metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[2,6-bis­­(3,5-di­methyl-1H-pyrazol-1-yl)pyridine]di-μ3-iodido-di­iodido­tetra­copper(I)

aDepartment of Chemistry, DeZhou University, De Zhou, Shan Dong 253023, People's Republic of China
*Correspondence e-mail: jiachunxiao@yahoo.com.cn

(Received 13 June 2011; accepted 4 July 2011; online 9 July 2011)

In the title centrosymmetric tetra­nuclear complex, [Cu4I4(C15H17N5)2], the two distinct CuI atoms adopt similar tetra­hedral arrangements, each being ligated by two I atoms, and two N atoms from one 2,6-bis­(3,5-dimethyl-1H-pyrazol-1-yl)pyridine ligand. In the crystal, there are no hydrogen bonds present, and only very weak ππ inter­actions are observed [centroid–centroid distance = 3.985 (4) Å], which connect neighbouring tetra­nuclear units into a chain motif along the b axis.

Related literature

For related structures and background references, see: Carina et al. (1998[Carina, R. F., Williams, A. F. & Riguet, C. (1998). Helv. Chim. Acta, 81, 548-557.]); Constable et al. (1994[Constable, E. C., Edwards, A. J., Hannon, M. J. & Raithby, P. R. (1994). J. Chem. Soc. Chem. Commun. pp. 1991-1992.]); Piguet et al. (1989[Piguet, C., Bernardinelli, G. & Williams, A. F. (1989). Inorg. Chem. 28, 2920-2925.]); Solanki et al. (1999[Solanki, N. K., Wheatley, E. H., Radojevic, S., McPartlin, M. & Halcrow, M. A. (1999). J. Chem. Soc. Dalton Trans. pp. 521-523.]); Laza­rou et al. (2009[Lazarou, K. N., Raptopoulou, C. P., Perlepes, S. P. & Psycharis, V. (2009). Polyhedron, 28, 3185-3192.], 2010[Lazarou, K. N., Chadjistamatis, I., Terzis, A., Perlepes, S. P. & Raptopoulou, C. P. (2010). Polyhedron, 29, 1870-1879.]). For tetra­hedral geometry, see: Halcrow et al. (1997[Halcrow, M. A., Cromhout, N. L. & Raithby, P. R. (1997). Polyhedron, 16, 4257-4264.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu4I4(C15H17N5)2]

  • Mr = 1296.47

  • Monoclinic, P 21 /c

  • a = 10.196 (2) Å

  • b = 11.425 (2) Å

  • c = 16.572 (3) Å

  • β = 98.67 (3)°

  • V = 1908.3 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.47 mm−1

  • T = 296 K

  • 0.23 × 0.20 × 0.19 mm

Data collection
  • Rigaku Mercury diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.366, Tmax = 0.423

  • 18181 measured reflections

  • 3484 independent reflections

  • 3090 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.144

  • S = 1.04

  • 3484 reflections

  • 221 parameters

  • H-atom parameters constrained

  • Δρmax = 0.79 e Å−3

  • Δρmin = −1.14 e Å−3

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The study of dimeric double helical complexes generated from copper(I) salts and 2,6-bis(imidazol-2-yl)pyridine ligands demonstrates that, the variable copper(I) coordination geometries in the helicates can exhibit different connectivity patterns, such as {4+2}, {2+2+2}, and {3+3} motifs (Carina et al., 1998; Constable et al., 1994; Piguet et al., 1989; Solanki et al., 1999). Recently, some auxiliary ligands have also been introduced into these coordination systems (Lazarou et al., 2009, 2010). Here, we used iodine ions to bridge the copper(I) ions, which resulted in the tetranuclear coordination motif of the title compound (Fig. 1).

There are two crystallographic distinct copper(I) centers in this complex, which display similar coordination environments. Each metal center is linked to two nitrogen atoms from one 2,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)pyridine ligand, and to two iodine ions to give the tetrahedral coordination geometry. Both the geometries at atoms Cu1 and Cu2 are slightly flattened, the dihedral angles between the planes of the donors [Cu,N,N] and [Cu,I,I] are 75.2 (2)° and 81.46 (19)°, for atoms Cu1 and Cu2, respectively; they should be 90° for an 'ideal' tetrahedron (Halcrow et al., 1997). Paired copper(I) atoms are ligated to one 2,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)pyridine ligand acting as a tridentate ligand, forming two five membered chelate rings. In favour of the bridging role of the I1 donor is the fact that the binuclear coordination units, which are interlinked via an invesion center into a tetranuclear entity, feature two kinds of coordination squares with the compositions of Cu2IN and Cu2I2.

In the crystal, there exists a very weak ππ interaction, between the pyridyl ring (N1/C1—C5) and a pyrazol ring (N2,N3/C6—C8) from an adjacent molecule, with a centroid to centroid distance of 3.985 (4) Å and a dihedral angle of 24.72° (Fig. 2).

Related literature top

For related structures and background references, see: Carina et al. (1998); Constable et al. (1994); Piguet et al. (1989); Solanki et al. (1999); Lazarou et al. (2009, 2010). For tetrahedral geometry, see: Halcrow et al. (1997).

Experimental top

A mixture of CuI (15 mg, 0.1 mmol) and 2,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)pyridine (13 mg, 0.05 mmol) was dissolved in MeCN (2 ml) in air. A light green solution was obtained, which was transferred into a Pyrex glass tube. It was then sealed and heated to 393 K for 48 h, and cooled to room temperature at a rate of 5 °C/h. Blue blocks of the title complex were formed. They were collected by filtration, washed with MeCN/Et2O (v/v = 1: 4) and dried in air.

Refinement top

The C-bound H-atoms were included in calculated positions and treated as riding atoms: C-H = 0.96 Å for CH3(methyl), with Uiso(H) = 1.5Ueq(parent C-atom).

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the numbering scheme and displacement ellipsoids drawn at the 30% probability level [Symmetry code: (a) -x+2, -y, -z].
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of the title compound. The ππ interactions are shown as green dashed lines.
Bis[2,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)pyridine]di-µ3-iodido- diiodidotetracopper(I) top
Crystal data top
[Cu4I4(C15H17N5)2]F(000) = 1224
Mr = 1296.47Dx = 2.256 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6904 reflections
a = 10.196 (2) Åθ = 3.1–25.4°
b = 11.425 (2) ŵ = 5.47 mm1
c = 16.572 (3) ÅT = 296 K
β = 98.67 (3)°Block, yellow
V = 1908.3 (7) Å30.23 × 0.20 × 0.19 mm
Z = 2
Data collection top
Rigaku Mercury
diffractometer
3484 independent reflections
Radiation source: fine-focus sealed tube3090 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω scansθmax = 25.4°, θmin = 3.1°
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
h = 1212
Tmin = 0.366, Tmax = 0.423k = 1313
18181 measured reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
3484 reflections(Δ/σ)max = 0.001
221 parametersΔρmax = 0.79 e Å3
0 restraintsΔρmin = 1.14 e Å3
Crystal data top
[Cu4I4(C15H17N5)2]V = 1908.3 (7) Å3
Mr = 1296.47Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.196 (2) ŵ = 5.47 mm1
b = 11.425 (2) ÅT = 296 K
c = 16.572 (3) Å0.23 × 0.20 × 0.19 mm
β = 98.67 (3)°
Data collection top
Rigaku Mercury
diffractometer
3484 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
3090 reflections with I > 2σ(I)
Tmin = 0.366, Tmax = 0.423Rint = 0.044
18181 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.04Δρmax = 0.79 e Å3
3484 reflectionsΔρmin = 1.14 e Å3
221 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.89222 (5)0.01954 (4)0.10655 (3)0.0451 (2)
I20.69949 (5)0.31427 (5)0.14285 (3)0.0560 (2)
Cu11.09482 (9)0.06814 (8)0.03673 (5)0.0496 (3)
Cu20.88858 (8)0.21963 (8)0.09155 (6)0.0505 (3)
N11.0760 (5)0.2853 (4)0.0443 (3)0.0330 (16)
N20.8750 (5)0.3195 (4)0.0368 (3)0.0317 (16)
N30.9228 (5)0.2702 (4)0.1017 (3)0.0327 (16)
N41.2814 (5)0.2399 (4)0.1183 (3)0.0370 (17)
N51.2690 (5)0.1243 (4)0.0920 (3)0.0390 (17)
C11.1655 (6)0.3094 (5)0.1094 (4)0.0338 (17)
C21.1460 (6)0.3916 (5)0.1671 (4)0.0373 (19)
C31.0338 (7)0.4591 (5)0.1528 (4)0.0394 (19)
C40.9396 (6)0.4392 (5)0.0853 (4)0.0353 (17)
C50.9650 (6)0.3487 (5)0.0339 (3)0.0329 (17)
C60.7411 (6)0.3407 (6)0.0557 (4)0.0385 (19)
C70.7065 (6)0.3060 (6)0.1340 (4)0.0392 (19)
C80.8209 (6)0.2622 (5)0.1604 (4)0.0364 (17)
C90.6551 (7)0.3812 (8)0.0042 (5)0.061 (3)
C100.8402 (7)0.2080 (7)0.2401 (4)0.050 (2)
C111.4084 (6)0.2670 (6)0.1455 (4)0.0409 (19)
C121.4805 (7)0.1673 (6)0.1367 (5)0.050 (2)
C131.3894 (7)0.0821 (6)0.1042 (4)0.046 (2)
C141.4556 (8)0.3854 (7)0.1752 (5)0.059 (3)
C151.4186 (10)0.0425 (7)0.0865 (6)0.074 (3)
H21.207100.401100.214300.0450*
H31.021000.518800.188900.0470*
H40.862900.484100.074800.0420*
H70.622400.310400.164600.0470*
H9A0.649800.465100.003000.0910*
H9B0.692500.355800.058000.0910*
H9C0.567900.348700.010000.0910*
H10A0.930100.219700.249000.0750*
H10B0.780900.243900.283600.0750*
H10C0.821900.125600.238800.0750*
H121.571900.158400.149800.0610*
H14A1.405400.444400.142800.0890*
H14B1.547900.393700.170600.0890*
H14C1.443900.394300.231300.0890*
H15A1.375800.092900.120800.1100*
H15B1.512700.055300.096900.1100*
H15C1.386200.059400.030300.1100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0518 (3)0.0381 (3)0.0481 (3)0.0022 (2)0.0159 (2)0.0044 (2)
I20.0392 (3)0.0522 (3)0.0810 (4)0.0087 (2)0.0229 (3)0.0150 (2)
Cu10.0423 (5)0.0509 (5)0.0544 (5)0.0101 (4)0.0032 (4)0.0077 (4)
Cu20.0319 (5)0.0540 (6)0.0667 (6)0.0032 (4)0.0112 (4)0.0004 (4)
N10.027 (3)0.038 (3)0.034 (2)0.000 (2)0.005 (2)0.003 (2)
N20.027 (3)0.037 (3)0.032 (2)0.000 (2)0.007 (2)0.001 (2)
N30.030 (3)0.036 (3)0.033 (2)0.001 (2)0.008 (2)0.003 (2)
N40.035 (3)0.036 (3)0.039 (3)0.002 (2)0.002 (2)0.003 (2)
N50.034 (3)0.031 (3)0.051 (3)0.003 (2)0.003 (2)0.002 (2)
C10.033 (3)0.034 (3)0.035 (3)0.000 (3)0.007 (3)0.003 (3)
C20.040 (4)0.036 (3)0.035 (3)0.005 (3)0.003 (3)0.001 (3)
C30.044 (4)0.031 (3)0.045 (3)0.000 (3)0.013 (3)0.003 (3)
C40.037 (3)0.032 (3)0.037 (3)0.000 (3)0.006 (3)0.000 (3)
C50.031 (3)0.031 (3)0.036 (3)0.004 (3)0.003 (3)0.003 (2)
C60.029 (3)0.039 (3)0.049 (4)0.006 (3)0.011 (3)0.004 (3)
C70.031 (3)0.039 (4)0.045 (3)0.002 (3)0.003 (3)0.001 (3)
C80.033 (3)0.031 (3)0.044 (3)0.002 (3)0.002 (3)0.009 (3)
C90.033 (4)0.085 (6)0.066 (5)0.003 (4)0.012 (4)0.018 (4)
C100.047 (4)0.064 (5)0.038 (3)0.009 (4)0.001 (3)0.010 (3)
C110.029 (3)0.048 (4)0.043 (3)0.009 (3)0.003 (3)0.005 (3)
C120.031 (4)0.052 (4)0.066 (4)0.004 (3)0.000 (3)0.006 (4)
C130.045 (4)0.039 (4)0.052 (4)0.003 (3)0.005 (3)0.006 (3)
C140.049 (5)0.054 (5)0.072 (5)0.011 (4)0.002 (4)0.008 (4)
C150.073 (6)0.046 (5)0.101 (7)0.011 (4)0.010 (5)0.001 (5)
Geometric parameters (Å, º) top
I1—Cu12.5758 (12)C7—C81.399 (9)
I1—Cu22.7435 (12)C8—C101.498 (9)
I1—Cu1i2.5988 (11)C11—C121.375 (10)
I2—Cu22.4704 (11)C11—C141.494 (11)
Cu1—N12.493 (5)C12—C131.396 (10)
Cu1—N51.978 (5)C13—C151.493 (11)
Cu2—N1i2.451 (5)C2—H20.9300
Cu2—N3i1.991 (5)C3—H30.9300
N1—C11.333 (8)C4—H40.9300
N1—C51.333 (8)C7—H70.9300
N2—N31.367 (7)C9—H9A0.9600
N2—C51.415 (7)C9—H9B0.9600
N2—C61.375 (8)C9—H9C0.9600
N3—C81.315 (8)C10—H10A0.9600
N4—N51.391 (7)C10—H10B0.9600
N4—C11.413 (8)C10—H10C0.9600
N4—C111.342 (8)C12—H120.9300
N5—C131.306 (9)C14—H14A0.9600
C1—C21.376 (9)C14—H14B0.9600
C2—C31.370 (9)C14—H14C0.9600
C3—C41.379 (9)C15—H15A0.9600
C4—C51.389 (8)C15—H15B0.9600
C6—C71.352 (9)C15—H15C0.9600
C6—C91.494 (10)
Cu1—I1—Cu2100.07 (4)C6—C7—C8107.2 (6)
Cu1—I1—Cu1i61.18 (4)N3—C8—C7110.3 (6)
Cu1i—I1—Cu262.30 (4)N3—C8—C10119.1 (6)
I1—Cu1—N196.83 (13)C7—C8—C10130.6 (6)
I1—Cu1—N5125.92 (15)N4—C11—C12106.1 (6)
I1—Cu1—I1i118.82 (5)N4—C11—C14124.5 (6)
N1—Cu1—N574.01 (18)C12—C11—C14129.4 (6)
I1i—Cu1—N1116.39 (12)C11—C12—C13106.5 (6)
I1i—Cu1—N5112.48 (15)N5—C13—C12111.0 (6)
I1—Cu2—I2113.91 (5)N5—C13—C15122.2 (7)
I1—Cu2—N1i112.72 (12)C12—C13—C15126.9 (7)
I1—Cu2—N3i106.36 (14)C1—C2—H2121.00
I2—Cu2—N1i114.38 (13)C3—C2—H2121.00
I2—Cu2—N3i129.64 (15)C2—C3—H3120.00
N1i—Cu2—N3i73.41 (19)C4—C3—H3120.00
Cu1—N1—C1101.4 (4)C3—C4—H4122.00
Cu1—N1—C5127.2 (4)C5—C4—H4122.00
Cu1—N1—Cu2i68.04 (13)C6—C7—H7126.00
C1—N1—C5117.2 (5)C8—C7—H7126.00
Cu2i—N1—C1129.0 (4)C6—C9—H9A109.00
Cu2i—N1—C5106.7 (3)C6—C9—H9B109.00
N3—N2—C5119.0 (5)C6—C9—H9C109.00
N3—N2—C6110.7 (5)H9A—C9—H9B110.00
C5—N2—C6130.1 (5)H9A—C9—H9C110.00
N2—N3—C8106.0 (5)H9B—C9—H9C110.00
Cu2i—N3—N2120.5 (4)C8—C10—H10A109.00
Cu2i—N3—C8133.5 (4)C8—C10—H10B109.00
N5—N4—C1117.8 (5)C8—C10—H10C109.00
N5—N4—C11111.2 (5)H10A—C10—H10B109.00
C1—N4—C11130.9 (5)H10A—C10—H10C109.00
Cu1—N5—N4119.1 (4)H10B—C10—H10C109.00
Cu1—N5—C13135.2 (4)C11—C12—H12127.00
N4—N5—C13105.3 (5)C13—C12—H12127.00
N1—C1—N4115.4 (5)C11—C14—H14A109.00
N1—C1—C2123.4 (6)C11—C14—H14B110.00
N4—C1—C2121.2 (6)C11—C14—H14C110.00
C1—C2—C3117.9 (6)H14A—C14—H14B109.00
C2—C3—C4120.6 (6)H14A—C14—H14C109.00
C3—C4—C5116.7 (6)H14B—C14—H14C109.00
N1—C5—N2114.3 (5)C13—C15—H15A110.00
N1—C5—C4124.0 (5)C13—C15—H15B109.00
N2—C5—C4121.7 (5)C13—C15—H15C109.00
N2—C6—C7105.9 (5)H15A—C15—H15B110.00
N2—C6—C9124.4 (6)H15A—C15—H15C109.00
C7—C6—C9129.4 (6)H15B—C15—H15C109.00
Cu2—I1—Cu1—N1175.69 (12)C1—N1—C5—N2179.3 (5)
Cu1i—I1—Cu1—N1125.23 (12)C1—N1—C5—C41.8 (9)
Cu2—I1—Cu1—N5109.13 (18)Cu2i—N1—C5—N226.1 (5)
Cu1i—I1—Cu1—N5159.60 (18)Cu2i—N1—C5—C4151.4 (5)
Cu2—I1—Cu1—I1i50.47 (5)C5—N2—N3—C8174.6 (5)
Cu1i—I1—Cu1—I1i0.02 (10)C5—N2—N3—Cu2i8.5 (6)
Cu1i—I1i—Cu1—I10.02 (11)C6—N2—N3—C80.8 (6)
Cu2i—I1i—Cu1—I1120.94 (6)C6—N2—N3—Cu2i176.1 (4)
Cu1i—I1i—Cu1—N1115.12 (14)N3—N2—C5—N125.8 (7)
Cu2i—I1i—Cu1—N15.83 (14)N3—N2—C5—C4151.8 (5)
Cu1i—I1i—Cu1—N5162.21 (16)C6—N2—C5—N1159.9 (6)
Cu2i—I1i—Cu1—N576.85 (15)C6—N2—C5—C422.5 (9)
Cu1—I1—Cu2—I2176.47 (5)N3—N2—C6—C71.2 (7)
Cu1i—I1—Cu2—I2126.72 (6)N3—N2—C6—C9172.7 (6)
Cu1—I1—Cu2—N1i44.00 (14)C5—N2—C6—C7173.5 (6)
Cu1i—I1—Cu2—N1i5.75 (14)C5—N2—C6—C912.7 (11)
Cu1—I1—Cu2—N3i34.49 (16)N2—N3—C8—C70.1 (7)
Cu1i—I1—Cu2—N3i84.24 (16)N2—N3—C8—C10178.4 (5)
N1—Cu1—N5—C13159.0 (6)Cu2i—N3—C8—C7176.3 (4)
I1i—Cu1—N5—N4124.0 (4)Cu2i—N3—C8—C102.0 (9)
I1i—Cu1—N5—C1346.6 (6)C1—N4—N5—Cu14.6 (7)
I1—Cu1—N1—C199.2 (4)C1—N4—N5—C13177.7 (5)
I1—Cu1—N1—C538.4 (5)C11—N4—N5—Cu1172.7 (4)
I1—Cu1—N1—Cu2i133.19 (9)C11—N4—N5—C130.5 (7)
N5—Cu1—N1—C126.3 (4)N5—N4—C1—N133.3 (7)
N5—Cu1—N1—C5163.9 (5)N5—N4—C1—C2143.6 (6)
N5—Cu1—N1—Cu2i101.33 (18)C11—N4—C1—N1143.3 (6)
I1i—Cu1—N1—C1133.9 (3)C11—N4—C1—C239.8 (10)
I1i—Cu1—N1—C588.5 (5)N5—N4—C11—C120.1 (7)
I1i—Cu1—N1—Cu2i6.23 (15)N5—N4—C11—C14177.7 (6)
I1—Cu1—N5—N475.3 (4)C1—N4—C11—C12176.7 (6)
I1—Cu1—N5—C13114.2 (6)C1—N4—C11—C141.0 (11)
N1—Cu1—N5—N411.6 (4)Cu1—N5—C13—C12170.7 (5)
I1—Cu2—N1i—Cu1i5.73 (14)Cu1—N5—C13—C1510.8 (10)
I1—Cu2—N1i—C1i92.8 (5)N4—N5—C13—C120.8 (7)
I1—Cu2—N1i—C5i118.3 (3)N4—N5—C13—C15177.7 (6)
I2—Cu2—N1i—Cu1i126.52 (8)N1—C1—C2—C36.0 (9)
I2—Cu2—N1i—C1i39.5 (5)N4—C1—C2—C3177.4 (6)
I2—Cu2—N1i—C5i109.5 (4)C1—C2—C3—C44.3 (9)
I1—Cu2—N3i—N2i114.1 (4)C2—C3—C4—C50.1 (9)
I1—Cu2—N3i—C8i61.9 (6)C3—C4—C5—N13.2 (9)
I2—Cu2—N3i—N2i103.6 (4)C3—C4—C5—N2179.4 (5)
I2—Cu2—N3i—C8i80.5 (6)N2—C6—C7—C81.1 (7)
Cu1—N1—C1—N436.9 (6)C9—C6—C7—C8172.4 (7)
Cu1—N1—C1—C2139.9 (5)C6—C7—C8—N30.6 (8)
C5—N1—C1—N4179.8 (5)C6—C7—C8—C10177.4 (7)
C5—N1—C1—C23.0 (9)N4—C11—C12—C130.6 (8)
Cu2i—N1—C1—N434.0 (7)C14—C11—C12—C13178.1 (7)
Cu2i—N1—C1—C2149.3 (5)C11—C12—C13—N50.9 (8)
Cu1—N1—C5—N248.7 (6)C11—C12—C13—C15177.5 (7)
Cu1—N1—C5—C4133.8 (5)
Symmetry code: (i) x+2, y, z.

Experimental details

Crystal data
Chemical formula[Cu4I4(C15H17N5)2]
Mr1296.47
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.196 (2), 11.425 (2), 16.572 (3)
β (°) 98.67 (3)
V3)1908.3 (7)
Z2
Radiation typeMo Kα
µ (mm1)5.47
Crystal size (mm)0.23 × 0.20 × 0.19
Data collection
DiffractometerRigaku Mercury
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.366, 0.423
No. of measured, independent and
observed [I > 2σ(I)] reflections
18181, 3484, 3090
Rint0.044
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.144, 1.04
No. of reflections3484
No. of parameters221
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.79, 1.14

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

 

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCarina, R. F., Williams, A. F. & Riguet, C. (1998). Helv. Chim. Acta, 81, 548–557.  Web of Science CrossRef CAS Google Scholar
First citationConstable, E. C., Edwards, A. J., Hannon, M. J. & Raithby, P. R. (1994). J. Chem. Soc. Chem. Commun. pp. 1991–1992.  CrossRef Web of Science Google Scholar
First citationHalcrow, M. A., Cromhout, N. L. & Raithby, P. R. (1997). Polyhedron, 16, 4257–4264.  CSD CrossRef CAS Web of Science Google Scholar
First citationJacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLazarou, K. N., Chadjistamatis, I., Terzis, A., Perlepes, S. P. & Raptopoulou, C. P. (2010). Polyhedron, 29, 1870–1879.  Web of Science CSD CrossRef CAS Google Scholar
First citationLazarou, K. N., Raptopoulou, C. P., Perlepes, S. P. & Psycharis, V. (2009). Polyhedron, 28, 3185–3192.  Web of Science CSD CrossRef CAS Google Scholar
First citationPiguet, C., Bernardinelli, G. & Williams, A. F. (1989). Inorg. Chem. 28, 2920–2925.  CSD CrossRef CAS Web of Science Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSolanki, N. K., Wheatley, E. H., Radojevic, S., McPartlin, M. & Halcrow, M. A. (1999). J. Chem. Soc. Dalton Trans. pp. 521–523.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds