organic compounds
(E)-2-[4-(Dimethylamino)styryl]-1-methylpyridinium triiodide
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my
The 16H19N2+·I3−, contains a (E)-2-[4-(dimethylamino)styryl)-1-methylpyridinium cation and half each of two triiodide anions. The complete triiodide anions are each generated by inversion symmetry. The planar cation has all of its eighteen non-H atoms situated on a mirror plane. In the crystal, the cations are stacked along the b axis by π–π interactions with a centroid–centroid distance of 3.5757 (13) Å. The triiodide anions are located between the cations. The is further consolidated by short C⋯C [3.322 (9)–3.3952 (19) Å] contacts.
of the title compound, CRelated literature
For background to and applications of pyridinium compounds, see: Chanawanno et al. (2010); Fisicaro et al. (1990); Pernak et al. (2001). For related structures, see: Chantrapromma et al. (2010); Zhang et al. (2008). For standard bond lengths, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536811028753/sj5182sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811028753/sj5182Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811028753/sj5182Isup3.cml
The title compound was synthesized by mixing a solution of (E)-2-[4-(dimethylamino)styryl]-1-methylpyridinium iodide (Zhang et al., 2008) (0.20 g, 0.55 mmol) in hot methanol (50 ml) and a solution of CuI2 (0.17 g, 0.55 mmol) in hot methanol (30 ml). The mixture was stirred for half an hour and then left at room temperature. The title compound was formed as a red solid after 2 days. Orange needle-shaped single crystals suitable for x-ray
were obtained by recrystallization from ethanol by slow evaporation of the solvent at ambient temperature over several days, M.p. >573 K.All H atoms were placed in calculated positions with d(C—H) = 0.95 Å, Uiso=1.2Ueq(C) for aromatic and CH and 0.96 Å, Uiso = 1.2Ueq(C) for CH3 atoms. The highest residual electron density peak is located at 0.92 Å from I3 and the deepest hole is located at 0.66 Å from C16.
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C16H19N2+·I3− | F(000) = 1152 |
Mr = 620.03 | Dx = 2.178 Mg m−3 |
Monoclinic, C2/m | Melting point > 537 K |
Hall symbol: -C 2y | Mo Kα radiation, λ = 0.71073 Å |
a = 19.8760 (3) Å | Cell parameters from 2484 reflections |
b = 6.6126 (1) Å | θ = 1.4–28.0° |
c = 14.4421 (2) Å | µ = 4.96 mm−1 |
β = 95.107 (1)° | T = 100 K |
V = 1890.62 (5) Å3 | Needle, orange |
Z = 4 | 0.45 × 0.15 × 0.04 mm |
Bruker APEX DUO CCD area-detector diffractometer | 2484 independent reflections |
Radiation source: sealed tube | 2263 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.030 |
ϕ and ω scans | θmax = 28.0°, θmin = 1.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −26→26 |
Tmin = 0.212, Tmax = 0.838 | k = −8→8 |
16143 measured reflections | l = −19→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.079 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0387P)2 + 13.6577P] where P = (Fo2 + 2Fc2)/3 |
2484 reflections | (Δ/σ)max = 0.001 |
129 parameters | Δρmax = 1.74 e Å−3 |
0 restraints | Δρmin = −0.60 e Å−3 |
C16H19N2+·I3− | V = 1890.62 (5) Å3 |
Mr = 620.03 | Z = 4 |
Monoclinic, C2/m | Mo Kα radiation |
a = 19.8760 (3) Å | µ = 4.96 mm−1 |
b = 6.6126 (1) Å | T = 100 K |
c = 14.4421 (2) Å | 0.45 × 0.15 × 0.04 mm |
β = 95.107 (1)° |
Bruker APEX DUO CCD area-detector diffractometer | 2484 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 2263 reflections with I > 2σ(I) |
Tmin = 0.212, Tmax = 0.838 | Rint = 0.030 |
16143 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 0 restraints |
wR(F2) = 0.079 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0387P)2 + 13.6577P] where P = (Fo2 + 2Fc2)/3 |
2484 reflections | Δρmax = 1.74 e Å−3 |
129 parameters | Δρmin = −0.60 e Å−3 |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
I1 | 0.5000 | 0.5000 | 0.0000 | 0.02351 (12) | |
I2 | 0.424696 (18) | 0.5000 | 0.16345 (3) | 0.03339 (11) | |
I3 | 0.5000 | 0.5000 | 0.5000 | 0.03354 (14) | |
I4 | 0.35817 (2) | 0.5000 | 0.42352 (3) | 0.03813 (12) | |
N1 | 0.2700 (3) | 0.0000 | 1.2529 (3) | 0.0300 (10) | |
N2 | 0.4157 (3) | 0.0000 | 0.6794 (4) | 0.0393 (12) | |
C1 | 0.2277 (3) | 0.0000 | 1.3233 (4) | 0.0338 (13) | |
H1A | 0.2472 | 0.0000 | 1.3858 | 0.041* | |
C2 | 0.1609 (3) | 0.0000 | 1.3078 (4) | 0.0356 (13) | |
H2A | 0.1331 | 0.0000 | 1.3580 | 0.043* | |
C3 | 0.1319 (3) | 0.0000 | 1.2140 (4) | 0.0329 (12) | |
H3A | 0.0842 | 0.0000 | 1.2007 | 0.039* | |
C4 | 0.1724 (3) | 0.0000 | 1.1446 (4) | 0.0319 (12) | |
H4A | 0.1530 | 0.0000 | 1.0820 | 0.038* | |
C5 | 0.2453 (3) | 0.0000 | 1.1631 (4) | 0.0288 (11) | |
C6 | 0.2883 (3) | 0.0000 | 1.0881 (4) | 0.0255 (10) | |
H6A | 0.3355 | 0.0000 | 1.1052 | 0.031* | |
C7 | 0.2692 (3) | 0.0000 | 0.9977 (4) | 0.0275 (11) | |
H7A | 0.2218 | 0.0000 | 0.9817 | 0.033* | |
C8 | 0.3107 (3) | 0.0000 | 0.9192 (4) | 0.0290 (11) | |
C9 | 0.2775 (3) | 0.0000 | 0.8304 (4) | 0.0289 (11) | |
H9A | 0.2295 | 0.0000 | 0.8240 | 0.035* | |
C10 | 0.3105 (3) | 0.0000 | 0.7535 (4) | 0.0272 (11) | |
H10A | 0.2852 | 0.0000 | 0.6945 | 0.033* | |
C11 | 0.3815 (3) | 0.0000 | 0.7579 (4) | 0.0232 (10) | |
C12 | 0.4171 (3) | 0.0000 | 0.8475 (4) | 0.0272 (11) | |
H12A | 0.4651 | 0.0000 | 0.8536 | 0.033* | |
C13 | 0.3818 (3) | 0.0000 | 0.9268 (4) | 0.0336 (12) | |
H13A | 0.4059 | 0.0000 | 0.9866 | 0.040* | |
C14 | 0.3424 (3) | 0.0000 | 1.2755 (5) | 0.0361 (13) | |
H14A | 0.3599 | 0.1166 | 1.2461 | 0.043* | |
H14B | 0.3546 | 0.0000 | 1.3414 | 0.043* | |
C15 | 0.3804 (4) | 0.0000 | 0.5885 (4) | 0.0391 (14) | |
H15A | 0.3516 | 0.1166 | 0.5844 | 0.047* | |
H15B | 0.4110 | 0.0000 | 0.5407 | 0.047* | |
C16 | 0.4903 (3) | 0.0000 | 0.6862 (5) | 0.0460 (16) | |
H16A | 0.5052 | 0.1166 | 0.7219 | 0.055* | |
H16B | 0.5073 | 0.0000 | 0.6261 | 0.055* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.0208 (2) | 0.0210 (2) | 0.0277 (2) | 0.000 | −0.00351 (16) | 0.000 |
I2 | 0.03043 (19) | 0.0368 (2) | 0.0338 (2) | 0.000 | 0.00747 (14) | 0.000 |
I3 | 0.0526 (3) | 0.0261 (3) | 0.0232 (2) | 0.000 | 0.0100 (2) | 0.000 |
I4 | 0.0541 (3) | 0.0367 (2) | 0.02383 (19) | 0.000 | 0.00475 (16) | 0.000 |
N1 | 0.038 (2) | 0.023 (2) | 0.028 (2) | 0.000 | −0.0003 (19) | 0.000 |
N2 | 0.047 (3) | 0.044 (3) | 0.028 (2) | 0.000 | 0.011 (2) | 0.000 |
C1 | 0.059 (4) | 0.018 (2) | 0.026 (3) | 0.000 | 0.014 (2) | 0.000 |
C2 | 0.054 (4) | 0.023 (3) | 0.031 (3) | 0.000 | 0.010 (3) | 0.000 |
C3 | 0.038 (3) | 0.023 (3) | 0.037 (3) | 0.000 | 0.002 (2) | 0.000 |
C4 | 0.052 (3) | 0.020 (2) | 0.022 (2) | 0.000 | −0.005 (2) | 0.000 |
C5 | 0.050 (3) | 0.015 (2) | 0.023 (2) | 0.000 | 0.011 (2) | 0.000 |
C6 | 0.036 (3) | 0.017 (2) | 0.024 (2) | 0.000 | 0.004 (2) | 0.000 |
C7 | 0.033 (3) | 0.022 (2) | 0.027 (3) | 0.000 | 0.002 (2) | 0.000 |
C8 | 0.039 (3) | 0.017 (2) | 0.034 (3) | 0.000 | 0.013 (2) | 0.000 |
C9 | 0.026 (2) | 0.017 (2) | 0.044 (3) | 0.000 | 0.005 (2) | 0.000 |
C10 | 0.027 (2) | 0.017 (2) | 0.036 (3) | 0.000 | −0.008 (2) | 0.000 |
C11 | 0.033 (3) | 0.017 (2) | 0.021 (2) | 0.000 | 0.0046 (19) | 0.000 |
C12 | 0.025 (2) | 0.025 (3) | 0.030 (3) | 0.000 | −0.003 (2) | 0.000 |
C13 | 0.052 (3) | 0.025 (3) | 0.022 (3) | 0.000 | −0.008 (2) | 0.000 |
C14 | 0.040 (3) | 0.030 (3) | 0.038 (3) | 0.000 | 0.005 (2) | 0.000 |
C15 | 0.052 (4) | 0.037 (3) | 0.028 (3) | 0.000 | 0.004 (3) | 0.000 |
C16 | 0.040 (3) | 0.056 (4) | 0.044 (4) | 0.000 | 0.015 (3) | 0.000 |
I1—I2i | 2.9054 (4) | C6—H6A | 0.9500 |
I1—I2 | 2.9054 (4) | C7—C8 | 1.459 (8) |
I3—I4 | 2.9347 (4) | C7—H7A | 0.9500 |
I3—I4ii | 2.9347 (4) | C8—C9 | 1.389 (8) |
N1—C5 | 1.346 (7) | C8—C13 | 1.407 (9) |
N1—C1 | 1.375 (7) | C9—C10 | 1.339 (8) |
N1—C14 | 1.448 (8) | C9—H9A | 0.9500 |
N2—C11 | 1.373 (7) | C10—C11 | 1.407 (7) |
N2—C15 | 1.433 (8) | C10—H10A | 0.9500 |
N2—C16 | 1.476 (9) | C11—C12 | 1.420 (7) |
C1—C2 | 1.327 (9) | C12—C13 | 1.396 (8) |
C1—H1A | 0.9500 | C12—H12A | 0.9500 |
C2—C3 | 1.425 (9) | C13—H13A | 0.9500 |
C2—H2A | 0.9500 | C14—H14A | 0.9601 |
C3—C4 | 1.341 (9) | C14—H14B | 0.9600 |
C3—H3A | 0.9500 | C15—H15A | 0.9600 |
C4—C5 | 1.449 (9) | C15—H15B | 0.9598 |
C4—H4A | 0.9500 | C16—H16A | 0.9600 |
C5—C6 | 1.438 (7) | C16—H16B | 0.9600 |
C6—C7 | 1.327 (8) | ||
I2i—I1—I2 | 180.000 (12) | C8—C7—H7A | 115.4 |
I4—I3—I4ii | 180.0 | C9—C8—C13 | 117.6 (5) |
C5—N1—C1 | 121.2 (5) | C9—C8—C7 | 117.5 (5) |
C5—N1—C14 | 119.2 (5) | C13—C8—C7 | 124.9 (5) |
C1—N1—C14 | 119.6 (5) | C10—C9—C8 | 122.6 (5) |
C11—N2—C15 | 121.2 (5) | C10—C9—H9A | 118.7 |
C11—N2—C16 | 120.9 (5) | C8—C9—H9A | 118.7 |
C15—N2—C16 | 117.9 (5) | C9—C10—C11 | 121.7 (5) |
C2—C1—N1 | 122.9 (6) | C9—C10—H10A | 119.2 |
C2—C1—H1A | 118.6 | C11—C10—H10A | 119.2 |
N1—C1—H1A | 118.6 | N2—C11—C10 | 122.2 (5) |
C1—C2—C3 | 118.4 (6) | N2—C11—C12 | 120.6 (5) |
C1—C2—H2A | 120.8 | C10—C11—C12 | 117.3 (5) |
C3—C2—H2A | 120.8 | C13—C12—C11 | 120.1 (5) |
C4—C3—C2 | 119.4 (6) | C13—C12—H12A | 120.0 |
C4—C3—H3A | 120.3 | C11—C12—H12A | 120.0 |
C2—C3—H3A | 120.3 | C12—C13—C8 | 120.8 (5) |
C3—C4—C5 | 121.3 (5) | C12—C13—H13A | 119.6 |
C3—C4—H4A | 119.4 | C8—C13—H13A | 119.6 |
C5—C4—H4A | 119.4 | N1—C14—H14A | 106.9 |
N1—C5—C6 | 122.4 (5) | N1—C14—H14B | 112.4 |
N1—C5—C4 | 116.8 (5) | H14A—C14—H14B | 111.7 |
C6—C5—C4 | 120.8 (5) | N2—C15—H15A | 107.3 |
C7—C6—C5 | 127.2 (5) | N2—C15—H15B | 111.7 |
C7—C6—H6A | 116.4 | H15A—C15—H15B | 111.7 |
C5—C6—H6A | 116.4 | N2—C16—H16A | 107.2 |
C6—C7—C8 | 129.3 (5) | N2—C16—H16B | 111.9 |
C6—C7—H7A | 115.4 | H16A—C16—H16B | 111.7 |
C5—N1—C1—C2 | 0.000 (3) | C6—C7—C8—C13 | 0.000 (2) |
C14—N1—C1—C2 | 180.000 (2) | C13—C8—C9—C10 | 0.000 (2) |
N1—C1—C2—C3 | 0.000 (3) | C7—C8—C9—C10 | 180.000 (2) |
C1—C2—C3—C4 | 0.000 (3) | C8—C9—C10—C11 | 0.000 (2) |
C2—C3—C4—C5 | 0.000 (3) | C15—N2—C11—C10 | 0.000 (2) |
C1—N1—C5—C6 | 180.000 (2) | C16—N2—C11—C10 | 180.000 (1) |
C14—N1—C5—C6 | 0.000 (3) | C15—N2—C11—C12 | 180.000 (1) |
C1—N1—C5—C4 | 0.000 (3) | C16—N2—C11—C12 | 0.000 (2) |
C14—N1—C5—C4 | 180.000 (2) | C9—C10—C11—N2 | 180.000 (1) |
C3—C4—C5—N1 | 0.000 (2) | C9—C10—C11—C12 | 0.000 (2) |
C3—C4—C5—C6 | 180.000 (2) | N2—C11—C12—C13 | 180.000 (2) |
N1—C5—C6—C7 | 180.000 (2) | C10—C11—C12—C13 | 0.000 (2) |
C4—C5—C6—C7 | 0.000 (3) | C11—C12—C13—C8 | 0.000 (2) |
C5—C6—C7—C8 | 180.000 (2) | C9—C8—C13—C12 | 0.000 (2) |
C6—C7—C8—C9 | 180.000 (2) | C7—C8—C13—C12 | 180.000 (2) |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C16H19N2+·I3− |
Mr | 620.03 |
Crystal system, space group | Monoclinic, C2/m |
Temperature (K) | 100 |
a, b, c (Å) | 19.8760 (3), 6.6126 (1), 14.4421 (2) |
β (°) | 95.107 (1) |
V (Å3) | 1890.62 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 4.96 |
Crystal size (mm) | 0.45 × 0.15 × 0.04 |
Data collection | |
Diffractometer | Bruker APEX DUO CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.212, 0.838 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 16143, 2484, 2263 |
Rint | 0.030 |
(sin θ/λ)max (Å−1) | 0.661 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.079, 1.04 |
No. of reflections | 2484 |
No. of parameters | 129 |
H-atom treatment | H-atom parameters constrained |
w = 1/[σ2(Fo2) + (0.0387P)2 + 13.6577P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 1.74, −0.60 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
Acknowledgements
Financial support by the Prince of Songkla University is greatfully acknowledged. The authors also thank Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. KC thanks the Crystal Materials Research Unit for the Research Assistance fellowship.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bruker (2009). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chanawanno, K., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2010). Eur. J. Med. Chem. 45, 4199–4208. Web of Science CSD CrossRef CAS PubMed Google Scholar
Chantrapromma, S., Chanawanno, K. & Fun, H.-K. (2010). Acta Cryst. E66, o1975–o1976. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Fisicaro, E., Pelizzetti, E., Barbieri, M., Savarino, P. & Viscardi, G. (1990). Thermochim. Acta, 168, 143–159. CrossRef CAS Web of Science Google Scholar
Pernak, J., Kalewska, J., Ksycifiska, H. & Cybulski, J. (2001). Eur. J. Med. Chem. 36, 899–907. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, X. H., Wang, L. Y., Zhai, G. H., Wen, Z. Y. & Zhang, Z. X. (2008). J. Mol. Struct. 881, 117–122. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Pyridinium halide salts, generally possess surface active and interesting antimicrobial properties. They contain reactive functional groups covalently bound to the long hydrophobic chain and can exhibit biological activity (Fisicaro et al., 1990; Chanawanno et al., 2010). It has been proven that one of the factors which control their antimicrobial activity is the presence of anions in the compounds. In the work done by Pernak and coworkers, it was shown that the various anion types can exhibit different antimicrobial activities (Pernak et al., 2001). As our ongoing research is aimed at enhancing the antimicrobial activity of pyridinium salts, we have synthesized pyridinium salts with various anions in order to investigate the relationship between the types of anion and their antimicrobial properties. In the course of this work, the title compound (I) was synthesized and its crystal structure is reported here.
Fig. 1 shows the molecular structure of the title compound (I); the asymmetric unit consists of a C16H19N2+ cation and two half-I3- anions. The complete molecule of one triiodide anion (I2A) is generated by a crystallographic symmetry centre 1 - x, y, -z whereas the other (I4A) is by 1 - x, y, 1 - z. The cation is 100% planar as all its eighteen non-hydrogen atoms lie on a mirror plane, x, 0, z. One H atom of each of its three methyl groups at C14, C15 and C16 also lies in the mirror plane. The cation exists in an E configuration with respect to the C6═C7 double bond [1.327 (8) Å] and the torsion angles C5–C6–C7–C8 = 180.000 (3)°. The bond lengths (Allen et al., 1987) and angles in (I) are in normal ranges and comparable to those found in related structures (Chantrapromma et al., 2010; Zhang et al., 2008).
In the crystal packing (Fig. 2) the cations are stacked along the b axis by π···π interactions with the distances Cg1···Cg2 = 3.5757 (13) Å (symmetry codes: 1/2 - x, -1/2 + y, 2 - z; 1/2 - x, 1/2 + y, 2 - z; 1/2 - x, -1/2 - y, 2 - z and 1/2 - x, 1/2 - y, 2 - z); Cg1 and Cg2 are the centroids of the C1–C5/N1 and C8–C13, respectively. Triiodide anions are located in the interstitials of the cations. The crystal structure is further consolidated by these π···π interactions and short C···C [3.322 (9)–3.3952 (19)Å] contacts.