metal-organic compounds
Bis[2,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)pyridine]di-μ3-iodido-diiodidotetracopper(I)
aDepartment of Chemistry, DeZhou University, De Zhou, Shan Dong 253023, People's Republic of China
*Correspondence e-mail: jiachunxiao@yahoo.com.cn
In the title centrosymmetric tetranuclear complex, [Cu4I4(C15H17N5)2], the two distinct CuI atoms adopt similar tetrahedral arrangements, each being ligated by two I atoms, and two N atoms from one 2,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)pyridine ligand. In the crystal, there are no hydrogen bonds present, and only very weak π–π interactions are observed [centroid–centroid distance = 3.985 (4) Å], which connect neighbouring tetranuclear units into a chain motif along the b axis.
Related literature
For related structures and background references, see: Carina et al. (1998); Constable et al. (1994); Piguet et al. (1989); Solanki et al. (1999); Lazarou et al. (2009, 2010). For tetrahedral geometry, see: Halcrow et al. (1997).
Experimental
Crystal data
|
Data collection: CrystalClear (Rigaku, 2007); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
10.1107/S1600536811026468/su2284sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811026468/su2284Isup2.hkl
A mixture of CuI (15 mg, 0.1 mmol) and 2,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)pyridine (13 mg, 0.05 mmol) was dissolved in MeCN (2 ml) in air. A light green solution was obtained, which was transferred into a Pyrex glass tube. It was then sealed and heated to 393 K for 48 h, and cooled to room temperature at a rate of 5 °C/h. Blue blocks of the title complex were formed. They were collected by filtration, washed with MeCN/Et2O (v/v = 1: 4) and dried in air.
The C-bound H-atoms were included in calculated positions and treated as riding atoms: C-H = 0.96 Å for CH3(methyl), with Uiso(H) = 1.5Ueq(parent C-atom).
Data collection: CrystalClear (Rigaku, 2007); cell
CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cu4I4(C15H17N5)2] | F(000) = 1224 |
Mr = 1296.47 | Dx = 2.256 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 6904 reflections |
a = 10.196 (2) Å | θ = 3.1–25.4° |
b = 11.425 (2) Å | µ = 5.47 mm−1 |
c = 16.572 (3) Å | T = 296 K |
β = 98.67 (3)° | Block, yellow |
V = 1908.3 (7) Å3 | 0.23 × 0.20 × 0.19 mm |
Z = 2 |
Rigaku Mercury diffractometer | 3484 independent reflections |
Radiation source: fine-focus sealed tube | 3090 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.044 |
ω scans | θmax = 25.4°, θmin = 3.1° |
Absorption correction: multi-scan (REQAB; Jacobson, 1998) | h = −12→12 |
Tmin = 0.366, Tmax = 0.423 | k = −13→13 |
18181 measured reflections | l = −18→19 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.144 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3 |
3484 reflections | (Δ/σ)max = 0.001 |
221 parameters | Δρmax = 0.79 e Å−3 |
0 restraints | Δρmin = −1.14 e Å−3 |
[Cu4I4(C15H17N5)2] | V = 1908.3 (7) Å3 |
Mr = 1296.47 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.196 (2) Å | µ = 5.47 mm−1 |
b = 11.425 (2) Å | T = 296 K |
c = 16.572 (3) Å | 0.23 × 0.20 × 0.19 mm |
β = 98.67 (3)° |
Rigaku Mercury diffractometer | 3484 independent reflections |
Absorption correction: multi-scan (REQAB; Jacobson, 1998) | 3090 reflections with I > 2σ(I) |
Tmin = 0.366, Tmax = 0.423 | Rint = 0.044 |
18181 measured reflections |
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.144 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.79 e Å−3 |
3484 reflections | Δρmin = −1.14 e Å−3 |
221 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
I1 | 0.89222 (5) | 0.01954 (4) | 0.10655 (3) | 0.0451 (2) | |
I2 | 0.69949 (5) | −0.31427 (5) | 0.14285 (3) | 0.0560 (2) | |
Cu1 | 1.09482 (9) | 0.06814 (8) | 0.03673 (5) | 0.0496 (3) | |
Cu2 | 0.88858 (8) | −0.21963 (8) | 0.09155 (6) | 0.0505 (3) | |
N1 | 1.0760 (5) | 0.2853 (4) | 0.0443 (3) | 0.0330 (16) | |
N2 | 0.8750 (5) | 0.3195 (4) | −0.0368 (3) | 0.0317 (16) | |
N3 | 0.9228 (5) | 0.2702 (4) | −0.1017 (3) | 0.0327 (16) | |
N4 | 1.2814 (5) | 0.2399 (4) | 0.1183 (3) | 0.0370 (17) | |
N5 | 1.2690 (5) | 0.1243 (4) | 0.0920 (3) | 0.0390 (17) | |
C1 | 1.1655 (6) | 0.3094 (5) | 0.1094 (4) | 0.0338 (17) | |
C2 | 1.1460 (6) | 0.3916 (5) | 0.1671 (4) | 0.0373 (19) | |
C3 | 1.0338 (7) | 0.4591 (5) | 0.1528 (4) | 0.0394 (19) | |
C4 | 0.9396 (6) | 0.4392 (5) | 0.0853 (4) | 0.0353 (17) | |
C5 | 0.9650 (6) | 0.3487 (5) | 0.0339 (3) | 0.0329 (17) | |
C6 | 0.7411 (6) | 0.3407 (6) | −0.0557 (4) | 0.0385 (19) | |
C7 | 0.7065 (6) | 0.3060 (6) | −0.1340 (4) | 0.0392 (19) | |
C8 | 0.8209 (6) | 0.2622 (5) | −0.1604 (4) | 0.0364 (17) | |
C9 | 0.6551 (7) | 0.3812 (8) | 0.0042 (5) | 0.061 (3) | |
C10 | 0.8402 (7) | 0.2080 (7) | −0.2401 (4) | 0.050 (2) | |
C11 | 1.4084 (6) | 0.2670 (6) | 0.1455 (4) | 0.0409 (19) | |
C12 | 1.4805 (7) | 0.1673 (6) | 0.1367 (5) | 0.050 (2) | |
C13 | 1.3894 (7) | 0.0821 (6) | 0.1042 (4) | 0.046 (2) | |
C14 | 1.4556 (8) | 0.3854 (7) | 0.1752 (5) | 0.059 (3) | |
C15 | 1.4186 (10) | −0.0425 (7) | 0.0865 (6) | 0.074 (3) | |
H2 | 1.20710 | 0.40110 | 0.21430 | 0.0450* | |
H3 | 1.02100 | 0.51880 | 0.18890 | 0.0470* | |
H4 | 0.86290 | 0.48410 | 0.07480 | 0.0420* | |
H7 | 0.62240 | 0.31040 | −0.16460 | 0.0470* | |
H9A | 0.64980 | 0.46510 | 0.00300 | 0.0910* | |
H9B | 0.69250 | 0.35580 | 0.05800 | 0.0910* | |
H9C | 0.56790 | 0.34870 | −0.01000 | 0.0910* | |
H10A | 0.93010 | 0.21970 | −0.24900 | 0.0750* | |
H10B | 0.78090 | 0.24390 | −0.28360 | 0.0750* | |
H10C | 0.82190 | 0.12560 | −0.23880 | 0.0750* | |
H12 | 1.57190 | 0.15840 | 0.14980 | 0.0610* | |
H14A | 1.40540 | 0.44440 | 0.14280 | 0.0890* | |
H14B | 1.54790 | 0.39370 | 0.17060 | 0.0890* | |
H14C | 1.44390 | 0.39430 | 0.23130 | 0.0890* | |
H15A | 1.37580 | −0.09290 | 0.12080 | 0.1100* | |
H15B | 1.51270 | −0.05530 | 0.09690 | 0.1100* | |
H15C | 1.38620 | −0.05940 | 0.03030 | 0.1100* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.0518 (3) | 0.0381 (3) | 0.0481 (3) | −0.0022 (2) | 0.0159 (2) | −0.0044 (2) |
I2 | 0.0392 (3) | 0.0522 (3) | 0.0810 (4) | −0.0087 (2) | 0.0229 (3) | −0.0150 (2) |
Cu1 | 0.0423 (5) | 0.0509 (5) | 0.0544 (5) | −0.0101 (4) | 0.0032 (4) | −0.0077 (4) |
Cu2 | 0.0319 (5) | 0.0540 (6) | 0.0667 (6) | 0.0032 (4) | 0.0112 (4) | 0.0004 (4) |
N1 | 0.027 (3) | 0.038 (3) | 0.034 (2) | 0.000 (2) | 0.005 (2) | −0.003 (2) |
N2 | 0.027 (3) | 0.037 (3) | 0.032 (2) | 0.000 (2) | 0.007 (2) | 0.001 (2) |
N3 | 0.030 (3) | 0.036 (3) | 0.033 (2) | 0.001 (2) | 0.008 (2) | 0.003 (2) |
N4 | 0.035 (3) | 0.036 (3) | 0.039 (3) | −0.002 (2) | 0.002 (2) | −0.003 (2) |
N5 | 0.034 (3) | 0.031 (3) | 0.051 (3) | 0.003 (2) | 0.003 (2) | 0.002 (2) |
C1 | 0.033 (3) | 0.034 (3) | 0.035 (3) | 0.000 (3) | 0.007 (3) | 0.003 (3) |
C2 | 0.040 (4) | 0.036 (3) | 0.035 (3) | −0.005 (3) | 0.003 (3) | 0.001 (3) |
C3 | 0.044 (4) | 0.031 (3) | 0.045 (3) | 0.000 (3) | 0.013 (3) | −0.003 (3) |
C4 | 0.037 (3) | 0.032 (3) | 0.037 (3) | 0.000 (3) | 0.006 (3) | 0.000 (3) |
C5 | 0.031 (3) | 0.031 (3) | 0.036 (3) | −0.004 (3) | 0.003 (3) | −0.003 (2) |
C6 | 0.029 (3) | 0.039 (3) | 0.049 (4) | 0.006 (3) | 0.011 (3) | −0.004 (3) |
C7 | 0.031 (3) | 0.039 (4) | 0.045 (3) | 0.002 (3) | −0.003 (3) | 0.001 (3) |
C8 | 0.033 (3) | 0.031 (3) | 0.044 (3) | 0.002 (3) | 0.002 (3) | −0.009 (3) |
C9 | 0.033 (4) | 0.085 (6) | 0.066 (5) | −0.003 (4) | 0.012 (4) | −0.018 (4) |
C10 | 0.047 (4) | 0.064 (5) | 0.038 (3) | 0.009 (4) | 0.001 (3) | −0.010 (3) |
C11 | 0.029 (3) | 0.048 (4) | 0.043 (3) | −0.009 (3) | −0.003 (3) | −0.005 (3) |
C12 | 0.031 (4) | 0.052 (4) | 0.066 (4) | 0.004 (3) | 0.000 (3) | 0.006 (4) |
C13 | 0.045 (4) | 0.039 (4) | 0.052 (4) | −0.003 (3) | 0.005 (3) | 0.006 (3) |
C14 | 0.049 (5) | 0.054 (5) | 0.072 (5) | −0.011 (4) | 0.002 (4) | −0.008 (4) |
C15 | 0.073 (6) | 0.046 (5) | 0.101 (7) | 0.011 (4) | 0.010 (5) | −0.001 (5) |
I1—Cu1 | 2.5758 (12) | C7—C8 | 1.399 (9) |
I1—Cu2 | 2.7435 (12) | C8—C10 | 1.498 (9) |
I1—Cu1i | 2.5988 (11) | C11—C12 | 1.375 (10) |
I2—Cu2 | 2.4704 (11) | C11—C14 | 1.494 (11) |
Cu1—N1 | 2.493 (5) | C12—C13 | 1.396 (10) |
Cu1—N5 | 1.978 (5) | C13—C15 | 1.493 (11) |
Cu2—N1i | 2.451 (5) | C2—H2 | 0.9300 |
Cu2—N3i | 1.991 (5) | C3—H3 | 0.9300 |
N1—C1 | 1.333 (8) | C4—H4 | 0.9300 |
N1—C5 | 1.333 (8) | C7—H7 | 0.9300 |
N2—N3 | 1.367 (7) | C9—H9A | 0.9600 |
N2—C5 | 1.415 (7) | C9—H9B | 0.9600 |
N2—C6 | 1.375 (8) | C9—H9C | 0.9600 |
N3—C8 | 1.315 (8) | C10—H10A | 0.9600 |
N4—N5 | 1.391 (7) | C10—H10B | 0.9600 |
N4—C1 | 1.413 (8) | C10—H10C | 0.9600 |
N4—C11 | 1.342 (8) | C12—H12 | 0.9300 |
N5—C13 | 1.306 (9) | C14—H14A | 0.9600 |
C1—C2 | 1.376 (9) | C14—H14B | 0.9600 |
C2—C3 | 1.370 (9) | C14—H14C | 0.9600 |
C3—C4 | 1.379 (9) | C15—H15A | 0.9600 |
C4—C5 | 1.389 (8) | C15—H15B | 0.9600 |
C6—C7 | 1.352 (9) | C15—H15C | 0.9600 |
C6—C9 | 1.494 (10) | ||
Cu1—I1—Cu2 | 100.07 (4) | C6—C7—C8 | 107.2 (6) |
Cu1—I1—Cu1i | 61.18 (4) | N3—C8—C7 | 110.3 (6) |
Cu1i—I1—Cu2 | 62.30 (4) | N3—C8—C10 | 119.1 (6) |
I1—Cu1—N1 | 96.83 (13) | C7—C8—C10 | 130.6 (6) |
I1—Cu1—N5 | 125.92 (15) | N4—C11—C12 | 106.1 (6) |
I1—Cu1—I1i | 118.82 (5) | N4—C11—C14 | 124.5 (6) |
N1—Cu1—N5 | 74.01 (18) | C12—C11—C14 | 129.4 (6) |
I1i—Cu1—N1 | 116.39 (12) | C11—C12—C13 | 106.5 (6) |
I1i—Cu1—N5 | 112.48 (15) | N5—C13—C12 | 111.0 (6) |
I1—Cu2—I2 | 113.91 (5) | N5—C13—C15 | 122.2 (7) |
I1—Cu2—N1i | 112.72 (12) | C12—C13—C15 | 126.9 (7) |
I1—Cu2—N3i | 106.36 (14) | C1—C2—H2 | 121.00 |
I2—Cu2—N1i | 114.38 (13) | C3—C2—H2 | 121.00 |
I2—Cu2—N3i | 129.64 (15) | C2—C3—H3 | 120.00 |
N1i—Cu2—N3i | 73.41 (19) | C4—C3—H3 | 120.00 |
Cu1—N1—C1 | 101.4 (4) | C3—C4—H4 | 122.00 |
Cu1—N1—C5 | 127.2 (4) | C5—C4—H4 | 122.00 |
Cu1—N1—Cu2i | 68.04 (13) | C6—C7—H7 | 126.00 |
C1—N1—C5 | 117.2 (5) | C8—C7—H7 | 126.00 |
Cu2i—N1—C1 | 129.0 (4) | C6—C9—H9A | 109.00 |
Cu2i—N1—C5 | 106.7 (3) | C6—C9—H9B | 109.00 |
N3—N2—C5 | 119.0 (5) | C6—C9—H9C | 109.00 |
N3—N2—C6 | 110.7 (5) | H9A—C9—H9B | 110.00 |
C5—N2—C6 | 130.1 (5) | H9A—C9—H9C | 110.00 |
N2—N3—C8 | 106.0 (5) | H9B—C9—H9C | 110.00 |
Cu2i—N3—N2 | 120.5 (4) | C8—C10—H10A | 109.00 |
Cu2i—N3—C8 | 133.5 (4) | C8—C10—H10B | 109.00 |
N5—N4—C1 | 117.8 (5) | C8—C10—H10C | 109.00 |
N5—N4—C11 | 111.2 (5) | H10A—C10—H10B | 109.00 |
C1—N4—C11 | 130.9 (5) | H10A—C10—H10C | 109.00 |
Cu1—N5—N4 | 119.1 (4) | H10B—C10—H10C | 109.00 |
Cu1—N5—C13 | 135.2 (4) | C11—C12—H12 | 127.00 |
N4—N5—C13 | 105.3 (5) | C13—C12—H12 | 127.00 |
N1—C1—N4 | 115.4 (5) | C11—C14—H14A | 109.00 |
N1—C1—C2 | 123.4 (6) | C11—C14—H14B | 110.00 |
N4—C1—C2 | 121.2 (6) | C11—C14—H14C | 110.00 |
C1—C2—C3 | 117.9 (6) | H14A—C14—H14B | 109.00 |
C2—C3—C4 | 120.6 (6) | H14A—C14—H14C | 109.00 |
C3—C4—C5 | 116.7 (6) | H14B—C14—H14C | 109.00 |
N1—C5—N2 | 114.3 (5) | C13—C15—H15A | 110.00 |
N1—C5—C4 | 124.0 (5) | C13—C15—H15B | 109.00 |
N2—C5—C4 | 121.7 (5) | C13—C15—H15C | 109.00 |
N2—C6—C7 | 105.9 (5) | H15A—C15—H15B | 110.00 |
N2—C6—C9 | 124.4 (6) | H15A—C15—H15C | 109.00 |
C7—C6—C9 | 129.4 (6) | H15B—C15—H15C | 109.00 |
Cu2—I1—Cu1—N1 | 175.69 (12) | C1—N1—C5—N2 | 179.3 (5) |
Cu1i—I1—Cu1—N1 | 125.23 (12) | C1—N1—C5—C4 | 1.8 (9) |
Cu2—I1—Cu1—N5 | −109.13 (18) | Cu2i—N1—C5—N2 | 26.1 (5) |
Cu1i—I1—Cu1—N5 | −159.60 (18) | Cu2i—N1—C5—C4 | −151.4 (5) |
Cu2—I1—Cu1—I1i | 50.47 (5) | C5—N2—N3—C8 | −174.6 (5) |
Cu1i—I1—Cu1—I1i | 0.02 (10) | C5—N2—N3—Cu2i | 8.5 (6) |
Cu1i—I1i—Cu1—I1 | 0.02 (11) | C6—N2—N3—C8 | 0.8 (6) |
Cu2i—I1i—Cu1—I1 | 120.94 (6) | C6—N2—N3—Cu2i | −176.1 (4) |
Cu1i—I1i—Cu1—N1 | −115.12 (14) | N3—N2—C5—N1 | −25.8 (7) |
Cu2i—I1i—Cu1—N1 | 5.83 (14) | N3—N2—C5—C4 | 151.8 (5) |
Cu1i—I1i—Cu1—N5 | 162.21 (16) | C6—N2—C5—N1 | 159.9 (6) |
Cu2i—I1i—Cu1—N5 | −76.85 (15) | C6—N2—C5—C4 | −22.5 (9) |
Cu1—I1—Cu2—I2 | −176.47 (5) | N3—N2—C6—C7 | −1.2 (7) |
Cu1i—I1—Cu2—I2 | −126.72 (6) | N3—N2—C6—C9 | 172.7 (6) |
Cu1—I1—Cu2—N1i | −44.00 (14) | C5—N2—C6—C7 | 173.5 (6) |
Cu1i—I1—Cu2—N1i | 5.75 (14) | C5—N2—C6—C9 | −12.7 (11) |
Cu1—I1—Cu2—N3i | 34.49 (16) | N2—N3—C8—C7 | −0.1 (7) |
Cu1i—I1—Cu2—N3i | 84.24 (16) | N2—N3—C8—C10 | −178.4 (5) |
N1—Cu1—N5—C13 | −159.0 (6) | Cu2i—N3—C8—C7 | 176.3 (4) |
I1i—Cu1—N5—N4 | 124.0 (4) | Cu2i—N3—C8—C10 | −2.0 (9) |
I1i—Cu1—N5—C13 | −46.6 (6) | C1—N4—N5—Cu1 | 4.6 (7) |
I1—Cu1—N1—C1 | 99.2 (4) | C1—N4—N5—C13 | 177.7 (5) |
I1—Cu1—N1—C5 | −38.4 (5) | C11—N4—N5—Cu1 | −172.7 (4) |
I1—Cu1—N1—Cu2i | −133.19 (9) | C11—N4—N5—C13 | 0.5 (7) |
N5—Cu1—N1—C1 | −26.3 (4) | N5—N4—C1—N1 | −33.3 (7) |
N5—Cu1—N1—C5 | −163.9 (5) | N5—N4—C1—C2 | 143.6 (6) |
N5—Cu1—N1—Cu2i | 101.33 (18) | C11—N4—C1—N1 | 143.3 (6) |
I1i—Cu1—N1—C1 | −133.9 (3) | C11—N4—C1—C2 | −39.8 (10) |
I1i—Cu1—N1—C5 | 88.5 (5) | N5—N4—C11—C12 | 0.1 (7) |
I1i—Cu1—N1—Cu2i | −6.23 (15) | N5—N4—C11—C14 | 177.7 (6) |
I1—Cu1—N5—N4 | −75.3 (4) | C1—N4—C11—C12 | −176.7 (6) |
I1—Cu1—N5—C13 | 114.2 (6) | C1—N4—C11—C14 | 1.0 (11) |
N1—Cu1—N5—N4 | 11.6 (4) | Cu1—N5—C13—C12 | 170.7 (5) |
I1—Cu2—N1i—Cu1i | −5.73 (14) | Cu1—N5—C13—C15 | −10.8 (10) |
I1—Cu2—N1i—C1i | −92.8 (5) | N4—N5—C13—C12 | −0.8 (7) |
I1—Cu2—N1i—C5i | 118.3 (3) | N4—N5—C13—C15 | 177.7 (6) |
I2—Cu2—N1i—Cu1i | 126.52 (8) | N1—C1—C2—C3 | −6.0 (9) |
I2—Cu2—N1i—C1i | 39.5 (5) | N4—C1—C2—C3 | 177.4 (6) |
I2—Cu2—N1i—C5i | −109.5 (4) | C1—C2—C3—C4 | 4.3 (9) |
I1—Cu2—N3i—N2i | −114.1 (4) | C2—C3—C4—C5 | −0.1 (9) |
I1—Cu2—N3i—C8i | 61.9 (6) | C3—C4—C5—N1 | −3.2 (9) |
I2—Cu2—N3i—N2i | 103.6 (4) | C3—C4—C5—N2 | 179.4 (5) |
I2—Cu2—N3i—C8i | −80.5 (6) | N2—C6—C7—C8 | 1.1 (7) |
Cu1—N1—C1—N4 | 36.9 (6) | C9—C6—C7—C8 | −172.4 (7) |
Cu1—N1—C1—C2 | −139.9 (5) | C6—C7—C8—N3 | −0.6 (8) |
C5—N1—C1—N4 | 179.8 (5) | C6—C7—C8—C10 | 177.4 (7) |
C5—N1—C1—C2 | 3.0 (9) | N4—C11—C12—C13 | −0.6 (8) |
Cu2i—N1—C1—N4 | −34.0 (7) | C14—C11—C12—C13 | −178.1 (7) |
Cu2i—N1—C1—C2 | 149.3 (5) | C11—C12—C13—N5 | 0.9 (8) |
Cu1—N1—C5—N2 | −48.7 (6) | C11—C12—C13—C15 | −177.5 (7) |
Cu1—N1—C5—C4 | 133.8 (5) |
Symmetry code: (i) −x+2, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | [Cu4I4(C15H17N5)2] |
Mr | 1296.47 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 10.196 (2), 11.425 (2), 16.572 (3) |
β (°) | 98.67 (3) |
V (Å3) | 1908.3 (7) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 5.47 |
Crystal size (mm) | 0.23 × 0.20 × 0.19 |
Data collection | |
Diffractometer | Rigaku Mercury diffractometer |
Absorption correction | Multi-scan (REQAB; Jacobson, 1998) |
Tmin, Tmax | 0.366, 0.423 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 18181, 3484, 3090 |
Rint | 0.044 |
(sin θ/λ)max (Å−1) | 0.602 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.144, 1.04 |
No. of reflections | 3484 |
No. of parameters | 221 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.79, −1.14 |
Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).
References
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Carina, R. F., Williams, A. F. & Riguet, C. (1998). Helv. Chim. Acta, 81, 548–557. Web of Science CrossRef CAS Google Scholar
Constable, E. C., Edwards, A. J., Hannon, M. J. & Raithby, P. R. (1994). J. Chem. Soc. Chem. Commun. pp. 1991–1992. CrossRef Web of Science Google Scholar
Halcrow, M. A., Cromhout, N. L. & Raithby, P. R. (1997). Polyhedron, 16, 4257–4264. CSD CrossRef CAS Web of Science Google Scholar
Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan. Google Scholar
Lazarou, K. N., Chadjistamatis, I., Terzis, A., Perlepes, S. P. & Raptopoulou, C. P. (2010). Polyhedron, 29, 1870–1879. Web of Science CSD CrossRef CAS Google Scholar
Lazarou, K. N., Raptopoulou, C. P., Perlepes, S. P. & Psycharis, V. (2009). Polyhedron, 28, 3185–3192. Web of Science CSD CrossRef CAS Google Scholar
Piguet, C., Bernardinelli, G. & Williams, A. F. (1989). Inorg. Chem. 28, 2920–2925. CSD CrossRef CAS Web of Science Google Scholar
Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Solanki, N. K., Wheatley, E. H., Radojevic, S., McPartlin, M. & Halcrow, M. A. (1999). J. Chem. Soc. Dalton Trans. pp. 521–523. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The study of dimeric double helical complexes generated from copper(I) salts and 2,6-bis(imidazol-2-yl)pyridine ligands demonstrates that, the variable copper(I) coordination geometries in the helicates can exhibit different connectivity patterns, such as {4+2}, {2+2+2}, and {3+3} motifs (Carina et al., 1998; Constable et al., 1994; Piguet et al., 1989; Solanki et al., 1999). Recently, some auxiliary ligands have also been introduced into these coordination systems (Lazarou et al., 2009, 2010). Here, we used iodine ions to bridge the copper(I) ions, which resulted in the tetranuclear coordination motif of the title compound (Fig. 1).
There are two crystallographic distinct copper(I) centers in this complex, which display similar coordination environments. Each metal center is linked to two nitrogen atoms from one 2,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)pyridine ligand, and to two iodine ions to give the tetrahedral coordination geometry. Both the geometries at atoms Cu1 and Cu2 are slightly flattened, the dihedral angles between the planes of the donors [Cu,N,N] and [Cu,I,I] are 75.2 (2)° and 81.46 (19)°, for atoms Cu1 and Cu2, respectively; they should be 90° for an 'ideal' tetrahedron (Halcrow et al., 1997). Paired copper(I) atoms are ligated to one 2,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)pyridine ligand acting as a tridentate ligand, forming two five membered chelate rings. In favour of the bridging role of the I1 donor is the fact that the binuclear coordination units, which are interlinked via an invesion center into a tetranuclear entity, feature two kinds of coordination squares with the compositions of Cu2IN and Cu2I2.
In the crystal, there exists a very weak π–π interaction, between the pyridyl ring (N1/C1—C5) and a pyrazol ring (N2,N3/C6—C8) from an adjacent molecule, with a centroid to centroid distance of 3.985 (4) Å and a dihedral angle of 24.72° (Fig. 2).