organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Bis(4-chloro­phenyl­sulfon­yl)suberamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287, Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 15 July 2011; accepted 17 July 2011; online 23 July 2011)

The asymmetric unit of the title compound, C20H22Cl2N2O6S2, contains one half-mol­ecule with a center of symmetry at the mid-point of the central C—C bond. The conformations of all the N—H, C=O and C—H bonds in the central amide and aliphatic segments are anti to their adjacent bonds. The mol­ecule is bent at the S atom with a C—SO2—NH—C(O) torsion angle of −80.6 (4)°. The dihedral angle between the benzene ring and the SO2—NH—C(O)—CH2—CH2—CH2 segment is 79.5 (2)°. In the crystal, inter­molecular N—H⋯O(C) and N—H⋯O(S) hydrogen bonds link the mol­ecules into chains along the b axis.

Related literature

For our studies on the effects of substituents on the structures of N-(ar­yl)-amides, see: Gowda et al. (2000[Gowda, B. T., Svoboda, I. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 779-790.], 2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o1975-o1976.]), on N-(aryl­sulfon­yl)-amides, see: Rodrigues et al. (2011a[Rodrigues, V. Z., Foro, S. & Gowda, B. T. (2011a). Acta Cryst. E67, o837.],b[Rodrigues, V. Z., Foro, S. & Gowda, B. T. (2011b). Acta Cryst. E67, o884.]) and on N-(ar­yl)-aryl­sulfonamides, see: Gowda et al. (2005[Gowda, B. T., Shetty, M. & Jayalakshmi, K. L. (2005). Z. Naturforsch. Teil A, 60, 106-112.]).

[Scheme 1]

Experimental

Crystal data
  • C20H22Cl2N2O6S2

  • Mr = 521.42

  • Monoclinic, P 21 /c

  • a = 21.925 (4) Å

  • b = 5.5855 (8) Å

  • c = 9.381 (1) Å

  • β = 93.91 (1)°

  • V = 1146.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 293 K

  • 0.48 × 0.14 × 0.06 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.793, Tmax = 0.970

  • 3854 measured reflections

  • 2081 independent reflections

  • 1522 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.115

  • S = 1.18

  • 2081 reflections

  • 148 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.85 (2) 2.19 (3) 2.975 (4) 153 (4)
N1—H1N⋯O3i 0.85 (2) 2.57 (3) 3.227 (4) 135 (3)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The amide moiety is an important constituent of many biologically significant compounds. As part of our studies on the effects of ring and side chain substitutions on the structures of N-(aryl)-amides (Gowda et al., 2000, 2007), N-(arylsulfonyl)-amides (Rodrigues et al., 2011a,b) and N-(aryl)- arylsulfonamides (Gowda et al., 2005), the crystal structure of N,N-bis(4-chlorophenylsulfonyl)-suberamide has been determined (I) (Fig. 1).

In the two C—SO2—NH—CO—CH2—CH2—CH2— central amide and aliphatic segments of the structure, all the N—H, C=O and C—H bonds in the amide and aliphatic segments are anti to the adjacent bonds, similar to that observed in N,N-bis(2-chlorophenylsulfonyl)-suberamide (II) (Rodrigues et al., 2011b) and N,N-bis(2-chlorophenylsulfonyl)-adipamide (III) (Rodrigues et al., 2011a). The orientations of sulfonamide groups with respect to the attached phenyl rings are given by the torsion angles of C2—C1—S1—N1 = -113.9 (4)° and C6—C1—S1—N1 = 67.2 (3)°. The molecule is bent at the S atom with the C1—S1—N1—C7 torsion angle of -80.6 (4)°, compared to the values of 68.2 (2)° in (II) and -65.1 (6)° in (III). In (I), the aliphatic chain is linear with the C7—C8—C9—C10 torsion angle of -179.4 (4)°.

The dihedral angle between the benzene ring and the SO2—NH—C(O)—CH2—CH2—CH2 segment in the two halves of the molecule is 79.5 (2)°, compared to the values of 77.5 (1)° in (II) and 89.6 (2)° in (III).

The structure shows simultaneous of N—H···O(C) and N—H···O(S) intermolecular hydrogen bonds (Table 1), which link the molecules into infinite chains along the b-axis.

Related literature top

For our studies on the effects of substituents on the structures of N-(aryl)-amides, see: Gowda et al. (2000, 2007), on N-(arylsulfonyl)-amides, see: Rodrigues et al. (2011a,b) and on N-(aryl)-arylsulfonamides, see: Gowda et al. (2005).

Experimental top

N,N-Bis(4-chlorophenylsulfonyl)-suberamide was prepared by refluxing a mixture of suberic acid (octanedioic acid) (0.01 mol) with 4-chlorobenzenesulfonamide (0.02 mol) and POCl3 for 1 hr on a water bath. The reaction mixture was allowed to cool and ether added to it. The solid product was filtered and washed thoroughly with ether and hot ethanol. The compound was recrystallized to the constant melting point and characterized by its infrared and NMR spectra.

Needle like colorless single crystals used in the X-ray diffraction studies were grown by a slow evaporation of a solution of the compound in ethanol at room temperature.

Refinement top

The H atom of the NH group was located in a difference map and later restrained to N—H = 0.86 (2) Å. The other H atoms were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93Å and the methylene C—H = 0.97 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
N,N'-Bis(4-chlorophenylsulfonyl)suberamide top
Crystal data top
C20H22Cl2N2O6S2F(000) = 540
Mr = 521.42Dx = 1.511 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1226 reflections
a = 21.925 (4) Åθ = 2.8–27.9°
b = 5.5855 (8) ŵ = 0.51 mm1
c = 9.381 (1) ÅT = 293 K
β = 93.91 (1)°Needle, colourless
V = 1146.1 (3) Å30.48 × 0.14 × 0.06 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
2081 independent reflections
Radiation source: fine-focus sealed tube1522 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Rotation method data acquisition using ω scans.θmax = 25.3°, θmin = 2.8°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 2426
Tmin = 0.793, Tmax = 0.970k = 65
3854 measured reflectionsl = 119
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.18 w = 1/[σ2(Fo2) + (0.P)2 + 2.6128P]
where P = (Fo2 + 2Fc2)/3
2081 reflections(Δ/σ)max = 0.009
148 parametersΔρmax = 0.29 e Å3
1 restraintΔρmin = 0.32 e Å3
Crystal data top
C20H22Cl2N2O6S2V = 1146.1 (3) Å3
Mr = 521.42Z = 2
Monoclinic, P21/cMo Kα radiation
a = 21.925 (4) ŵ = 0.51 mm1
b = 5.5855 (8) ÅT = 293 K
c = 9.381 (1) Å0.48 × 0.14 × 0.06 mm
β = 93.91 (1)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
2081 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1522 reflections with I > 2σ(I)
Tmin = 0.793, Tmax = 0.970Rint = 0.029
3854 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0631 restraint
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.18Δρmax = 0.29 e Å3
2081 reflectionsΔρmin = 0.32 e Å3
148 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.04045 (6)0.7957 (3)0.3395 (2)0.1014 (6)
S10.26694 (5)0.1182 (2)0.39060 (10)0.0397 (3)
O10.25535 (13)0.0692 (5)0.4882 (3)0.0482 (8)
O20.28271 (13)0.0610 (5)0.2497 (3)0.0486 (8)
O30.35809 (14)0.4648 (6)0.2761 (3)0.0608 (10)
N10.32305 (15)0.2771 (6)0.4690 (3)0.0397 (8)
H1N0.3190 (18)0.284 (7)0.559 (2)0.048*
C10.20287 (18)0.3113 (8)0.3787 (4)0.0405 (10)
C20.1531 (2)0.2614 (9)0.4551 (5)0.0573 (13)
H20.15340.12850.51480.069*
C30.1026 (2)0.4101 (10)0.4425 (6)0.0694 (15)
H30.06860.37760.49320.083*
C40.1034 (2)0.6059 (9)0.3547 (6)0.0596 (13)
C50.1531 (2)0.6559 (9)0.2780 (5)0.0551 (12)
H50.15270.78860.21810.066*
C60.2034 (2)0.5079 (8)0.2906 (4)0.0470 (11)
H60.23740.54070.23990.056*
C70.35867 (17)0.4445 (8)0.4041 (4)0.0378 (10)
C80.39757 (17)0.5930 (8)0.5078 (4)0.0389 (10)
H8A0.42230.48760.57030.047*
H8B0.37130.68460.56650.047*
C90.43924 (18)0.7634 (8)0.4345 (4)0.0409 (10)
H9A0.46510.67150.37490.049*
H9B0.41440.86930.37260.049*
C100.47944 (17)0.9135 (8)0.5373 (4)0.0394 (10)
H10A0.50480.80790.59840.047*
H10B0.45371.00410.59780.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0516 (8)0.0761 (11)0.1751 (18)0.0094 (8)0.0036 (9)0.0021 (11)
S10.0432 (6)0.0422 (6)0.0343 (5)0.0088 (5)0.0065 (4)0.0047 (5)
O10.0551 (18)0.0452 (19)0.0447 (16)0.0108 (15)0.0069 (14)0.0030 (14)
O20.0577 (19)0.054 (2)0.0353 (15)0.0070 (15)0.0085 (13)0.0108 (14)
O30.063 (2)0.086 (3)0.0328 (16)0.0361 (19)0.0026 (14)0.0065 (16)
N10.0386 (18)0.052 (2)0.0298 (16)0.0161 (17)0.0076 (15)0.0034 (17)
C10.042 (2)0.043 (3)0.036 (2)0.010 (2)0.0002 (18)0.005 (2)
C20.044 (3)0.064 (3)0.065 (3)0.009 (3)0.013 (2)0.011 (3)
C30.041 (3)0.078 (4)0.091 (4)0.008 (3)0.018 (3)0.006 (3)
C40.040 (3)0.054 (3)0.083 (3)0.007 (2)0.009 (2)0.010 (3)
C50.063 (3)0.044 (3)0.057 (3)0.010 (2)0.004 (2)0.004 (2)
C60.044 (3)0.050 (3)0.047 (2)0.008 (2)0.007 (2)0.006 (2)
C70.028 (2)0.050 (3)0.036 (2)0.0030 (19)0.0049 (17)0.0005 (19)
C80.035 (2)0.049 (3)0.034 (2)0.005 (2)0.0056 (17)0.004 (2)
C90.040 (2)0.044 (3)0.038 (2)0.010 (2)0.0075 (17)0.0012 (19)
C100.035 (2)0.047 (3)0.036 (2)0.005 (2)0.0071 (17)0.0043 (19)
Geometric parameters (Å, º) top
Cl1—C41.738 (5)C4—C51.375 (6)
S1—O11.425 (3)C5—C61.377 (6)
S1—O21.425 (3)C5—H50.9300
S1—N11.649 (3)C6—H60.9300
S1—C11.769 (4)C7—C81.499 (5)
O3—C71.205 (4)C8—C91.516 (5)
N1—C71.386 (5)C8—H8A0.9700
N1—H1N0.852 (18)C8—H8B0.9700
C1—C21.374 (5)C9—C101.515 (5)
C1—C61.375 (6)C9—H9A0.9700
C2—C31.382 (7)C9—H9B0.9700
C2—H20.9300C10—C10i1.525 (7)
C3—C41.370 (7)C10—H10A0.9700
C3—H30.9300C10—H10B0.9700
O1—S1—O2119.75 (18)C5—C6—C1119.4 (4)
O1—S1—N1105.61 (17)C5—C6—H6120.3
O2—S1—N1108.29 (17)C1—C6—H6120.3
O1—S1—C1108.25 (18)O3—C7—N1122.2 (4)
O2—S1—C1108.65 (18)O3—C7—C8124.1 (4)
N1—S1—C1105.37 (19)N1—C7—C8113.6 (3)
C7—N1—S1126.4 (3)C7—C8—C9112.8 (3)
C7—N1—H1N120 (3)C7—C8—H8A109.0
S1—N1—H1N110 (3)C9—C8—H8A109.0
C2—C1—C6121.0 (4)C7—C8—H8B109.0
C2—C1—S1119.9 (4)C9—C8—H8B109.0
C6—C1—S1119.1 (3)H8A—C8—H8B107.8
C1—C2—C3119.6 (5)C10—C9—C8113.6 (3)
C1—C2—H2120.2C10—C9—H9A108.8
C3—C2—H2120.2C8—C9—H9A108.8
C4—C3—C2119.3 (4)C10—C9—H9B108.8
C4—C3—H3120.4C8—C9—H9B108.8
C2—C3—H3120.4H9A—C9—H9B107.7
C3—C4—C5121.2 (5)C9—C10—C10i113.2 (4)
C3—C4—Cl1119.7 (4)C9—C10—H10A108.9
C5—C4—Cl1119.1 (4)C10i—C10—H10A108.9
C6—C5—C4119.5 (4)C9—C10—H10B108.9
C6—C5—H5120.3C10i—C10—H10B108.9
C4—C5—H5120.3H10A—C10—H10B107.7
O1—S1—N1—C7165.0 (3)C2—C3—C4—Cl1179.4 (4)
O2—S1—N1—C735.6 (4)C3—C4—C5—C60.7 (7)
C1—S1—N1—C780.6 (4)Cl1—C4—C5—C6179.3 (3)
O1—S1—C1—C21.3 (4)C4—C5—C6—C10.6 (7)
O2—S1—C1—C2130.2 (3)C2—C1—C6—C50.5 (6)
N1—S1—C1—C2113.9 (4)S1—C1—C6—C5178.4 (3)
O1—S1—C1—C6179.8 (3)S1—N1—C7—O311.8 (6)
O2—S1—C1—C648.7 (4)S1—N1—C7—C8168.7 (3)
N1—S1—C1—C667.1 (3)O3—C7—C8—C93.3 (6)
C6—C1—C2—C30.5 (7)N1—C7—C8—C9176.2 (3)
S1—C1—C2—C3178.5 (4)C7—C8—C9—C10179.4 (3)
C1—C2—C3—C40.5 (8)C8—C9—C10—C10i179.2 (4)
C2—C3—C4—C50.6 (8)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2ii0.85 (2)2.19 (3)2.975 (4)153 (4)
N1—H1N···O3ii0.85 (2)2.57 (3)3.227 (4)135 (3)
Symmetry code: (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H22Cl2N2O6S2
Mr521.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)21.925 (4), 5.5855 (8), 9.381 (1)
β (°) 93.91 (1)
V3)1146.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.51
Crystal size (mm)0.48 × 0.14 × 0.06
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.793, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
3854, 2081, 1522
Rint0.029
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.115, 1.18
No. of reflections2081
No. of parameters148
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.32

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.852 (18)2.19 (3)2.975 (4)153 (4)
N1—H1N···O3i0.852 (18)2.57 (3)3.227 (4)135 (3)
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

VZR thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship.

References

First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o1975–o1976.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Shetty, M. & Jayalakshmi, K. L. (2005). Z. Naturforsch. Teil A, 60, 106–112.  CAS Google Scholar
First citationGowda, B. T., Svoboda, I. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 779–790.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationRodrigues, V. Z., Foro, S. & Gowda, B. T. (2011a). Acta Cryst. E67, o837.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRodrigues, V. Z., Foro, S. & Gowda, B. T. (2011b). Acta Cryst. E67, o884.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds