organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-[4-(Tri­fluoro­meth­­oxy)benzyl­­idene]indan-1-one

aInstitute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 14 July 2011; accepted 17 July 2011; online 30 July 2011)

In the title compound, C17H11F3O2, the dihydro­indene ring is approximately planar with a maximum deviation of 0.024 (2) Å and makes a dihedral angle of 3.17 (8) Å with the adjacent benzene ring. In the crystal, mol­ecules are inter­connected by C—H⋯O inter­actions, forming an infinite chain along the c axis.

Related literature

For the biological background to dihydro­indeno and heterocyclic derivatives, see: Dinges et al. (2006[Dinges, J., Akritopoulou-Zanze, A., Arnold, L. D., Barlozzari, T., Bousquet, P. F., Cunha, G. A., Ericsson, A. M., Iwasaki, N., Michaelides, M. R., Ogawa, N., Phelan, K. M., Rafferty, P., Sowin, T. J., Stewart, K. D., Tokuyama, R., Xia, Z. & Zhang, H. Q. (2006). Bioorg. Med. Chem. 16, 4371-4375.]); Garton et al. (2006[Garton, A. J., Crew, A. P. A., Franklin, M., Cooke, A. R., Wynne, G. M., Castaldo, L., Kahler, J., Winski, S. L., Franks, A., Brown, E. N., Bittner, M. A., Keily, J. F., Briner, P., Hidden, C., Srebernak, M. C., Pirrit, C., O'Connor, M., Chan, A., Vulevic, B., Henninger, D., Hart, K., Sennello, R., Li, A. H., Zhang, T., Richardson, F., Emerson, D. L., Castelhano, A. L., Arnold, L. D. & Gibson, N. W. (2006). Cancer Res. 66, 1015-1024.]); Lin et al. (1997[Lin, C. N., Lee, T. H., Hsu, M. F., Wang, J. P., Ko, F. N. & Teng, C. M. (1997). J. Pharm. Pharmacol. 49, 530-536.]); Hsieh et al. (1998[Hsieh, H. W., Lee, T. H., Wang, J. P., Wang, J. J. & Lin, C. N. (1998). Pharm. Res. 15, 39-46.]); Ko et al. (2003[Ko, H. H., Tsao, L. T., Yu, K. L., Liu, C. T., Wang, J. P. & Lin, C. N. (2003). Bioorg. Med. Chem. 11, 105-111.]). For a related structure, see: Ali et al. (2011[Ali, M. A., Choon, T. S., Lan, L. Y., Rosli, M. M. & Fun, H.-K. (2011). Acta Cryst. E67, o2064.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]) For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C17H11F3O2

  • Mr = 304.26

  • Monoclinic, P 21 /c

  • a = 15.2216 (4) Å

  • b = 14.6734 (4) Å

  • c = 6.1463 (1) Å

  • β = 95.872 (1)°

  • V = 1365.59 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 100 K

  • 0.38 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.955, Tmax = 0.978

  • 27814 measured reflections

  • 4043 independent reflections

  • 3389 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.181

  • S = 1.11

  • 4043 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯O1i 0.99 2.51 3.304 (2) 137
C10—H10A⋯O1ii 0.95 2.45 3.309 (2) 151
Symmetry codes: (i) x, y, z+1; (ii) -x, -y+1, -z-1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Recently it has been reported that dihydroindeno derivatives represent a novel class of KDR kinase inhibitors (Dinges et al. 2006) with inhibition of both KDR and cKit in the appropriate tumor types. They also have the potential to produce antitumor effects through two distinct mechanisms. Inhibition of cKit should result in direct effects on the tumor cell phenotype, while inhibition of KDR should produce indirect effects via disruption of endothelial cell function (Garton et al. 2006). Some of the heterocyclic derivatives inhibited the release of chemical mediators from mast cells, neutrophils, macrophages, and microglial cells in vitro, and suppressed the oedematous response in vivo (Lin et al. 1997, Hsieh et al. 1998, Ko et al. 2003). Many antitumor drugs have been developed for prostate cancer patients but their intolerable systemic toxicity often limits their clinical use. The title compound contains the dihydroindene unit and its structure is reported here, Fig 1.

All bond lengths (Allen et al., 1987) and angles in (I) are within normal ranges. The dihydroindene ring is planar with a maximum deviation of 0.024 (2)Å and it makes a dihedral angle of 3.17 (8)° with the adjancent benzene ring (Fig. 1). In the crystal, the molecules are interconnected by C—H···O interactions (Table 1) to form infinite chains along the c axis (Fig. 2).

Related literature top

For the biological background to dihydroindeno and heterocyclic derivatives, see: Dinges et al. (2006); Garton et al. (2006); Lin et al. (1997); Hsieh et al. (1998); Ko et al. (2003). For a related structure, see: Ali et al. (2011). For standard bond lengths, see: Allen et al. (1987) For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of 2,3-dihydro-1H-indene-1-one (0.001 mmol) and 4-trifluoromethoxy benzaldehyde (0.001 mmol) was dissolved in methanol (10 ml) and 30% sodium hydroxide solution (5 ml) was added and stirred for 5 h. After completion of the reaction as evident from TLC, the mixture was poured into crushed ice and then neutralized with Con HCl. The precipitated solid was filtered, washed with water and recrystallized from ethanol to reveal the title compound as light yellow crystals.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 and 0.99 Å, and with Uiso = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure, showing 50% probability displacement ellipsoids. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The packing of (I) showing infinite chains along c axis. Dashed lines indicate hydrogen bonds. H atoms not involved in the hydrogen bond interactions have been omitted for clarity.
(E)-2-[4-(Trifluoromethoxy)benzylidene]indan-1-one top
Crystal data top
C17H11F3O2F(000) = 624
Mr = 304.26Dx = 1.480 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9932 reflections
a = 15.2216 (4) Åθ = 2.7–30.0°
b = 14.6734 (4) ŵ = 0.12 mm1
c = 6.1463 (1) ÅT = 100 K
β = 95.872 (1)°Block, light-yellow
V = 1365.59 (6) Å30.38 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4043 independent reflections
Radiation source: fine-focus sealed tube3389 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 30.2°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2121
Tmin = 0.955, Tmax = 0.978k = 1920
27814 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.181H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0634P)2 + 1.8592P]
where P = (Fo2 + 2Fc2)/3
4043 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.87 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C17H11F3O2V = 1365.59 (6) Å3
Mr = 304.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.2216 (4) ŵ = 0.12 mm1
b = 14.6734 (4) ÅT = 100 K
c = 6.1463 (1) Å0.38 × 0.20 × 0.18 mm
β = 95.872 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4043 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3389 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.978Rint = 0.036
27814 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.181H-atom parameters constrained
S = 1.11Δρmax = 0.87 e Å3
4043 reflectionsΔρmin = 0.28 e Å3
199 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.40870 (11)0.43026 (14)0.4881 (3)0.0493 (5)
F20.47465 (10)0.43584 (13)0.1983 (3)0.0481 (4)
F30.51278 (10)0.33503 (13)0.4426 (3)0.0467 (4)
O10.10593 (11)0.45341 (11)0.4450 (2)0.0277 (3)
O20.38837 (11)0.31658 (12)0.2471 (3)0.0315 (4)
C10.06329 (13)0.35420 (13)0.0949 (3)0.0211 (4)
H1A0.04350.29060.12200.025*
H1B0.04240.39190.22340.025*
C20.16251 (14)0.35906 (13)0.0484 (3)0.0205 (4)
C30.22701 (14)0.33207 (14)0.1806 (3)0.0245 (4)
H3A0.21110.30770.32240.029*
C40.31497 (15)0.34167 (16)0.1000 (4)0.0294 (5)
H4A0.35950.32330.18830.035*
C50.33995 (15)0.37768 (16)0.1085 (4)0.0287 (4)
H5A0.40070.38340.15960.034*
C60.27604 (14)0.40491 (14)0.2400 (3)0.0244 (4)
H6A0.29210.42950.38150.029*
C70.18764 (13)0.39517 (13)0.1592 (3)0.0199 (4)
C80.10851 (14)0.41903 (13)0.2650 (3)0.0217 (4)
C90.02974 (15)0.39174 (14)0.1129 (3)0.0236 (4)
C100.05182 (15)0.40510 (14)0.1712 (3)0.0238 (4)
H10A0.05410.43000.31320.029*
C110.13779 (14)0.38722 (14)0.0497 (3)0.0231 (4)
C120.21341 (14)0.40795 (14)0.1522 (3)0.0229 (4)
H12A0.20710.43680.29130.027*
C130.29726 (14)0.38732 (14)0.0553 (3)0.0245 (4)
H13A0.34810.39990.12800.029*
C140.30495 (14)0.34785 (14)0.1510 (3)0.0231 (4)
C150.23247 (14)0.32961 (14)0.2623 (3)0.0232 (4)
H15A0.23980.30410.40510.028*
C160.14908 (14)0.34919 (14)0.1619 (3)0.0247 (4)
H16A0.09870.33680.23660.030*
C170.44420 (15)0.37880 (19)0.3410 (4)0.0334 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0378 (9)0.0719 (12)0.0369 (8)0.0042 (8)0.0022 (6)0.0208 (8)
F20.0344 (8)0.0604 (11)0.0489 (9)0.0086 (7)0.0013 (7)0.0168 (8)
F30.0275 (7)0.0728 (12)0.0387 (8)0.0091 (7)0.0019 (6)0.0124 (8)
O10.0325 (8)0.0316 (8)0.0196 (7)0.0001 (6)0.0050 (6)0.0053 (6)
O20.0285 (8)0.0346 (9)0.0309 (8)0.0073 (7)0.0000 (6)0.0027 (6)
C10.0264 (10)0.0186 (9)0.0186 (8)0.0006 (7)0.0030 (7)0.0032 (6)
C20.0271 (10)0.0157 (8)0.0188 (8)0.0003 (7)0.0039 (7)0.0003 (6)
C30.0305 (11)0.0230 (9)0.0211 (9)0.0009 (8)0.0076 (7)0.0024 (7)
C40.0296 (11)0.0299 (11)0.0302 (11)0.0011 (9)0.0110 (8)0.0025 (8)
C50.0262 (10)0.0294 (11)0.0306 (11)0.0015 (8)0.0035 (8)0.0004 (8)
C60.0276 (10)0.0238 (9)0.0218 (9)0.0018 (8)0.0019 (7)0.0002 (7)
C70.0261 (10)0.0160 (8)0.0178 (8)0.0006 (7)0.0042 (7)0.0007 (6)
C80.0271 (10)0.0192 (9)0.0192 (8)0.0002 (7)0.0037 (7)0.0014 (6)
C90.0331 (11)0.0198 (9)0.0183 (8)0.0003 (8)0.0040 (7)0.0004 (7)
C100.0327 (11)0.0208 (9)0.0184 (8)0.0006 (8)0.0043 (7)0.0009 (7)
C110.0285 (10)0.0216 (9)0.0194 (9)0.0007 (8)0.0029 (7)0.0024 (7)
C120.0300 (10)0.0213 (9)0.0173 (8)0.0030 (8)0.0023 (7)0.0006 (7)
C130.0281 (10)0.0252 (10)0.0208 (9)0.0004 (8)0.0050 (7)0.0010 (7)
C140.0271 (10)0.0201 (9)0.0214 (9)0.0029 (7)0.0013 (7)0.0009 (7)
C150.0310 (10)0.0207 (9)0.0175 (8)0.0004 (8)0.0011 (7)0.0014 (7)
C160.0272 (10)0.0257 (10)0.0214 (9)0.0010 (8)0.0036 (7)0.0057 (7)
C170.0248 (11)0.0483 (14)0.0268 (10)0.0028 (10)0.0014 (8)0.0033 (9)
Geometric parameters (Å, º) top
F1—C171.334 (3)C6—C71.393 (3)
F2—C171.330 (3)C6—H6A0.9500
F3—C171.326 (3)C7—C81.469 (3)
O1—C81.220 (2)C8—C91.497 (3)
O2—C171.337 (3)C9—C101.341 (3)
O2—C141.421 (2)C10—C111.463 (3)
C1—C21.510 (3)C10—H10A0.9500
C1—C91.526 (3)C11—C121.401 (3)
C1—H1A0.9900C11—C161.409 (3)
C1—H1B0.9900C12—C131.386 (3)
C2—C31.395 (3)C12—H12A0.9500
C2—C71.398 (3)C13—C141.388 (3)
C3—C41.387 (3)C13—H13A0.9500
C3—H3A0.9500C14—C151.382 (3)
C4—C51.402 (3)C15—C161.384 (3)
C4—H4A0.9500C15—H15A0.9500
C5—C61.386 (3)C16—H16A0.9500
C5—H5A0.9500
C17—O2—C14117.40 (18)C10—C9—C1132.40 (19)
C2—C1—C9103.78 (16)C8—C9—C1107.68 (17)
C2—C1—H1A111.0C9—C10—C11129.92 (19)
C9—C1—H1A111.0C9—C10—H10A115.0
C2—C1—H1B111.0C11—C10—H10A115.0
C9—C1—H1B111.0C12—C11—C16118.21 (19)
H1A—C1—H1B109.0C12—C11—C10117.70 (17)
C3—C2—C7119.75 (19)C16—C11—C10124.08 (19)
C3—C2—C1128.79 (18)C13—C12—C11121.48 (18)
C7—C2—C1111.46 (17)C13—C12—H12A119.3
C4—C3—C2118.33 (19)C11—C12—H12A119.3
C4—C3—H3A120.8C12—C13—C14118.15 (19)
C2—C3—H3A120.8C12—C13—H13A120.9
C3—C4—C5121.8 (2)C14—C13—H13A120.9
C3—C4—H4A119.1C15—C14—C13122.39 (19)
C5—C4—H4A119.1C15—C14—O2117.17 (18)
C6—C5—C4120.1 (2)C13—C14—O2120.18 (19)
C6—C5—H5A120.0C14—C15—C16118.77 (18)
C4—C5—H5A120.0C14—C15—H15A120.6
C5—C6—C7118.19 (19)C16—C15—H15A120.6
C5—C6—H6A120.9C15—C16—C11120.89 (19)
C7—C6—H6A120.9C15—C16—H16A119.6
C6—C7—C2121.90 (18)C11—C16—H16A119.6
C6—C7—C8128.58 (18)F3—C17—F2107.74 (19)
C2—C7—C8109.52 (17)F3—C17—F1108.00 (19)
O1—C8—C7127.16 (19)F2—C17—F1106.5 (2)
O1—C8—C9125.34 (19)F3—C17—O2107.9 (2)
C7—C8—C9107.49 (16)F2—C17—O2113.2 (2)
C10—C9—C8119.89 (18)F1—C17—O2113.3 (2)
C9—C1—C2—C3178.8 (2)C2—C1—C9—C10179.7 (2)
C9—C1—C2—C70.3 (2)C2—C1—C9—C81.8 (2)
C7—C2—C3—C40.4 (3)C8—C9—C10—C11177.73 (19)
C1—C2—C3—C4178.7 (2)C1—C9—C10—C110.1 (4)
C2—C3—C4—C50.2 (3)C9—C10—C11—C12179.9 (2)
C3—C4—C5—C60.1 (4)C9—C10—C11—C161.0 (4)
C4—C5—C6—C70.1 (3)C16—C11—C12—C133.6 (3)
C5—C6—C7—C20.0 (3)C10—C11—C12—C13175.43 (19)
C5—C6—C7—C8179.7 (2)C11—C12—C13—C142.0 (3)
C3—C2—C7—C60.3 (3)C12—C13—C14—C150.7 (3)
C1—C2—C7—C6178.95 (18)C12—C13—C14—O2173.25 (18)
C3—C2—C7—C8179.50 (18)C17—O2—C14—C15105.6 (2)
C1—C2—C7—C81.3 (2)C17—O2—C14—C1380.1 (3)
C6—C7—C8—O11.1 (3)C13—C14—C15—C161.8 (3)
C2—C7—C8—O1178.7 (2)O2—C14—C15—C16172.35 (18)
C6—C7—C8—C9177.8 (2)C14—C15—C16—C110.2 (3)
C2—C7—C8—C92.4 (2)C12—C11—C16—C152.4 (3)
O1—C8—C9—C100.3 (3)C10—C11—C16—C15176.49 (19)
C7—C8—C9—C10179.24 (18)C14—O2—C17—F3172.57 (17)
O1—C8—C9—C1178.51 (19)C14—O2—C17—F268.3 (3)
C7—C8—C9—C12.6 (2)C14—O2—C17—F153.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···O1i0.992.513.304 (2)137
C10—H10A···O1ii0.952.453.309 (2)151
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z1.

Experimental details

Crystal data
Chemical formulaC17H11F3O2
Mr304.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)15.2216 (4), 14.6734 (4), 6.1463 (1)
β (°) 95.872 (1)
V3)1365.59 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.38 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.955, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
27814, 4043, 3389
Rint0.036
(sin θ/λ)max1)0.708
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.181, 1.11
No. of reflections4043
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.87, 0.28

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···O1i0.992.513.304 (2)137
C10—H10A···O1ii0.952.453.309 (2)151
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors wish to express their thanks to Universiti Sains Malaysia (USM), Penang, Malaysia, for providing research facilities. HKF also thanks USM for the Research University Grant (No. 1001/PFIZIK/811160).

References

First citationAli, M. A., Choon, T. S., Lan, L. Y., Rosli, M. M. & Fun, H.-K. (2011). Acta Cryst. E67, o2064.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDinges, J., Akritopoulou-Zanze, A., Arnold, L. D., Barlozzari, T., Bousquet, P. F., Cunha, G. A., Ericsson, A. M., Iwasaki, N., Michaelides, M. R., Ogawa, N., Phelan, K. M., Rafferty, P., Sowin, T. J., Stewart, K. D., Tokuyama, R., Xia, Z. & Zhang, H. Q. (2006). Bioorg. Med. Chem. 16, 4371–4375.  CrossRef CAS Google Scholar
First citationGarton, A. J., Crew, A. P. A., Franklin, M., Cooke, A. R., Wynne, G. M., Castaldo, L., Kahler, J., Winski, S. L., Franks, A., Brown, E. N., Bittner, M. A., Keily, J. F., Briner, P., Hidden, C., Srebernak, M. C., Pirrit, C., O'Connor, M., Chan, A., Vulevic, B., Henninger, D., Hart, K., Sennello, R., Li, A. H., Zhang, T., Richardson, F., Emerson, D. L., Castelhano, A. L., Arnold, L. D. & Gibson, N. W. (2006). Cancer Res. 66, 1015–1024.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHsieh, H. W., Lee, T. H., Wang, J. P., Wang, J. J. & Lin, C. N. (1998). Pharm. Res. 15, 39–46.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKo, H. H., Tsao, L. T., Yu, K. L., Liu, C. T., Wang, J. P. & Lin, C. N. (2003). Bioorg. Med. Chem. 11, 105–111.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLin, C. N., Lee, T. H., Hsu, M. F., Wang, J. P., Ko, F. N. & Teng, C. M. (1997). J. Pharm. Pharmacol. 49, 530–536.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds