B | 1.494 (3) |
O5A—C3A | 1.356 (3) | O6B—C16B | 1.371 (4) |
O5A—C15A | 1.466 (3) | O6B—H6OB | 0.8200 |
O6A—C16A | 1.431 (3) | C1B—C2B | 1.381 (3) |
O6A—H6OA | 0.8200 | C1B—C11B | 1.419 (3) |
C1A—C2A | 1.372 (3) | C2B—C3B | 1.380 (3) |
C1A—C11A | 1.425 (4) | C2B—H2B | 0.9300 |
C2A—C3A | 1.387 (3) | C3B—C4B | 1.391 (3) |
C2A—H2A | 0.9300 | C4B—C12B | 1.380 (3) |
C3A—C4A | 1.389 (3) | C4B—C14B | 1.510 (3) |
C4A—C12A | 1.377 (3) | C5B—C6B | 1.382 (3) |
C4A—C14A | 1.519 (3) | C5B—C13B | 1.397 (3) |
C5A—C6A | 1.380 (3) | C6B—C7B | 1.395 (4) |
C5A—C13A | 1.399 (3) | C6B—H6B | 0.9300 |
C6A—C7A | 1.394 (4) | C7B—C8B | 1.353 (4) |
C6A—H6A | 0.9300 | C7B—H7B | 0.9300 |
C7A—C8A | 1.370 (4) | C8B—C9B | 1.408 (3) |
C7A—H7A | 0.9300 | C8B—H8B | 0.9300 |
C8A—C9A | 1.392 (3) | C9B—C13B | 1.393 (3) |
C8A—H8A | 0.9300 | C9B—C10B | 1.457 (3) |
C9A—C13A | 1.404 (3) | C10B—C11B | 1.433 (3) |
C9A—C10A | 1.462 (3) | C11B—C12B | 1.409 (3) |
C10A—C11A | 1.441 (3) | C14B—C17B | 1.525 (3) |
C11A—C12A | 1.408 (3) | C14B—C15B | 1.534 (4) |
C14A—C18A | 1.520 (3) | C14B—C18B | 1.535 (4) |
C14A—C17A | 1.539 (4) | C15B—C16B | 1.463 (4) |
C14A—C15A | 1.565 (3) | C15B—H15B | 0.9800 |
C15A—C16A | 1.506 (3) | C16B—H16C | 0.9633 |
C15A—H15A | 0.9800 | C16B—H16D | 0.9669 |
C16A—H16A | 0.9700 | C17B—H17D | 0.9600 |
C16A—H16B | 0.9700 | C17B—H17E | 0.9600 |
C17A—H17A | 0.9600 | C17B—H17F | 0.9600 |
C17A—H17B | 0.9600 | C18B—H18D | 0.9600 |
C17A—H17C | 0.9600 | C18B—H18E | 0.9600 |
C18A—H18A | 0.9600 | C18B—H18F | 0.9600 |
C18A—H18B | 0.9600 | O1WA—H1WA | 0.8300 |
C18A—H18C | 0.9600 | O1WA—H2WA | 0.9169 |
O1B—C13B | 1.366 (3) | O1WB—H1WB | 0.8939 |
O1B—C12B | 1.371 (3) | O1WB—H2WB | 0.8249 |
C12A—O1A—C13A | 119.90 (17) | C1B—O3B—H3OB | 107.7 |
C1A—O3A—H3OA | 106.0 | C5B—O4B—H4OB | 110.2 |
C5A—O4A—H4OA | 108.4 | C3B—O5B—C15B | 106.26 (19) |
C3A—O5A—C15A | 106.59 (18) | C16B—O6B—H6OB | 109.5 |
C16A—O6A—H6OA | 109.5 | O3B—C1B—C2B | 119.8 (2) |
O3A—C1A—C2A | 119.9 (2) | O3B—C1B—C11B | 118.5 (2) |
O3A—C1A—C11A | 118.9 (2) | C2B—C1B—C11B | 121.7 (2) |
C2A—C1A—C11A | 121.1 (2) | C3B—C2B—C1B | 116.4 (2) |
C1A—C2A—C3A | 117.0 (2) | C3B—C2B—H2B | 121.8 |
C1A—C2A—H2A | 121.5 | C1B—C2B—H2B | 121.8 |
C3A—C2A—H2A | 121.5 | O5B—C3B—C2B | 122.4 (2) |
O5A—C3A—C2A | 122.3 (2) | O5B—C3B—C4B | 112.1 (2) |
O5A—C3A—C4A | 113.02 (19) | C2B—C3B—C4B | 125.5 (2) |
C2A—C3A—C4A | 124.7 (2) | C12B—C4B—C3B | 116.5 (2) |
C12A—C4A—C3A | 117.5 (2) | C12B—C4B—C14B | 133.2 (2) |
C12A—C4A—C14A | 133.1 (2) | C3B—C4B—C14B | 110.2 (2) |
C3A—C4A—C14A | 109.32 (19) | O4B—C5B—C6B | 123.3 (2) |
O4A—C5A—C6A | 123.5 (2) | O4B—C5B—C13B | 118.1 (2) |
O4A—C5A—C13A | 118.3 (2) | C6B—C5B—C13B | 118.6 (2) |
C6A—C5A—C13A | 118.2 (2) | C5B—C6B—C7B | 120.4 (2) |
C5A—C6A—C7A | 121.4 (2) | C5B—C6B—H6B | 119.8 |
C5A—C6A—H6A | 119.3 | C7B—C6B—H6B | 119.8 |
C7A—C6A—H6A | 119.3 | C8B—C7B—C6B | 121.2 (2) |
C8A—C7A—C6A | 120.2 (2) | C8B—C7B—H7B | 119.4 |
C8A—C7A—H7A | 119.9 | C6B—C7B—H7B | 119.4 |
C6A—C7A—H7A | 119.9 | C7B—C8B—C9B | 119.6 (2) |
C7A—C8A—C9A | 120.1 (2) | C7B—C8B—H8B | 120.2 |
C7A—C8A—H8A | 119.9 | C9B—C8B—H8B | 120.2 |
C9A—C8A—H8A | 119.9 | C13B—C9B—C8B | 119.3 (2) |
C8A—C9A—C13A | 119.4 (2) | C13B—C9B—C10B | 119.1 (2) |
C8A—C9A—C10A | 121.7 (2) | C8B—C9B—C10B | 121.6 (2) |
C13A—C9A—C10A | 118.9 (2) | O2B—C10B—C11B | 122.1 (2) |
O2A—C10A—C11A | 122.5 (2) | O2B—C10B—C9B | 121.5 (2) |
O2A—C10A—C9A | 121.1 (2) | C11B—C10B—C9B | 116.38 (19) |
C11A—C10A—C9A | 116.32 (19) | C12B—C11B—C1B | 118.2 (2) |
C12A—C11A—C1A | 118.9 (2) | C12B—C11B—C10B | 120.4 (2) |
C12A—C11A—C10A | 120.6 (2) | C1B—C11B—C10B | 121.3 (2) |
C1A—C11A—C10A | 120.4 (2) | O1B—C12B—C4B | 116.81 (19) |
O1A—C12A—C4A | 117.8 (2) | O1B—C12B—C11B | 121.63 (19) |
O1A—C12A—C11A | 121.5 (2) | C4B—C12B—C11B | 121.6 (2) |
C4A—C12A—C11A | 120.7 (2) | O1B—C13B—C9B | 123.3 (2) |
O1A—C13A—C5A | 116.4 (2) | O1B—C13B—C5B | 115.90 (19) |
O1A—C13A—C9A | 122.8 (2) | C9B—C13B—C5B | 120.8 (2) |
C5A—C13A—C9A | 120.8 (2) | C4B—C14B—C17B | 110.42 (19) |
C4A—C14A—C18A | 114.4 (2) | C4B—C14B—C15B | 99.73 (19) |
C4A—C14A—C17A | 109.87 (19) | C17B—C14B—C15B | 115.0 (2) |
C18A—C14A—C17A | 109.4 (2) | C4B—C14B—C18B | 114.0 (2) |
C4A—C14A—C15A | 98.47 (18) | C17B—C14B—C18B | 108.6 (2) |
C18A—C14A—C15A | 110.2 (2) | C15B—C14B—C18B | 109.1 (2) |
C17A—C14A—C15A | 114.2 (2) | C16B—C15B—O5B | 106.2 (2) |
O5A—C15A—C16A | 107.8 (2) | C16B—C15B—C14B | 120.1 (2) |
O5A—C15A—C14A | 106.66 (19) | O5B—C15B—C14B | 106.9 (2) |
C16A—C15A—C14A | 120.1 (2) | C16B—C15B—H15B | 107.7 |
O5A—C15A—H15A | 107.2 | O5B—C15B—H15B | 107.7 |
C16A—C15A—H15A | 107.2 | C14B—C15B—H15B | 107.7 |
C14A—C15A—H15A | 107.2 | O6B—C16B—C15B | 115.9 (3) |
O6A—C16A—C15A | 113.4 (2) | O6B—C16B—H16C | 108.7 |
O6A—C16A—H16A | 108.9 | C15B—C16B—H16C | 110.2 |
C15A—C16A—H16A | 108.9 | O6B—C16B—H16D | 102.5 |
O6A—C16A—H16B | 108.9 | C15B—C16B—H16D | 110.3 |
C15A—C16A—H16B | 108.9 | H16C—C16B—H16D | 108.9 |
H16A—C16A—H16B | 107.7 | C14B—C17B—H17D | 109.5 |
C14A—C17A—H17A | 109.5 | C14B—C17B—H17E | 109.5 |
C14A—C17A—H17B | 109.5 | H17D—C17B—H17E | 109.5 |
H17A—C17A—H17B | 109.5 | C14B—C17B—H17F | 109.5 |
C14A—C17A—H17C | 109.5 | H17D—C17B—H17F | 109.5 |
H17A—C17A—H17C | 109.5 | H17E—C17B—H17F | 109.5 |
H17B—C17A—H17C | 109.5 | C14B—C18B—H18D | 109.5 |
C14A—C18A—H18A | 109.5 | C14B—C18B—H18E | 109.5 |
C14A—C18A—H18B | 109.5 | H18D—C18B—H18E | 109.5 |
H18A—C18A—H18B | 109.5 | C14B—C18B—H18F | 109.5 |
C14A—C18A—H18C | 109.5 | H18D—C18B—H18F | 109.5 |
H18A—C18A—H18C | 109.5 | H18E—C18B—H18F | 109.5 |
H18B—C18A—H18C | 109.5 | H1WA—O1WA—H2WA | 109.3 |
C13B—O1B—C12B | 118.98 (17) | H1WB—O1WB—H2WB | 100.6 |
O3A—C1A—C2A—C3A | 178.9 (2) | O3B—C1B—C2B—C3B | −177.6 (2) |
C11A—C1A—C2A—C3A | −2.1 (3) | C11B—C1B—C2B—C3B | 2.6 (4) |
C15A—O5A—C3A—C2A | −168.9 (2) | C15B—O5B—C3B—C2B | −166.8 (3) |
C15A—O5A—C3A—C4A | 11.1 (3) | C15B—O5B—C3B—C4B | 11.9 (3) |
C1A—C2A—C3A—O5A | 179.4 (2) | C1B—C2B—C3B—O5B | 176.9 (2) |
C1A—C2A—C3A—C4A | −0.6 (4) | C1B—C2B—C3B—C4B | −1.6 (4) |
O5A—C3A—C4A—C12A | −177.4 (2) | O5B—C3B—C4B—C12B | 179.9 (2) |
C2A—C3A—C4A—C12A | 2.6 (4) | C2B—C3B—C4B—C12B | −1.5 (4) |
O5A—C3A—C4A—C14A | 5.2 (3) | O5B—C3B—C4B—C14B | 2.1 (3) |
C2A—C3A—C4A—C14A | −174.8 (2) | C2B—C3B—C4B—C14B | −179.2 (2) |
O4A—C5A—C6A—C7A | 180.0 (2) | O4B—C5B—C6B—C7B | 179.1 (2) |
C13A—C5A—C6A—C7A | 0.9 (4) | C13B—C5B—C6B—C7B | −1.1 (4) |
C5A—C6A—C7A—C8A | 0.4 (4) | C5B—C6B—C7B—C8B | −0.9 (4) |
C6A—C7A—C8A—C9A | −1.1 (4) | C6B—C7B—C8B—C9B | 1.7 (4) |
C7A—C8A—C9A—C13A | 0.6 (4) | C7B—C8B—C9B—C13B | −0.4 (4) |
C7A—C8A—C9A—C10A | −178.5 (2) | C7B—C8B—C9B—C10B | 179.5 (2) |
C8A—C9A—C10A—O2A | −0.3 (4) | C13B—C9B—C10B—O2B | −178.8 (2) |
C13A—C9A—C10A—O2A | −179.4 (2) | C8B—C9B—C10B—O2B | 1.3 (4) |
C8A—C9A—C10A—C11A | 179.5 (2) | C13B—C9B—C10B—C11B | 1.0 (3) |
C13A—C9A—C10A—C11A | 0.4 (3) | C8B—C9B—C10B—C11B | −179.0 (2) |
O3A—C1A—C11A—C12A | −178.2 (2) | O3B—C1B—C11B—C12B | 179.7 (2) |
C2A—C1A—C11A—C12A | 2.8 (3) | C2B—C1B—C11B—C12B | −0.5 (3) |
O3A—C1A—C11A—C10A | 1.4 (3) | O3B—C1B—C11B—C10B | 0.9 (3) |
C2A—C1A—C11A—C10A | −177.6 (2) | C2B—C1B—C11B—C10B | −179.3 (2) |
O2A—C10A—C11A—C12A | 179.4 (2) | O2B—C10B—C11B—C12B | −178.7 (2) |
C9A—C10A—C11A—C12A | −0.4 (3) | C9B—C10B—C11B—C12B | 1.5 (3) |
O2A—C10A—C11A—C1A | −0.2 (4) | O2B—C10B—C11B—C1B | 0.1 (4) |
C9A—C10A—C11A—C1A | 180.0 (2) | C9B—C10B—C11B—C1B | −179.7 (2) |
C13A—O1A—C12A—C4A | −179.2 (2) | C13B—O1B—C12B—C4B | −176.88 (19) |
C13A—O1A—C12A—C11A | 0.4 (3) | C13B—O1B—C12B—C11B | 2.7 (3) |
C3A—C4A—C12A—O1A | 177.84 (19) | C3B—C4B—C12B—O1B | −176.83 (19) |
C14A—C4A—C12A—O1A | −5.5 (4) | C14B—C4B—C12B—O1B | 0.3 (4) |
C3A—C4A—C12A—C11A | −1.8 (3) | C3B—C4B—C12B—C11B | 3.6 (3) |
C14A—C4A—C12A—C11A | 174.9 (2) | C14B—C4B—C12B—C11B | −179.2 (2) |
C1A—C11A—C12A—O1A | 179.6 (2) | C1B—C11B—C12B—O1B | 177.8 (2) |
C10A—C11A—C12A—O1A | 0.0 (3) | C10B—C11B—C12B—O1B | −3.4 (3) |
C1A—C11A—C12A—C4A | −0.8 (3) | C1B—C11B—C12B—C4B | −2.7 (3) |
C10A—C11A—C12A—C4A | 179.6 (2) | C10B—C11B—C12B—C4B | 176.1 (2) |
C12A—O1A—C13A—C5A | 179.80 (19) | C12B—O1B—C13B—C9B | 0.0 (3) |
C12A—O1A—C13A—C9A | −0.4 (3) | C12B—O1B—C13B—C5B | 179.70 (18) |
O4A—C5A—C13A—O1A | −0.7 (3) | C8B—C9B—C13B—O1B | 178.1 (2) |
C6A—C5A—C13A—O1A | 178.5 (2) | C10B—C9B—C13B—O1B | −1.8 (3) |
O4A—C5A—C13A—C9A | 179.5 (2) | C8B—C9B—C13B—C5B | −1.6 (3) |
C6A—C5A—C13A—C9A | −1.4 (3) | C10B—C9B—C13B—C5B | 178.5 (2) |
C8A—C9A—C13A—O1A | −179.2 (2) | O4B—C5B—C13B—O1B | 2.4 (3) |
C10A—C9A—C13A—O1A | 0.0 (3) | C6B—C5B—C13B—O1B | −177.4 (2) |
C8A—C9A—C13A—C5A | 0.6 (3) | O4B—C5B—C13B—C9B | −177.9 (2) |
C10A—C9A—C13A—C5A | 179.8 (2) | C6B—C5B—C13B—C9B | 2.3 (3) |
C12A—C4A—C14A—C18A | 48.8 (4) | C12B—C4B—C14B—C17B | −70.3 (3) |
C3A—C4A—C14A—C18A | −134.4 (2) | C3B—C4B—C14B—C17B | 106.9 (2) |
C12A—C4A—C14A—C17A | −74.8 (3) | C12B—C4B—C14B—C15B | 168.3 (3) |
C3A—C4A—C14A—C17A | 102.1 (2) | C3B—C4B—C14B—C15B | −14.4 (3) |
C12A—C4A—C14A—C15A | 165.6 (3) | C12B—C4B—C14B—C18B | 52.2 (4) |
C3A—C4A—C14A—C15A | −17.5 (2) | C3B—C4B—C14B—C18B | −130.5 (3) |
C3A—O5A—C15A—C16A | −152.6 (2) | C3B—O5B—C15B—C16B | −150.5 (2) |
C3A—O5A—C15A—C14A | −22.4 (2) | C3B—O5B—C15B—C14B | −21.1 (3) |
C4A—C14A—C15A—O5A | 23.6 (2) | C4B—C14B—C15B—C16B | 141.8 (2) |
C18A—C14A—C15A—O5A | 143.6 (2) | C17B—C14B—C15B—C16B | 23.8 (3) |
C17A—C14A—C15A—O5A | −92.7 (2) | C18B—C14B—C15B—C16B | −98.5 (3) |
C4A—C14A—C15A—C16A | 146.4 (2) | C4B—C14B—C15B—O5B | 20.9 (3) |
C18A—C14A—C15A—C16A | −93.5 (3) | C17B—C14B—C15B—O5B | −97.2 (3) |
C17A—C14A—C15A—C16A | 30.1 (3) | C18B—C14B—C15B—O5B | 140.6 (2) |
O5A—C15A—C16A—O6A | 48.9 (3) | O5B—C15B—C16B—O6B | −73.8 (3) |
C14A—C15A—C16A—O6A | −73.3 (3) | C14B—C15B—C16B—O6B | 165.0 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3A—H3OA···O2A | 0.98 | 1.62 | 2.530 (3) | 152 |
O4A—H4OA···O1WA | 0.92 | 1.75 | 2.672 (3) | 175 |
O6A—H6OA···O4Bi | 0.82 | 2.12 | 2.918 (3) | 165 |
O3B—H3OB···O2B | 1.06 | 1.57 | 2.529 (3) | 148 |
O4B—H4OB···O1WB | 1.02 | 1.62 | 2.639 (3) | 175 |
O6B—H6OB···O4Aii | 0.82 | 2.25 | 3.059 (4) | 167 |
O1WA—H1WA···O3Aiii | 0.83 | 2.06 | 2.889 (3) | 173 |
O1WA—H2WA···O6B | 0.92 | 1.84 | 2.737 (5) | 165 |
O1WB—H1WB···O6A | 0.89 | 1.86 | 2.691 (3) | 153 |
O1WB—H2WB···O3Biv | 0.82 | 2.06 | 2.868 (3) | 164 |
C16B—H16C···O2Bv | 0.96 | 2.46 | 3.389 (3) | 163 |
Symmetry codes: (i) x−1/2, −y+3/2, −z+1; (ii) x+1/2, −y+1/2, −z+1; (iii) −x+1, y−1/2, −z+3/2; (iv) −x+1, y+1/2, −z+1/2; (v) −x+3/2, −y+1, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C18H16O6·H2O |
Mr | 346.32 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 100 |
a, b, c (Å) | 9.8887 (3), 15.6028 (4), 20.4857 (5) |
V (Å3) | 3160.77 (15) |
Z | 8 |
Radiation type | Cu Kα |
µ (mm−1) | 0.95 |
Crystal size (mm) | 0.54 × 0.17 × 0.10 |
Data collection | |
Diffractometer | Bruker APEX DUO CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.627, 0.913 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13449, 4981, 4753 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.580 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.043, 0.120, 1.02 |
No. of reflections | 4981 |
No. of parameters | 456 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.56, −0.23 |
Absolute structure | Flack (1983), 2102 Friedel pairs |
Absolute structure parameter | 0.06 (19) |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O3A—H3OA···O2A | 0.98 | 1.62 | 2.530 (3) | 152 |
O4A—H4OA···O1WA | 0.92 | 1.75 | 2.672 (3) | 175 |
O6A—H6OA···O4Bi | 0.82 | 2.12 | 2.918 (3) | 165 |
O3B—H3OB···O2B | 1.06 | 1.57 | 2.529 (3) | 148 |
O4B—H4OB···O1WB | 1.02 | 1.62 | 2.639 (3) | 175 |
O6B—H6OB···O4Aii | 0.82 | 2.25 | 3.059 (4) | 167 |
O1WA—H1WA···O3Aiii | 0.83 | 2.06 | 2.889 (3) | 173 |
O1WA—H2WA···O6B | 0.92 | 1.84 | 2.737 (5) | 165 |
O1WB—H1WB···O6A | 0.89 | 1.86 | 2.691 (3) | 153 |
O1WB—H2WB···O3Biv | 0.82 | 2.06 | 2.868 (3) | 164 |
C16B—H16C···O2Bv | 0.96 | 2.46 | 3.389 (3) | 163 |
Symmetry codes: (i) x−1/2, −y+3/2, −z+1; (ii) x+1/2, −y+1/2, −z+1; (iii) −x+1, y−1/2, −z+3/2; (iv) −x+1, y+1/2, −z+1/2; (v) −x+3/2, −y+1, z+1/2. |
Acknowledgements
The authors thank the Thailand Research Fund (TRF) for research grant (RSA 5280033) and the Prince of Songkla University for financial support. The authors also thank the Koshinocorporation Group, Japan, and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Boonnak, N., Chantrapromma, S. & Fun, H.-K. (2006). Acta Cryst. E62, o2034–o2036. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Boonnak, N., Fun, H.-K., Chantrapromma, S. & Karalai, C. (2007). Acta Cryst. E63, o3958–o3959. Web of Science CSD CrossRef IUCr Journals Google Scholar
Boonnak, N., Karalai, C., Chantrapromma, S., Ponglimanont, C., Fun, H.-K., Kanjana-Opas, A., Chantrapromma, K. & Kato, S. (2009). Tetrahedron, 65, 3003–3013. Web of Science CSD CrossRef CAS Google Scholar
Boonnak, N., Karalai, C., Chantrapromma, S., Ponglimanont, C., Kanjana-Opas, A., Chantrapromma, K. & Fun, H.-K. (2007). Can. J. Chem. 85, 341–345. Web of Science CrossRef CAS Google Scholar
Boonnak, N., Khamthip, A., Karalai, C., Chantrapromma, S., Ponglimanont, C., Kanjana-Opas, A., Tewtrakul, S., Chantrapromma, K., Fun, H.-K. & Kato, S. (2010). Aust. J. Chem. 63, 1550–1556. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Hay, A. E., Merza, J., Landreau, A., Litaudon, M., Pagniez, F., Pape, P. L. & Richomme, P. (2008). Fitoterapia, 79, 42–46. Web of Science CrossRef PubMed CAS Google Scholar
Marques, V. L. L., Oliveira, F. M. D., Conserva, L. M., Brito, R. G. L. & Guilhon, G. M. S. P. (2000). Phytochemistry, 55, 815–818. Web of Science CrossRef PubMed CAS Google Scholar
Molinar-Toribio, E., González, J., Ortega-Barría, E., Capson, T. L., Coley, P. D., Kursar, T. A., McPhail, K. & Cubilla-Rios, L. (2006). Pharm. Biol. 44, 550–553. Web of Science CrossRef CAS Google Scholar
Phongpaichit, S., Nilrat, L., Tharavichitkul, P., Bunchoo, S., Chuaprapaisilp, T. & Wiriyachitra, P. (1994). Songklanakarin J. Sci. Technol. 16, 399–405. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yu, L., Zhao, M., Yang, B., Zhao, Q. & Jiang, Y. (2007). Food Chem. 104, 176–181. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Xanthones are secondary metabolites of several plants and exhibit considerable biological activities such as antibacterial, antioxidant, antiprotozoal, cytotoxic and nitric oxide inhibitory activities (Boonnak, Karalai et al. 2007; Boonnak et al. 2009, 2010; Hay et al. 2008; Marques et al. 2000; Molinar-Toribio et al., 2006; Phongpaichit et al., 1994; Yu et al., 2007). During the course of our research on the chemical constituents and bioactive compounds from the green fruits of Cratoxylum formosum ssp. pruniflorum, which were collected from Pha Yao province in the northern part of Thailand, the title xanthone (I) known as pruniflorone M (Boonnak et al., 2010) was isolated. The previous report showed that (I) possess nitric oxide inhibitory activity (Boonnak et al., 2010). The absolute configuration of (I) was determined by making use of the anomalous scattering of Cu Kα X-radiation with the Flack parameter being refined to 0.06 (19). We report herein the crystal structure of (I).
There are two crystallograpically independent molecules A and B in the asymmetric unit of (I), C18H16O6.H2O, (Fig. 1) with the same conformation but with slight differences in bond angles. In the structure of (I), the three ring system [C1–C13/O1] is essentially planar with r.m.s. deviations of 0.0124 (2) Å for molecule A [0.0289 (2) Å for molecule B] from the plane through 14 non-hydrogen atoms of the three rings. The O3 and O4 hydroxy O atoms lie close to this plane with deviations +0.038 (2) for O3 and +0.004 (2) Å for O4 for molecule A [the corresponding values are +0.043 (2) and -0.024 (2) Å for molecule B]. The furan ring (C3–C4/C14–C15/O5) is in an envelope conformation with the puckering atom C15 of 0.148 (3) Å, and puckering parameter Q = 0.239 (2) Å and ϕ = 132.0 (6)° (Cremer & Pople, 1975) for molecule A and the corresponding values are 0.134 (3) Å, 0.213 (3) Å and ϕ = 137.8 (7)° for molecule B. The orientation of the hydroxymethyl moiety at atom C15 can be indicated by the torsion angle of C14–C15–C16–O6 = -73.3 (3)° for molecule A [165.0 (3)° for molecule B]. Intramolecular O3A—H3OA···O2A and O3B—H3OB..O2B hydrogen bonds (Table 1) generate S(6) ring motifs (Bernstein et al., 1995). The bond distances in (I) are within normal ranges (Allen et al., 1987) and comparable to the related structures (Boonnak et al., 2006; Boonnak, Fun et al., 2007). The hydroxymethyl substituents at position 2 (on atoms C15A and C15B ) of the furan rings of both pruniflorone M molecules adopt R configurations.
In the crystal packing of (I) (Fig. 2), the molecules of pruniflorone M and water are linked into a two dimensional network by O—H···O hydrogen bonds and weak C—H···O interactions (Table 1). π···π interactions were also observed with centroid···centroid distances: Cg1···Cg5v = 3.7453 (13) Å; Cg1···Cg6vi = 3.6847 (13) Å; Cg2···Cg4vi = 3.7189 (12) Å; Cg2···Cg6vi = 3.6940 (14) Å; Cg3···Cg4v = 3.5987 (13) Å and Cg3···Cg5v = 3.7498 (14) Å; Cg1, Cg2, Cg3, Cg4, Cg5 and Cg6 are the centroids of C9A–C13A/O1A, C1A–C4A/C11A–C12A, C5A–C9A/C13A, C9B–C13B/O1B, C1B–C4B/C11B–C12B and C5B–C9B/C13B rings, respectively. C···Cv[3.378 (3) Å; ] and O···Oi[2.918 (3) Å short contacts were also observed; [symmetry codes: (i) -1/2+x, 3/2-y, 1-z; (v) 3/2-x, 1-y, 1/2+z and (vi) 1/2-x, 1-y, 1/2-z].